OFDM for Underwater Acoustic Communications
OFDM FOR UNDERWATER ACOUSTIC COMMUNICATIONS
OFDM FOR UNDERWATER ACOUSTIC COMMUNICATIONS

Shengli Zhou
University of Connecticut, USA

Zhaohui Wang
Michigan Technological University, USA
To Juanjuan, Daniel, Joyce, and my parents Heting and Caiyun
S. Z.

To my parents Yongcheng and Jiuqin
Z.-H. W.
Contents

Preface xvii
Acronyms xix
Notation xxiii

1 **Introduction** 1
 1.1 Background and Context 1
 1.1.1 Early Exploration of Underwater Acoustics 1
 1.1.2 Underwater Communication Media 2
 1.1.3 Underwater Systems and Networks 3
 1.2 UWA Channel Characteristics 3
 1.2.1 Sound Velocity 3
 1.2.2 Propagation Loss 5
 1.2.3 Time-Varying Multipath 7
 1.2.4 Acoustic Propagation Models 10
 1.2.5 Ambient Noise and External Interference 11
 1.3 Passband Channel Input–Output Relationship 11
 1.3.1 Linear Time-Varying Channel with Path-Specific Doppler Scales 12
 1.3.2 Linear Time-Varying Channels with One Common Doppler Scale 13
 1.3.3 Linear Time-Invariant Channel 13
 1.3.4 Linear Time-Varying Channel with Both Amplitude and Delay Variations 14
 1.3.5 Linear Time-Varying Channel with Frequency-Dependent Attenuation 15
 1.4 Modulation Techniques for UWA Communications 15
 1.4.1 Frequency Hopped FSK 15
 1.4.2 Direct Sequence Spread Spectrum 16
 1.4.3 Single Carrier Modulation 17
 1.4.4 Sweep-Spread Carrier (S2C) Modulation 18
 1.4.5 Multicarrier Modulation 18
 1.4.6 Multi-Input Multi-Output Techniques 19
 1.4.7 Recent Developments on Underwater Acoustic Communications 20
 1.5 Organization of the Book 20
2 OFDM Basics 23
2.1 Zero-Padded OFDM 23
2.1.1 Transmitted Signal 23
2.1.2 Receiver Processing 26
2.2 Cyclic-Prefixed OFDM 27
2.2.1 Transmitted Signal 27
2.2.2 Receiver Processing 28
2.3 OFDM Related Issues 28
2.3.1 ZP-OFDM versus CP-OFDM 28
2.3.2 Peak-to-Average-Power Ratio 29
2.3.3 Power Spectrum and Bandwidth 29
2.3.4 Subcarrier Assignment 30
2.3.5 Overall Data Rate 30
2.3.6 Design Guidelines 31
2.4 Implementation via Discrete Fourier Transform 31
2.5 Challenges and Remedies for OFDM 32
2.5.1 Benefits of Diversity Combining and Channel Coding 33
2.6 MIMO OFDM 36
2.7 Bibliographical Notes 38

3 Nonbinary LDPC Coded OFDM 39
3.1 Channel Coding for OFDM 39
3.1.1 Channel Coding 39
3.1.2 Coded Modulation 41
3.1.3 Coded OFDM 42
3.2 Nonbinary LDPC Codes 43
3.2.1 Nonbinary Regular Cycle Codes 44
3.2.2 Nonbinary Irregular LDPC Codes 45
3.3 Encoding 46
3.4 Decoding 48
3.4.1 Initialization 48
3.4.2 Variable-to-Check-Node Update 49
3.4.3 Check-to-Variable-Node Update 50
3.4.4 Tentative Decision and Decoder Outputs 51
3.5 Code Design 52
3.5.1 Design of Regular Cycle codes 53
3.5.2 Design of Irregular LDPC Codes 53
3.5.3 Quasi-Cyclic Nonbinary LDPC codes 55
3.6 Simulation Results of Coded OFDM 58
3.7 Bibliographical Notes 59

4 PAPR Control 63
4.1 PAPR Comparison 63
4.2 PAPR Reduction 65
4.2.1 Clipping 65
4.2.2 Selective Mapping 67
4.2.3 Peak Reduction Subcarriers 69
4.3 Bibliographical Notes 69
5 Receiver Overview and Preprocessing 71
5.1 OFDM Receiver Overview 72
5.2 Receiver Preprocessing 73
 5.2.1 Receiver Preprocessing 73
 5.2.2 Digital Implementation 74
 5.2.3 Frequency-Domain Oversampling 77
5.3 Frequency-Domain Input–Output Relationship 78
 5.3.1 Single-Input Single-Output Channel 78
 5.3.2 Single-Input Multi-Output Channel 79
 5.3.3 Multi-Input Multi-Output Channel 80
 5.3.4 Channel Matrix Structure 81
5.4 OFDM Receiver Categorization 82
 5.4.1 ICI-Ignorant Receiver 82
 5.4.2 ICI-Aware Receiver 83
 5.4.3 Block-by-Block Processing 85
 5.4.4 Block-to-Block Processing 85
 5.4.5 Discussion 85
5.5 Receiver Performance Bound with Simulated Channels 85
 5.5.1 Simulating Underwater Acoustic Channels 86
 5.5.2 ICI Effect in Time-Varying Channels 86
 5.5.3 Outage Performance of SISO Channel 87
5.6 Extension to CP-OFDM 88
 5.6.1 Receiver Preprocessing 88
 5.6.2 Frequency-Domain Input–Output Relationship 89
5.7 Bibliographical Notes 89

6 Detection, Synchronization and Doppler Scale Estimation 91
6.1 Cross-Correlation Based Methods 92
 6.1.1 Cross-Correlation Based Detection 92
 6.1.2 Cross-Correlation Based Synchronization and Doppler Scale Estimation 96
6.2 Detection, Synchronization and Doppler Scale Estimation with CP-OFDM 99
 6.2.1 CP-OFDM Preamble with Self-Repetition 99
 6.2.2 Self-Correlation Based Detection, Synchronization and Doppler Scale Estimation 100
 6.2.3 Implementation 101
6.3 Synchronization and Doppler Scale Estimation for One ZP-OFDM Block 103
 6.3.1 Null-Subcarrier based Blind Estimation 103
 6.3.2 Pilot-Aided Estimation 104
 6.3.3 Decision-Aided Estimation 104
6.4 Simulation Results for Doppler Scale Estimation 104
 6.4.1 RMSE Performance with CP-OFDM 105
 6.4.2 RMSE Performance with ZP-OFDM 106
 6.4.3 Comparison of Blind Methods of CP- and ZP-OFDM 107
6.5 Design Examples in Practical Systems 108
6.6 Residual Doppler Frequency Shift Estimation 110
 6.6.1 System Model after Resampling 110
6.6.2 Impact of Residual Doppler Shift Compensation
6.6.3 Two Residual Doppler Shift Estimation Methods
6.6.4 Simulation Results
6.7 Bibliographical Notes

7 Channel and Noise Variance Estimation
7.1 Problem Formulation for ICI-Ignorant Channel Estimation
 7.1.1 The Input–Output Relationship
 7.1.2 Dictionary Based Formulation
7.2 ICI-Ignorant Sparse Channel Sensing
 7.2.1 Dictionary Resolution versus Channel Sparsity
 7.2.2 Sparsity Factor
 7.2.3 Number of Pilots versus Number of Paths
7.3 ICI-Aware Sparse Channel Sensing
 7.3.1 Problem Formulation
 7.3.2 ICI-Aware Channel Sensing
 7.3.3 Pilot Subcarrier Distribution
 7.3.4 Influence of Data Symbols
7.4 Sparse Recovery Algorithms
 7.4.1 Matching Pursuit
 7.4.2 ℓ_1-Norm Minimization
 7.4.3 Matrix-Vector Multiplication via FFT
 7.4.4 Computational Complexity
7.5 Extension to Multi-Input Channels
 7.5.1 ICI-Ignorant Sparse Channel Sensing
 7.5.2 ICI-Aware Sparse Channel Sensing
7.6 Noise Variance Estimation
7.7 Noise Prewhitening
 7.7.1 Noise Spectrum Estimation
 7.7.2 Whitening in the Frequency Domain
7.8 Bibliographical Notes

8 Data Detection
8.1 Symbol-by-Symbol Detection in ICI-Ignorant OFDM Systems
 8.1.1 Single-Input Single-Output Channel
 8.1.2 Single-Input Multi-Output Channel
8.2 Block-Based Data Detection in ICI-Aware OFDM Systems
 8.2.1 MAP Equalizer
 8.2.2 Linear MMSE Equalizer with A Priori Information
 8.2.3 Extension to the Single-Input Multi-Output Channel
8.3 Data Detection for OFDM Systems with Banded ICI
 8.3.1 BCJR Algorithm and Log-MAP Implementation
 8.3.2 Factor-Graph Algorithm with Gaussian Message Passing
 8.3.3 Computations related to Gaussian Messages
 8.3.4 Extension to SIMO Channel
8.4 Symbol Detectors for MIMO OFDM
8.4.1 ICI-Ignorant MIMO OFDM 151
8.4.2 Full-ICI Equalization 152
8.4.3 Banded-ICI Equalization 152
8.5 MCMC Method for Data Detection in MIMO OFDM 153
8.5.1 MCMC Method for ICI-Ignorant MIMO Detection 153
8.5.2 MCMC Method for Banded-ICI MIMO Detection 154
8.6 Bibliographical Notes 155

9 OFDM Receivers with Block-by-Block Processing 157
9.1 Noniterative ICI-Ignorant Receiver 158
9.1.1 Noniterative ICI-Ignorant Receiver Structure 158
9.1.2 Simulation Results: ICI-Ignorant Receiver 159
9.1.3 Experimental Results: ICI-Ignorant Receiver 160
9.2 Noniterative ICI-Aware Receiver 161
9.2.1 Noniterative ICI-Aware Receiver Structure 162
9.2.2 Simulation Results: ICI-Aware Receiver 163
9.2.3 Experimental Results: ICI-Aware Receiver 164
9.3 Iterative Receiver Processing 164
9.3.1 Iterative ICI-Ignorant Receiver 165
9.3.2 Iterative ICI-Aware Receiver 165
9.4 ICI-Progressive Receiver 166
9.5 Simulation Results: ICI-Progressive Receiver 168
9.6 Experimental Results: ICI-Progressive Receiver 171
9.6.1 BLER Performance 171
9.6.2 Environmental Impact 171
9.6.3 Progressive versus Iterative ICI-Aware Receivers 174
9.7 Discussion 175
9.8 Bibliographical Notes 175

10 OFDM Receiver with Clustered Channel Adaptation 177
10.1 Illustration of Channel Dynamics 177
10.2 Modeling Cluster-Based Block-to-Block Channel Variation 178
10.3 Cluster-Adaptation Based Block-to-Block Receiver 180
10.3.1 Cluster Offset Estimation and Compensation 181
10.3.2 Cluster-Adaptation Based Sparse Channel Estimation 184
10.3.3 Channel Re-estimation and Cluster Variance Update 186
10.4 Experimental Results: MACE10 186
10.4.1 BLER Performance with an Overall Resampling 187
10.4.2 BLER Performance with Refined Resampling 188
10.5 Experimental Results: SPACE08 190
10.6 Discussion 193
10.7 Bibliographical Notes 193

11 OFDM in Deep Water Horizontal Communications 195
11.1 System Model for Deep Water Horizontal Communications 196
11.1.1 Transmitted Signal 197
Contents

11.1.2 Modeling Clustered Multipath Channel 197
11.1.3 Received Signal 198
11.2 Decision-Feedback Based Receiver Design 199
11.3 Factor-Graph Based Joint IBI/ICI Equalization 200
11.3.1 Probabilistic Problem Formulation 200
11.3.2 Factor-Graph Based Equalization 202
11.4 Iterative Block-to-Block Receiver Processing 203
11.5 Simulation Results 205
11.6 Experimental Results in the AUTEC Environment 208
11.7 Extension to Underwater Broadcasting Networks 211
11.7.1 Underwater Broadcasting Networks 211
11.7.2 Emulated Experimental Results: MACE10 211
11.8 Bibliographical Notes 214

12 OFDM Receiver with Parameterized External Interference Cancellation 215
12.1 Interference Parameterization 215
12.2 An Iterative OFDM Receiver with Interference Cancellation 217
12.2.1 Initialization 219
12.2.2 Interference Detection and Estimation 219
12.2.3 Channel Estimation, Equalization and Channel Decoding 221
12.2.4 Noise Variance Estimation 221
12.3 Simulation Results 221
12.3.1 Time-Invariant Channels 222
12.3.2 Time-Varying Channels 223
12.3.3 Performance of the Proposed Receiver with Different SIRs 224
12.3.4 Interference Detection and Estimation 225
12.4 Experimental Results: AUTEC10 225
12.5 Emulated Results: SPACE08 227
12.6 Discussion 229
12.7 Bibliographical Notes 229

13 Co-located MIMO OFDM 231
13.1 ICI-Ignorant MIMO-OFDM System Model 232
13.2 ICI-Ignorant MIMO-OFDM Receiver 233
13.2.1 Noniterative ICI-Ignorant MIMO-OFDM Receiver 233
13.2.2 Iterative ICI-Ignorant MIMO-OFDM Receiver 234
13.3 Simulation Results: ICI-Ignorant MIMO OFDM 234
13.4 SPACE08 Experimental Results: ICI-Ignorant MIMO OFDM 237
13.5 ICI-Aware MIMO-OFDM System Model 237
13.6 ICI-Progressive MIMO-OFDM Receiver 237
13.6.1 Receiver Overview 239
13.6.2 Sparse Channel Estimation and Noise Variance Estimation 240
13.6.3 Joint ICI/CCI Equalization 240
13.7 Simulation Results: ICI-Progressive MIMO OFDM 241
13.8 SPACE08 Experiment: ICI-Progressive MIMO OFDM 242
13.9 MACE10 Experiment: ICI-Progressive MIMO OFDM 244
13.9.1 BLER Performance with Two Transmitters 244
13.9.2 BLER Performance with Three and Four Transmitters 246
13.10 Initialization for the ICI-Progressive MIMO OFDM 246
13.11 Bibliographical Notes 246

14 Distributed MIMO OFDM 249
14.1 System Model 250
14.2 Multiple-Resampling Front-End Processing 251
14.3 Multiuser Detection (MUD) Based Iterative Receiver 252
 14.3.1 Pre-processing with Frequency-Domain Oversampling 252
 14.3.2 Joint Channel Estimation 254
 14.3.3 Multiuser Data Detection and Channel Decoding 255
14.4 Single-User Detection (SUD) Based Iterative Receiver 255
 14.4.1 Single-User Decoding 255
 14.4.2 MUI Construction 256
14.5 An Emulated Two-User System Using MACE10 Data 257
 14.5.1 MUD-Based Receiver with and without Frequency-Domain Oversampling 258
 14.5.2 Performance of SUD- and MUD-Based Receivers 258
14.6 Emulated MIMO OFDM with MACE10 and SPACE08 Data 260
 14.6.1 One Mobile Single-Transmitter User plus One Stationary Two-Transmitter User 261
 14.6.2 One Mobile Single-Transmitter User plus One Stationary Three-Transmitter User 262
 14.6.3 Two Mobile Single-Transmitter Users plus One Stationary Two-Transmitter User 263
14.7 Bibliographical Notes 263

15 Asynchronous Multiuser OFDM 265
15.1 System Model for Asynchronous Multiuser OFDM 266
15.2 Overlapped Truncation and Interference Aggregation 267
 15.2.1 Overlapped Truncation 267
 15.2.2 Interference Aggregation 268
15.3 An Asynchronous Multiuser OFDM Receiver 269
 15.3.1 The Overall Receiver Structure 269
 15.3.2 Interblock Interference Subtraction 270
 15.3.3 Time-to-Frequency-Domain Conversion 271
 15.3.4 Iterative Multiuser Reception and Residual Interference Cancellation 273
 15.3.5 Interference Reconstruction 274
15.4 Investigation on Multiuser Asynchronism in an Example Network 275
15.5 Simulation Results 276
 15.5.1 Two-User Systems with Time-Varying Channels 277
 15.5.2 Multiuser Systems with Time-Invariant Channels 279
15.6 Emulated Results: MACE10 281
15.7 Bibliographical Notes 284
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>OFDM in Relay Channels</td>
<td>285</td>
</tr>
<tr>
<td>16.1</td>
<td>Dynamic Coded Cooperation in a Single-Relay Network</td>
<td>285</td>
</tr>
<tr>
<td>16.1.1</td>
<td>Relay Operations</td>
<td>286</td>
</tr>
<tr>
<td>16.1.2</td>
<td>Receiver Processing at the Destination</td>
<td>288</td>
</tr>
<tr>
<td>16.1.3</td>
<td>Discussion</td>
<td>289</td>
</tr>
<tr>
<td>16.2</td>
<td>A Design Example Based on Rate-Compatible Channel Coding</td>
<td>289</td>
</tr>
<tr>
<td>16.2.1</td>
<td>Code Design</td>
<td>289</td>
</tr>
<tr>
<td>16.2.2</td>
<td>Simulation Results</td>
<td>291</td>
</tr>
<tr>
<td>16.3</td>
<td>A Design Example Based on Layered Erasure- and Error-Correction Coding</td>
<td>292</td>
</tr>
<tr>
<td>16.3.1</td>
<td>Code Design</td>
<td>292</td>
</tr>
<tr>
<td>16.3.2</td>
<td>Implementation</td>
<td>293</td>
</tr>
<tr>
<td>16.3.3</td>
<td>An Experiment in Swimming Pool</td>
<td>293</td>
</tr>
<tr>
<td>16.3.4</td>
<td>A Sea Experiment</td>
<td>296</td>
</tr>
<tr>
<td>16.4</td>
<td>Dynamic Block Cycling over a Line Network</td>
<td>299</td>
</tr>
<tr>
<td>16.4.1</td>
<td>Hop-by-Hop Relay and Turbo Relay</td>
<td>299</td>
</tr>
<tr>
<td>16.4.2</td>
<td>Dynamic Block-Cycling Transmissions</td>
<td>300</td>
</tr>
<tr>
<td>16.4.3</td>
<td>Discussion</td>
<td>302</td>
</tr>
<tr>
<td>16.5</td>
<td>Bibliographical Notes</td>
<td>302</td>
</tr>
<tr>
<td>17</td>
<td>OFDM-Modulated Physical-Layer Network Coding</td>
<td>303</td>
</tr>
<tr>
<td>17.1</td>
<td>System Model for the OFDM-Modulated PLNC</td>
<td>305</td>
</tr>
<tr>
<td>17.2</td>
<td>Three Iterative OFDM Receivers</td>
<td>306</td>
</tr>
<tr>
<td>17.2.1</td>
<td>Iterative Separate Detection and Decoding</td>
<td>306</td>
</tr>
<tr>
<td>17.2.2</td>
<td>Iterative XOR-ed PLNC Detection and Decoding</td>
<td>307</td>
</tr>
<tr>
<td>17.2.3</td>
<td>Iterative Generalized PLNC Detection and Decoding</td>
<td>309</td>
</tr>
<tr>
<td>17.3</td>
<td>Outage Probability Bounds in Time-Invariant Channels</td>
<td>309</td>
</tr>
<tr>
<td>17.4</td>
<td>Simulation Results</td>
<td>310</td>
</tr>
<tr>
<td>17.4.1</td>
<td>The Single-Path Time-Invariant Channel</td>
<td>311</td>
</tr>
<tr>
<td>17.4.2</td>
<td>The Multipath Time-Invariant Channel</td>
<td>311</td>
</tr>
<tr>
<td>17.4.3</td>
<td>The Multipath Time-Varying Channel</td>
<td>313</td>
</tr>
<tr>
<td>17.5</td>
<td>Experimental Results: SPACE08</td>
<td>314</td>
</tr>
<tr>
<td>17.6</td>
<td>Bibliographical Notes</td>
<td>315</td>
</tr>
<tr>
<td>18</td>
<td>OFDM Modem Development</td>
<td>317</td>
</tr>
<tr>
<td>18.1</td>
<td>Components of an Acoustic Modem</td>
<td>317</td>
</tr>
<tr>
<td>18.2</td>
<td>OFDM Acoustic Modem in Air</td>
<td>318</td>
</tr>
<tr>
<td>18.3</td>
<td>OFDM Lab Modem</td>
<td>318</td>
</tr>
<tr>
<td>18.4</td>
<td>AquaSeNT OFDM Modem</td>
<td>320</td>
</tr>
<tr>
<td>18.5</td>
<td>Bibliographical Notes</td>
<td>321</td>
</tr>
<tr>
<td>19</td>
<td>Underwater Ranging and Localization</td>
<td>323</td>
</tr>
<tr>
<td>19.1</td>
<td>Ranging</td>
<td>324</td>
</tr>
<tr>
<td>19.1.1</td>
<td>One-Way Signaling</td>
<td>324</td>
</tr>
<tr>
<td>19.1.2</td>
<td>Two-Way Signaling</td>
<td>324</td>
</tr>
<tr>
<td>19.1.3</td>
<td>Challenges for High-Precision Ranging</td>
<td>325</td>
</tr>
</tbody>
</table>
19.2 Underwater GPS
 19.2.1 System Overview 325
 19.2.2 One-Way Travel Time Estimation 326
 19.2.3 Localization 327
 19.2.4 Tracking Algorithms 329
 19.2.5 Simulation Results 334
 19.2.6 Field Test in a Local Lake 335
19.3 On-Demand Asynchronous Localization 336
 19.3.1 Localization Procedure 337
 19.3.2 Localization Algorithm for the Initiator 338
 19.3.3 Localization Algorithm for a Passive Node 340
 19.3.4 Localization Performance Results in a Lake 341
19.4 Bibliographical Notes 344

Appendix A Compressive Sensing 345
 A.1 Compressive Sensing 346
 A.1.1 Sparse Representation 346
 A.1.2 Exactly and Approximately Sparse Signals 346
 A.1.3 Sensing 346
 A.1.4 Signal Recovery and RIP 347
 A.1.5 Sensing Matrices 348
 A.2 Sparse Recovery Algorithms 348
 A.2.1 Matching Pursuits 349
 A.2.2 ℓ_1-Norm Minimization 349
 A.3 Applications of Compressive Sensing 350
 A.3.1 Applications of Compressive Sensing in Communications 350
 A.3.2 Compressive Sensing in Underwater Acoustic Channels 351

Appendix B Experiment Description 353
 B.1 SPACE08 Experiment 353
 B.2 MACE10 Experiment 354
 B.2.1 Experiment Setup 355
 B.2.2 Mobility Estimation 356

References 359

Index 383
Preface

Underwater acoustic (UWA) channels have been regarded significantly different from wireless radio channels, due to their unique characteristics, such as large temporal variations, abundance of transmission paths, and wideband property in nature. Although there are a plethora of digital and wireless communication textbooks, most of them are tailored towards wireless radio channels, where simplified channel models are usually adopted to streamline presentation. Following standard receiver designs in textbooks, a practitioner might often be frustrated by the receiver performance in real underwater acoustic environments. This book is written to unfold and to address the challenges in UWA communications particularly for the multicarrier modulation in the form of orthogonal frequency-division multiplexing (OFDM).

The last decade has witnessed the tremendous development and revolutionary impact of OFDM on high data-rate radio communications. It is the workhorse of many wireless communication standards, such as WiFi (IEEE 802.11 a/g/n), WiMAX (IEEE 802.16), digital audio and video broadcasting (DAB/DVB), and the fourth generation (4G) cellular systems. The popularity of OFDM stems from its capability to convert a long multipath channel in the time domain into multiple parallel single-tap channels in the frequency domain, thus considerably simplifying receiver design. Such a feature makes OFDM an attractive choice for UWA channels. However, the feasibility of underwater acoustic OFDM had not been validated with experimental data sets until the mid 2000s, although OFDM has been tested in UWA environments since the 1990s. Considerable progress for OFDM has been observed in the UWA community since the late 2000s.

This book is dedicated to the techniques for OFDM in UWA channels, and different chapters are focused on addressing different challenges. Readers are expected to have certain signal processing and communication background. For readers within the UWA community, this book could deepen their understanding in the design aspects specific to underwater systems. For readers outside the UWA community, this book will help them to appreciate the distinctions of system design in different domains.

The technical content of this book mainly originates from the research performed within the UnderWater Sensor Network (UWSN) lab at the University of Connecticut (UCONN), which is co-directed by Dr. Jun-Hong Cui and the first author Dr. Shengli Zhou. The past and existing members who have contributed to the content of the book include: postdoctoral researchers: Drs. Jie Huang, Hao Zhou, and Xiaoka Xu; past Ph.D. students: Drs. Baosheng Li, Christian Berger, Jianzhong Huang; current Ph.D. students: Patrick Carroll, Lei Wan, Yi Huang; past M.S. students: Sean Mason, Weian Chen, Wei Zhou; and visiting scholars: Yougan Chen,
Haixin Sun, Yuzhi Zhang, Xiaomei Xu. The authors have benefited tremendously from collaborations with faculty members affiliated with UWSN, in particular, Drs. Peter Willett, Jun-Hong Cui, Zhijie Shi, James O’Donnell, and Thomas Torgersen. The sincere gratitude of the authors also goes to the colleagues in the Systems Group at UCONN, especially Drs. Yaakov Bar-Shalom, Peter Luh, Krishna Pattipati, and Peter Willett, for promoting an atmosphere for academic excellence.

The authors would like to thank Mr. Lee Freitag, Dr. James Preisig, and their teams from the Woods Hole Oceanographic Institute (WHOI), and Dr. Josko Catipovic and his team from the Navy Undersea Warfare Center (NUWC) for providing multiple experimental opportunities. The data sets from those experiments, especially from the SPACE08 experiment, the MACE10 experiment and the AUTEC network, are instrumental to our receiver development and validation. The experimental opportunities offered by Dr. T. C. Yang have also been very helpful for our research development. We would also like to acknowledge Dr. Milica Stojanovic for stimulating discussions at the early stage of research and Dr. Zhengdao Wang for his valuable comments through regular discussions.

The feedback from the reviewers have helped to improve the presentation of this book. We acknowledge Drs. Christian Berger, Tolga Duman, Dennis Goeckel, Georgios Giannakis, Geert Leus, Aijun Song, Milica Stojanovic, Zhengdao Wang, Peter Willett, Chengshan Xiao, and Ms. Xiaoyi Hu for reviewing different chapters with a short notice. Mr. Mark Hammond, Ms. Liz Wingett, and Ms. Sandra Grayson from the publisher have been very patient and supportive during this project.

The work in this book has been supported by the Office of Naval Research (ONR) and National Science Foundation (NSF). We would like to thank the program managers: Dr. Robert Headrick from ONR who has managed the YIP and PECASE projects, and Dr. Scott Midkiff, Dr. David Du, Dr. Zygmunt Haas, and Dr. Zhi Tian from different programs at NSF. Dr. Keith Davidson from ONR has provided a lot of encouragement during annual ONR PI meetings. The University of Connecticut has provided matching funds to our NSF projects at various occasions. The first author acknowledges the support of the United Technologies Corporation (UTC) Associate Professorship in Engineering Innovation (2008–2011), and the Charles H. Knapp Associate Professorship in Electrical Engineering (2012–2013).

The training from our advisors has laid foundation for the authors to pursue this project. Dr. Shengli Zhou would like to thank his Ph.D. advisor Dr. Georgios B. Giannakis and his MSc. advisor Dr. Jinkang Zhu, and Dr. Zhaohui Wang would like to thank her MSc. advisor Dr. Huizhi Cai, for their mentoring during the graduate studies.

Last but not least, we are grateful to our family members for their continuous support and encouragement throughout the project.

Shengli Zhou
University of Connecticut

Zhaohui Wang
Michigan Technological University
Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>Amplify and Forward</td>
</tr>
<tr>
<td>ANC</td>
<td>Analogy Network Coding</td>
</tr>
<tr>
<td>AoA</td>
<td>Angle of Arrival</td>
</tr>
<tr>
<td>ARQ</td>
<td>Automatic Repeat Request</td>
</tr>
<tr>
<td>AUTEC</td>
<td>Atlantic Undersea Test and Evaluation Center</td>
</tr>
<tr>
<td>AUV</td>
<td>Autonomous Underwater Vehicle</td>
</tr>
<tr>
<td>BCJR</td>
<td>The Bahl-Cocke-Jelinek-Raviv Algorithm</td>
</tr>
<tr>
<td>BICM</td>
<td>Bit Interleaved Coded Modulation</td>
</tr>
<tr>
<td>BP</td>
<td>Basis Pursuit</td>
</tr>
<tr>
<td>BPSK</td>
<td>Binary Phase-Shift Keying</td>
</tr>
<tr>
<td>BER</td>
<td>Bit Error Rate</td>
</tr>
<tr>
<td>BLER</td>
<td>Block Error Rate</td>
</tr>
<tr>
<td>CC</td>
<td>Convolutional Code</td>
</tr>
<tr>
<td>CCDF</td>
<td>Complementary Cumulative Distribution Function</td>
</tr>
<tr>
<td>CCI</td>
<td>Cochannel Interference</td>
</tr>
<tr>
<td>CDF</td>
<td>Cumulative Distribution Function</td>
</tr>
<tr>
<td>CDMA</td>
<td>Coded-Division Multiple Access</td>
</tr>
<tr>
<td>CF</td>
<td>Compress and Forward</td>
</tr>
<tr>
<td>CFO</td>
<td>Carrier Frequency Offset</td>
</tr>
<tr>
<td>CP</td>
<td>Cyclic Prefix</td>
</tr>
<tr>
<td>CRLB</td>
<td>Cramer-Rao Lower Bound</td>
</tr>
<tr>
<td>CS</td>
<td>Compressive Sensing</td>
</tr>
<tr>
<td>CSI</td>
<td>Channel State Information</td>
</tr>
<tr>
<td>CZT</td>
<td>Chirp Z-Transform</td>
</tr>
<tr>
<td>DBC</td>
<td>Dynamic Block-Cycling</td>
</tr>
<tr>
<td>DCC</td>
<td>Dynamic Coded Cooperation</td>
</tr>
<tr>
<td>DF</td>
<td>Decode and Forward</td>
</tr>
<tr>
<td>DFE</td>
<td>Decision-Feedback Equalization</td>
</tr>
<tr>
<td>DFT</td>
<td>Discrete Fourier Transform</td>
</tr>
<tr>
<td>DSSS</td>
<td>Direct Sequence Spread Spectrum</td>
</tr>
<tr>
<td>FDM</td>
<td>Frequency Division Multiplexing</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>FH</td>
<td>Frequency Hopping</td>
</tr>
<tr>
<td>FG</td>
<td>Factor Graph</td>
</tr>
<tr>
<td>Acronyms</td>
<td>Definitions</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>FSK</td>
<td>Frequency Shift Keying</td>
</tr>
<tr>
<td>GIB</td>
<td>GPS Intelligent Buoy</td>
</tr>
<tr>
<td>GLRT</td>
<td>Generalized Log-Likelihood Test</td>
</tr>
<tr>
<td>GMP</td>
<td>Gaussian Message Passing</td>
</tr>
<tr>
<td>GPS</td>
<td>Globe Positioning System</td>
</tr>
<tr>
<td>HFM</td>
<td>Hyperbolic-Frequency Modulation</td>
</tr>
<tr>
<td>IBI</td>
<td>Interblock Interference</td>
</tr>
<tr>
<td>ICI</td>
<td>Intercarrier Interference</td>
</tr>
<tr>
<td>i.i.d.</td>
<td>Independent and Identically Distributed</td>
</tr>
<tr>
<td>IMM</td>
<td>Interacting Multiple Model</td>
</tr>
<tr>
<td>ISI</td>
<td>Intersymbol Interference</td>
</tr>
<tr>
<td>LASSO</td>
<td>Least Absolute Shrinkage and Selection Operator</td>
</tr>
<tr>
<td>LBL</td>
<td>Long Baseline</td>
</tr>
<tr>
<td>LDPC</td>
<td>Low Density Parity Check Code</td>
</tr>
<tr>
<td>LFM</td>
<td>Linear-Frequency Modulation</td>
</tr>
<tr>
<td>LLR</td>
<td>Log-Likelihood Ratio</td>
</tr>
<tr>
<td>LLRV</td>
<td>Log-Likelihood Ratio Vector</td>
</tr>
<tr>
<td>LMMSE</td>
<td>Linear Minimum Mean-Square Error</td>
</tr>
<tr>
<td>LPF</td>
<td>Low Bandpass Filtering</td>
</tr>
<tr>
<td>LPM</td>
<td>Linear-Period Modulation</td>
</tr>
<tr>
<td>LS</td>
<td>Least Squares</td>
</tr>
<tr>
<td>MAC</td>
<td>Medium-Access Control</td>
</tr>
<tr>
<td>MACE10</td>
<td>Mobile Acoustic Communication Experiment in 2010</td>
</tr>
<tr>
<td>MAP</td>
<td>Maximum A Posteriori Probability</td>
</tr>
<tr>
<td>MCMC</td>
<td>Markov Chain Monte Carlo</td>
</tr>
<tr>
<td>MIMO</td>
<td>Multi-Input Multi-Output</td>
</tr>
<tr>
<td>ML</td>
<td>Maximum Likelihood</td>
</tr>
<tr>
<td>MP</td>
<td>Matching Pursuit</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Square Error</td>
</tr>
<tr>
<td>MMSE</td>
<td>Minimum Mean Square Error</td>
</tr>
<tr>
<td>MRC</td>
<td>Maximum Ratio Combining</td>
</tr>
<tr>
<td>MUD</td>
<td>Multiuser Detection</td>
</tr>
<tr>
<td>MUI</td>
<td>Multiuser Interference</td>
</tr>
<tr>
<td>NC</td>
<td>Network Coding</td>
</tr>
<tr>
<td>NCM</td>
<td>Nonbinary Coded Modulation</td>
</tr>
<tr>
<td>NLNC</td>
<td>Network-Layer Network Coding</td>
</tr>
<tr>
<td>OFDM</td>
<td>Orthogonal Frequency-Division Multiplexing</td>
</tr>
<tr>
<td>OMP</td>
<td>Orthogonal Matching Pursuit</td>
</tr>
<tr>
<td>PAM</td>
<td>Pulse Amplitude Modulation</td>
</tr>
<tr>
<td>PAPR</td>
<td>Peak-To-Average-Power Ratio</td>
</tr>
<tr>
<td>PDA</td>
<td>Probabilistic Data Association</td>
</tr>
<tr>
<td>PER</td>
<td>Packet Error Rate</td>
</tr>
<tr>
<td>PLNC</td>
<td>Physical-Layer Network Coding</td>
</tr>
<tr>
<td>PSNR</td>
<td>Pilot Signal-To-Noise Ratio</td>
</tr>
<tr>
<td>QAM</td>
<td>Quadrature Amplitude Modulation</td>
</tr>
<tr>
<td>QC</td>
<td>Quasi-Cyclic</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>QMF</td>
<td>Quantize, Map and Forward</td>
</tr>
<tr>
<td>QPSK</td>
<td>Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>RIP</td>
<td>Restricted Isometry Property</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root Mean-Squared Error</td>
</tr>
<tr>
<td>S2C</td>
<td>Sweep-Spread Carrier</td>
</tr>
<tr>
<td>SBL</td>
<td>Short Baseline</td>
</tr>
<tr>
<td>SDA</td>
<td>Sphere Decoding Algorithm</td>
</tr>
<tr>
<td>SIMO</td>
<td>Single-Input Multi-Output</td>
</tr>
<tr>
<td>SINR</td>
<td>Signal-to-Interference-and-Noise Ratio</td>
</tr>
<tr>
<td>SIR</td>
<td>Signal-to-Interference Ratio</td>
</tr>
<tr>
<td>SISO</td>
<td>Single-Input Single-Output</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>SOFAR</td>
<td>Sound Fixing and Ranging</td>
</tr>
<tr>
<td>SONAR</td>
<td>Sound Navigation and Ranging</td>
</tr>
<tr>
<td>SPA</td>
<td>Sum Product Algorithm</td>
</tr>
<tr>
<td>SPACE08</td>
<td>Surface Processes and Acoustic Communication Experiment in 2008</td>
</tr>
<tr>
<td>SPRT</td>
<td>Sequential Probability Ratio Test</td>
</tr>
<tr>
<td>SUD</td>
<td>Single-User Detection</td>
</tr>
<tr>
<td>TCM</td>
<td>Trellis Coded Modulation</td>
</tr>
<tr>
<td>TDOA</td>
<td>Time Difference of Arrival</td>
</tr>
<tr>
<td>TVR</td>
<td>Transmitter Voltage Response</td>
</tr>
<tr>
<td>USBL</td>
<td>Ultra-Short Baseline</td>
</tr>
<tr>
<td>UUV</td>
<td>Unmanned Underwater Vehicle</td>
</tr>
<tr>
<td>UWA</td>
<td>Underwater Acoustic</td>
</tr>
<tr>
<td>VA</td>
<td>Viterbi Algorithm</td>
</tr>
<tr>
<td>ZF</td>
<td>Zero Forcing</td>
</tr>
<tr>
<td>ZP</td>
<td>Zero Padding</td>
</tr>
</tbody>
</table>
Notation

Scalars

K Number of subcarriers in one OFDM symbol
B Frequency bandwidth of one OFDM symbol
Δf Subcarrier spacing in one OFDM symbol, $:= B/K$
T Time-duration of one OFDM symbol, $:= 1/\Delta f$
T_g Time-duration of guard interval for one OFDM symbol
T_{bl} Time-duration of one OFDM block, $:= T + T_g$
f_c Center frequency of communication system
f_k Frequency of the kth subcarrier, $:= f_c + k/T$
S_N The set of null subcarriers in one OFDM symbol
S_P The set of pilot subcarriers in one OFDM symbol
S_D The set of data subcarriers in one OFDM symbol
S_A The set of active subcarriers in one OFDM symbol $:= S_P \cup S_D$
$h(t; \tau)$ Time-varying channel impulse response
$A_p(t)$ Time-varying amplitude of the pth path
A_p Time-invariant amplitude of the pth path
$\tau_p(t)$ Time-varying delay of the pth path
τ_p Initial delay of the pth path
a_p Doppler rate of the pth path
N_{pa} Number of paths in the channel
a The main Doppler scaling factor in the UWA channel
ϵ The residual Doppler shift after removing the main Doppler effect
ξ_p The equivalent amplitude of the pth path in the baseband
$\tilde{\tau}_p$ The equivalent scaled delay of the pth path in the baseband
b_p The equivalent residual Doppler rate of the pth path in the baseband
D ICI depth
$\mathcal{N}(\mu, \sigma^2)$ Real Gaussian distribution with mean μ and variance σ^2
$\mathcal{CN}(0, \sigma^2)$ Circularly symmetric complex Gaussian distribution with zero mean and variance σ^2
$\tilde{x}(t)$ The waveform in passband
$x(t)$ The waveform in baseband; Conversion between $\tilde{x}(t)$ and $x(t)$:
\[\hat{x}(t) = 2\Re\{x(t)e^{j2\pi f_c t}\} \]
\[x(t) = \text{LPF}[\hat{x}(t)e^{-j2\pi f_c t}] \]

Vectors and Matrices

- **z**: Measurement vector formed by frequency samples at all the OFDM subcarriers
- **s**: Transmitted symbol vector formed by symbols at all the OFDM subcarriers
- **w**: Ambient noise vector formed by the ambient noise at all the OFDM subcarriers
- **η**: Equivalent noise vector formed by the equivalent noise at all the OFDM subcarriers
- **H**: Channel mixing matrix
- **C, N(0, Σ)**: Circularly symmetric complex Gaussian random vector with zero mean and covariance matrix Σ

Operations

- **∞**: Equality of functions up to a scaling factor
- **|S|**: Cardinality of set S
- **[a]_m**: The mth entry of vector a
- **[A]_{m,k}**: The (m, k)th entry of matrix A
- **{a}_{i}^{j}$$_{r=i}$$**: A set formed by elements \{[a]_i, [a]_{i+1}, \ldots, [a]_j\}
- **\hat{a}**: The estimate of scale a
- **\hat{A}**: The estimate of matrix A
- **A^T**: The transpose of matrix A
- **A^H**: The complex conjugate transpose of matrix A
- **A^†**: The pseudo-inverse of matrix A
- **tr(A)**: Trace of matrix A
- **Pr\{A\}**: Probability of an event A
- **𝔼(X)**: Expectation of random variable X
- **𝔼(x)**: Expectation of random vector x
- **Cov(X, Y)**: Covariance of two random variables
- **Cov(x, y)**: Covariance matrix of two random vectors
- **ℜ\{x\}**: Real part of a complex number x
- **ℑ\{x\}**: Imaginary part of a complex number x
1

Introduction

1.1 Background and Context

1.1.1 Early Exploration of Underwater Acoustics

The Earth is a water planet, with two-thirds of the surface covered by water. Exploration of the mysterious underwater world has never ceased in human history. As early as 400 BC, Aristotle had noted that sound could be heard in water as well as in air. In AD 1490, Leonardo da Vinci wrote: “If you cause your ship to stop and place the head of a long tube in the water and place the other extremity to your ear, you will hear ships at great distances” [268]. In 1826, Charles Sturm and Daniel Colladon made the first accurate measurement of sound speed in water at Lake Geneva, Switzerland. The first practical application of underwater sound appeared in the 1900s: the underwater bells equipped on lightships were simultaneously sounded with a fog horn to measure the offshore distance based on the difference of the airborne and waterborne arrivals, and meanwhile the stereo headphones were also used for directions [397]. With the sinking of Titanic in 1912, L. F. Richardson successively filed a patent of echo ranging with sound in air and a patent application of echo ranging in water.

Along with the application of submarine and underwater mines in World War I (1914–1918), considerable progress has been made in underwater acoustics, especially on the underwater echo ranging for submarine and mine detection. In 1914, Constantin and Chilowski conceived the idea of submarine detection by underwater echo ranging. Based on the discovery of the piezoelectric effect by Jacques Curie and Pierre Curie in 1880, Paul Langevin in 1918 used quartz (piezoelectric) transducers as source and receiver to extend one-way sound transmission to 8 km, and for the first time observed clear echoes from a submarine at distances as large as 1500 m. Between World War I and World War II, scientists started to understand some fundamental concepts of sound in water, such as sound refraction due to changes of water temperature, salinity and pressure. Development of underwater sound applications during this period can be found in echo ranging for commercial use, underwater tomography and fisheries acoustics. The research effort on underwater acoustics during World War II (1941–1945) was mainly focused on improving echo ranging systems which were later coined as “sonar” (for SOund Navigation And Ranging). During this period, topics relative to sonar system performance were extensively investigated, including the high-frequency acoustics, low-frequency sound propagation, ambient noise, etc. By the end of World War II, the underwater sound had
been primarily used for navigation and threat-finding. In 1945, an underwater telephone, which was developed by the Navy Underwater Sound Laboratory in the United States for the purpose of communication with submerged submarines, was the first application of underwater sound for communications [321]. Since then, development on underwater acoustic communications has been made in various underwater acoustic applications.

1.1.2 Underwater Communication Media

To establish communications among underwater assets and systems floating on the surface, four different communication media have been used.

- **Cables.** There have been many cabled observatories established over the years. Cables provide robust communication performance; however, the deployment and maintenance cost is very high. This motivates the use of wireless data transmission.
- **Acoustic waves.** For underwater wireless communication systems, acoustic waves are used as the primary carrier due to their relatively low absorption in underwater environments. However, acoustic waves have low propagation speed and a very limited frequency band.
- **Electromagnetic (EM) waves.** The use of EM waves in the radio frequency band has several advantages over acoustic waves, mainly faster velocity and high operating frequency (resulting in higher bandwidth). The key limitation of using EM waves for underwater communication is the high attenuation due to the conductive nature of seawater [255].
- **Optical waves.** Using optical waves for communication obviously has a big advantage in data rate. However, there are a couple of disadvantages for optical communication in water. Firstly, optical signals are rapidly absorbed in water. Secondly, optical scattering caused by suspended particles and plankton is significant. Thirdly, the high level of ambient light in the upper part of the water column is another adverse effect for using optical communication.

Apparently, each of the three physical waves as wireless information carrier has its own advantages and disadvantages. For a more intuitive comprehension, we summarize the major characteristics of acoustic, electromagnetic and optical carriers in Table 1.1. Acoustic waves propagate well in seawater and can reach a far distance. This justifies using acoustic waves for most underwater wireless communications.

<table>
<thead>
<tr>
<th>Table 1.1</th>
<th>Comparison of acoustic, EM and optical waves in seawater environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustic</td>
<td>Electromagnetic</td>
</tr>
<tr>
<td>Nominal speed (m/s)</td>
<td>~ 1500</td>
</tr>
<tr>
<td>Power loss</td>
<td>relatively small</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>\sim kHz</td>
</tr>
<tr>
<td>Frequency band</td>
<td>\sim kHz</td>
</tr>
<tr>
<td>Antenna size</td>
<td>~ 0.1 m</td>
</tr>
<tr>
<td>Effective range</td>
<td>\sim km</td>
</tr>
</tbody>
</table>

Source: Liu 2008 [255], Table 2, p. 984. Reproduced with permission of Wiley.
1.1.3 Underwater Systems and Networks

Along with the tremendous scientific and technology advances in last several decades, a wide range of underwater exploration and applications have emerged. The scientific exploration spans across multiple disciplines, such as physical oceanography, marine biology, and deep sea archaeology (e.g., discovery of the wreck of the Titanic). Environmental applications involve studies in pollution monitoring, climate change, and global warming. Commercial applications of underwater technologies can be found in, e.g., offshore oil/gas field monitoring, fishery industries, and treasure discovery. Military applications of underwater technologies include tactical surveillance in coastal areas, harbors and ports etc.

In recent years, development of underwater vehicles of various sizes and capabilities, such as sea gliders and autonomous underwater vehicles (AUVs), has enabled underwater applications without human interaction. For example, sea gliders can be deployed in lakes or oceans to collect data samples of water over a large time period, and then send the data back to a control center for scientific studies. A fleet of underwater vehicles can form an underwater network, in which vehicles can collaborate to accomplish predetermined tasks. As more intelligent systems are deployed in underwater applications, the need of communications and networking keeps growing.

1.2 UWA Channel Characteristics

Given the complexity of underwater acoustic medium and the low propagation speed of sound in water, the underwater acoustic channel is commonly regarded as one of the most challenging channels for communication. Next we will look into several distinguishing characteristics of underwater acoustic channels. Comparisons between the underwater acoustic channel and the terrestrial radio channel are made along with the descriptions of underwater acoustic channel characteristics.

1.2.1 Sound Velocity

The extremely slow propagation speed of sound through seawater is an important factor that differentiates it from electromagnetic propagation. The speed of sound in water depends on the water properties of temperature, salinity and pressure; illustrative plots of the three parameters as functions of water depth are shown in Figure 1.1 [305, Chap. 9]. A typical speed of sound in water near the ocean surface is about 1520 m/s, which is more than 4 times faster than the speed of sound in air, but five orders of magnitude smaller than the speed of light. The speed of sound in water grows with increasing water temperature, increasing salinity and increasing depth. Approximately, the sound speed increases 4.0 m/s for water temperature rising 1°C. When salinity increases one practical salinity unit (PSU), the sound speed in water increases to 1.4 m/s. As the depth of water (therefore also the pressure) increases to 1 km, the sound speed increases roughly to 17 m/s. It is noteworthy to point out the above assessments are only for rough quantitative or qualitative discussions, and the variations in sound speed for a given property are not linear in general.

A typical sound speed profile as a function of depth in deep water, is shown in Figure 1.2 [305, Chap. 9]. Depending on the depth, the profile can be divided into four layers.
• **Surface layer.** The surface layer usually has a water depth of a few tens of meters. Due to the mixing effect of wind, both temperature and salinity in this layer tend to be homogeneous, which leads to a constant sound velocity. This layer is also called a *mixed layer*.

• **Seasonal and permanent thermocline layers.** In the *thermocline* layers, the water temperature decreases as the water depth grows; as illustrated in Figure 1.1. In these two layers, the effect of increases in pressure and salinity cannot compensate the effect of temperature decrease. Therefore, there is a negative gradient of the sound speed profile in depth. In the seasonal thermocline layer, the negative gradient varies with seasons, while it is less seasonal in the permanent thermocline layer.