MANN’S PHARMACOVIGILANCE
MANN’S PHARMACOVIGILANCE

Third edition

Edited by

ELIZABETH B. ANDREWS PhD, MPH, FISPE
Vice President, Pharmacoepidemiology and Risk Management
RTI Health Solutions
Research Triangle Park, NC, USA

NICHOLAS MOORE MD, PhD, FRCP(Edin), FISPE
Professor of Clinical Pharmacology
Service Hospitalo-Universitaire de Pharmacologie
Bordeaux, France
Contents

Contributors... xi
Foreword... xxi

1 Introduction: Updated from Second Edition .. 1
Ronald D. Mann and Elizabeth B. Andrews

2 History of Pharmacovigilance .. 11
Judith K. Jones and Elyse Kingery

I THE REGULATORY BASIS OF PHARMACOVIGILANCE

3 Legal Basis: European Union ... 27
Brian Edwards, Calvin Johnson, and Shelley Gandhi

4 Ethical Oversight, Consent, and Confidentiality .. 37
Suzanne L. West and Wendy A. Visscher

5 Pharmacovigilance-Related Topics at the Level of the International Conference on Harmonisation .. 47
Priya Bahri

6 The Council for International Organizations of Medical Sciences Working Groups and Their Contributions to Pharmacovigilance ... 63
Gunilla Sjölin-Forsberg and William Gregory

7 Terminologies in Pharmacovigilance .. 77
Elliot Brown and Daniel von Sydow

8 Nonclinical Toxicological Support for Phase I Trials 95
David R. Jones and James W. McBiance

9 The Evaluation of Adverse Events in Clinical Trials (with a Particular Focus on the Use of Meta Analysis) ... 109
Jesse A. Berlin, Brenda Crowe, and H. Amy Xia

10 Case Reports as Evidence in Pharmacovigilance ... 121
Jeffrey K. Aronson
CONTENTS

11 Periodic Safety Update Reports .. 139
Patrice Verpillat and Mondher Toumi

12 The Principles behind Risk Management in the European Union 153
Stella C.F. Blackburn and June M. Raine

II PHARMACOVIGILANCE SYSTEMS

Pharmacovigilance in Europe
13a Regulatory Pharmacovigilance in the European Union 173
Priya Bahri and Peter Arlett

13b Spontaneous Reporting: United Kingdom ... 185
Mick Foy, Paul Barrow, and June M. Raine

13c Spontaneous Reporting: France ... 203
Jacques Caron, Sophie Gautier, and Michel Mallaret

13d How Pharmacovigilance is Organized in Germany 207
Ulrich Hagemann and Norbert Paeschke

13e Organization of Pharmacovigilance in the Netherlands 213
Eugène Van Puijenbroek and Kees Van Grootheest

13f Pharmacovigilance in Spain ... 217
Dolores Montero, Miguel Angel Maciá, and César De La Fuente

13g Italian Pharmacovigilance System ... 221
Laura Sottosanti and Fernanda Ferrazin

13h Pharmacovigilance in Turkey ... 225
Sinem Ezgi Gülmez

Pharmacovigilance in the Americas
14a Spontaneous Reporting and Pharmacovigilance Practice: USA 229
Min-Chu Chen, Solomon Iyasu, Alfred Sorbello, and Linda Scarazzini

14b Spontaneous Reporting in Mexico ... 241
Alejandra Rosete and Ricardo Benítez-Vázquez

14c Pharmacovigilance in Argentina: A Lot Done, A Lot To Do 245
Luis Alesso and Raquel Herrera Comoglio

Pharmacovigilance in Asia
15a Pharmacovigilance and Risk Management in Japan 249
Kiyoshi Kubota and Tsugumichi Sato

15b Pharmacovigilance in Hong Kong ... 259
Thomas Y.K. Chan

15c Pharmacovigilance in China ... 263
Hong-Hao Zhou, Fan-Dian Zeng, and Jie Tang

15d China .. 267
Kenneth Hartigan-Go and Althea Bongat

15e Malaysia .. 271
Kenneth Hartigan-Go and Althea Bongat

15f Philippines .. 273
Kenneth Hartigan-Go and Althea Bongat

15g Singapore .. 277
Kenneth Hartigan-Go and Althea Bongat
CONTENTS

15h Thailand ... 279
 Kenneth Hartigan-Go and Althea Bongat

15i Vietnam ... 283
 Kenneth Hartigan-Go and Althea Bongat

15j Pharmacovigilance in India ... 285
 Pipasha Biswas

Pharmacovigilance in New Zealand and Australia

16a Pharmacovigilance in New Zealand 291
 Mira Harrison-Woolrych, Michael Tatley, and Desiree Kunac

16b Pharmacovigilance: Australia .. 295
 John McEwen

Pharmacovigilance in Africa

17 Pharmacovigilance in Africa .. 299
 Alexander N.O. Dodoo and Haggar H. Ampadu

III SIGNAL DETECTION/GENERATION IN SPONTANEOUS REPORTING
PROGRAMS AND OTHER SOURCES: FROM SPONTANEOUS REPORTING TO
PHARMAEOEPIDEMOLOGY

18 Vaccine Safety Surveillance ... 305
 Emily Jane Woo, Jerry Labadie, and M. Miles Braun

19 How We Assess Causality ... 319
 Judith K. Jones and Elyse Kingery

20 Quantitative Signal Detection and Analysis in Pharmacovigilance ... 331
 Andrew Bate, Antoine Pariente, Manfred Hauben, and Bernard Bégaud

21 Self-Controlled Case Series Analysis 355
 Paddy Farrington

22 Prescription–Event Monitoring (PEM): The Evolution to the New Modified PEM and its Support of Risk Management ... 359
 Deborah Layton and Saad Shakir

23 Prescription–Event Monitoring in New Zealand ... 385
 Mira Harrison-Woolrych

24 A Description of the European Network of Centres for Pharmacoepidemiology and Pharmacovigilance as a Global Resource for Pharmacovigilance and Pharmacoepidemiology ... 403
 Thomas Goedecke and Peter Arlett

25 Overview of North American Databases 409
 Brian L. Strom, Rita Schinnar, and Judith L. Kinman

26 The Clinical Practice Research Datalink: The New 54 Million Fully Integrated Research Data and Clinical Trial System ... 421
 John Parkinson

27 Active Surveillance: The United States Food and Drug Administration’s Sentinel Initiative ... 429
 Ryan M. Carnahan, Carlos J. Bell, and Richard Platt
CONTENTS

28 Leveraging Routinely Collected Healthcare Data to Scale Up Drug Safety Surveillance: The EU-ADR Experience
Gianluca Trifirò and Preciosa Coloma

29 Development and Evaluation of Infrastructure and Analytic Methods for Systematic Drug Safety Surveillance: Lessons and Resources from the Observational Medical Outcomes Partnership
Paul Stang, Patrick Ryan, Abraham G. Hartzema, David Madigan, J. Marc Overhage, Emily Welebob, Christian G. Reich, and Thomas Scarneccia

IV PHARMACOVIGILANCE AND DRUG/SYSTEM ORGAN CLASSES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Mechanisms of Adverse Drug Reactions</td>
<td>Munir Pirmohamed</td>
</tr>
<tr>
<td>31</td>
<td>Fatal Medication Errors and Adverse Drug Reactions</td>
<td>Robin E. Ferner and Sarah E. Mcdowell</td>
</tr>
<tr>
<td>32</td>
<td>Dermatological Adverse Drug Reactions</td>
<td>Laurence Valeyr-Allanore and Jean-Claude Roujeau</td>
</tr>
<tr>
<td>33</td>
<td>Gastrointestinal Adverse Drug Reactions</td>
<td>Angel Lanas Arbeloa and Carlos Sostres Homedes</td>
</tr>
<tr>
<td>34</td>
<td>Hematological Adverse Drug Reactions</td>
<td>Peter J. Carey</td>
</tr>
<tr>
<td>35</td>
<td>Hepatic Adverse Drug Reactions</td>
<td>Guruprasad P. Aithal and Dominique Larrey</td>
</tr>
<tr>
<td>36</td>
<td>Ocular Side Effects of Prescription Medications</td>
<td>Frederick W. Fraunfelder</td>
</tr>
<tr>
<td>37</td>
<td>Renal Adverse Drug Reactions</td>
<td>Gert A. Verpooten</td>
</tr>
<tr>
<td>38</td>
<td>The Cardiovascular Spectrum of Adverse Drug Reactions</td>
<td>Charles Schubert and Judith Hsia</td>
</tr>
<tr>
<td>39</td>
<td>Neurological Adverse Events</td>
<td>Bradford B. Walters</td>
</tr>
</tbody>
</table>

Special Populations

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Drug Safety in Pregnancy</td>
<td>Christina D. Chambers and Elizabeth B. Andrews</td>
</tr>
<tr>
<td>41</td>
<td>Pharmacovigilance in Pediatrics</td>
<td>M. Dianne Murphy, Judith Cope, and Solomon Iyasu</td>
</tr>
<tr>
<td>42</td>
<td>Drugs and the Elderly</td>
<td>Jamie J. Coleman</td>
</tr>
</tbody>
</table>

Special Product Classes

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>Anesthetic Adverse Drug Reactions</td>
<td>Anita Holdcroft and Karine Nouette-Gaulain</td>
</tr>
<tr>
<td>44</td>
<td>Pharmacoepidemiology as Part of Pharmacovigilance for Biologic Therapies</td>
<td>John Acquavella, Brian Bradbury, Cathy Critchlow, Jason B. Litten, J. Michael Sprafka, and John Sullivan</td>
</tr>
<tr>
<td>45</td>
<td>Surveillance for Medical Devices: USA</td>
<td>Thomas P. Gross</td>
</tr>
</tbody>
</table>
V CURRENT TOPICS

46 The Efficacy and Safety of Selective Serotonin Reuptake Inhibitors for the Treatment of Depression in Children and Adolescents. ... 719
 J. Magno Zito, D.J. Safer, and Satish Valluri

47 Nonsteroidal Anti-inflammatory Drugs – Cyclooxygenase-2 Inhibitors: Risks and Benefits 735
 K. Arnold Chan

48 Introduction to Pharmionics: The Vagaries in Ambulatory Patients’ Adherence to Prescribed Drug Dosing Regimens, and Some of Their Clinical and Economic Consequences 751
 John Urquhart and Bernard Vrijens

49 Design and Implementation of Surveys to Assess Patient and Healthcare Provider Understanding of Risks and Safe Use Conditions. ... 769
 Kelly Hollis and Alicia Gilsenan

VI TRAINING AND EDUCATION AND DIRECTIONS

50 Eu2P: The First European Online Public–Private Joint Training Program in Pharmacovigilance and Pharmacoepidemiology ... 787
 Karine Palin, Christa Bataille, Stéphane Liège, Ralph Schimmer, and Annie Fourrier-Réglat

51 Teaching and Learning Pharmacovigilance ... 793
 Frank May

52 Practical Experience in Teaching Pharmacovigilance .. 805
 Stephen Evans and Ian Douglas

53 An Historical Perspective of the Future of Pharmacovigilance 807
 Nicholas Moore

Index ... 819
Contributors

ELIZABETH B. ANDREWS, PhD, MPH, FISPE
RTI Health Solutions, Research Triangle Institute, Research Triangle Park, NC, USA; School of Public Health and School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA

JOHN ACQUAVELLA, PhD
Executive Director, Center for Observational Research, Amgen, Inc., Thousand Oaks, CA, USA

GURUPRASAD P. AITHAL, MBBS, MD, FRCP, PhD
Co-Director, National Institute for Health Research: Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust, Nottingham, UK; University of Nottingham, Queen’s Medical Centre, Nottingham, UK

LUI S ALESSO, MD
Specialist in Pharmaceutical Medicine Professor in School of Medicine, National University of Córdoba, Argentina; Head of Pharmacovigilance Department, School of Public Health, National University of Córdoba, Argentina.

HAGGAR H. AMPADU, BSc, MS
Director of Operations, WHO Collaborating Centre for Advocacy and Training in Pharmacovigilance, University of Ghana Medical School, Accra, Ghana

PETER ARLETT, BSc(Hons), MBBS, MRCP, FFPM
Head of Pharmacovigilance Department, Inspections & Human Medicines Pharmacovigilance Division, European Medicines Agency, London, UK

JEFFREY K. ARONSON, MA DPhil FRCP FBPharmacolS FFPM(Hon)
President Emeritus, British Pharmacological Society; Reader in Clinical Pharmacology, Nuffield Department of Primary Care Health Sciences, University of Oxford; Consultant Physician, Oxford University Hospitals NHS Trust, Oxford, UK

PRIYA BAHRI, PhD
Pharmacovigilance Lead for Guidelines and Risk Communication, European Medicines Agency, London, UK

PAUL BARROW, MD MSc FRCP, PhD
CHRISTA BATAILLE, LL.M. Eu2P Legal Manager, Eu2P Central Office, Université de Bordeaux, Bordeaux, France

ANDREW BATE, PhD Senior Director, Worldwide Safety & Regulatory Epidemiology, Pfizer Ltd, UK; Department of Computing and Mathematics, Brunel University, London, UK; New York University School of Medicine, New York, NY, USA

BERNARD BÉGAUD, MD, PhD Department of Pharmacology, Université Bordeaux Segalen, Bordeaux, France

CARLOS J. BELL, MPH Office of Medical Policy, Center for Drug Evaluation and Research, US Food and Drug Administration, Commander, US Public Health Service, Silver Spring, MD, USA

RICARDO BENÍTEZ-VÁZQUEZ, MD, CCRP Clinical Trials Manager, Center of Pharmacological and Biotechnology Research. CIFBIOTEC, Mexico City, Mexico

JESSE A. BERLIN, ScD Vice President and Head of Global Epidemiology, Johnson & Johnson, New Brunswick, NJ, USA

PIPASHA BISWAS, MD MFPM DM MRQA Principal Consultant, Director & QPPV, Symogen Limited, London, UK

ALTHEA BONGAT, RPh Pharmacist and Masteral Candidate in Pharmacology, University of the Philippines, Manila, Philippines

BRIAN BRADBURY, DSc Director, Center for Observational Research, Amgen, Inc., Thousand Oaks, CA, USA

M. MILES BRAUN, MD MPH Consultant, North Potomac, MD, USA

ELLIOT BROWN, MB, ChB, BMedSci, MRCGP, MFPM, FRCP(E) Managing Director, Elliot Brown Consulting Ltd, Leeds, UK

PETER J. CAREY, FRCP, FRCPEd, FRCPath Consultant Haematologist, Royal Victoria Infirmary, Newcastle upon Tyne, UK.

RYAN M. CARNAHAN, PharmD, MS Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA

JACQUES CARON, MD Professor of Pharmacology, Centre Regional de pharmacovigilance, University Hospital, Lille, France

CHRISTINA D. CHAMBERS, PhD, MPH Professor, Co-Director, Center for Promotion of Maternal Health and Infant Development, Department of Pediatrics and Family and Preventive Medicine, University of California San Diego, La Jolla, CA, USA

K. ARNOLD CHAN, MD, ScD, FISPE National Taiwan University Hospital, Taipei, Taiwan
THOMAS Y.K. CHAN, MBChB, MD, PhD, FRCP, FHKCP, FHKAM (Medicine)
Professor and Director, Centre for Food and Drug Safety, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China

MIN-CHU CHEN, MS, RPh
Acting Director, Deputy Director, Division of Pharmacovigilance I, Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA

JAMIE J COLEMAN, MD, MA, MRCP(UK)
Senior Clinical Lecturer in Clinical Pharmacology & Medical Education, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham; Honorary Consultant Physician, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK

PRECIOSA COLOMA, MD, PhD
Assistant Professor, Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, Netherlands

RAQUEL HERRERA COMOGLIO, MD, MSc, PharmD
Head of Pharmacovigilance Service, Hospital Nacional de Clínicas, School of Medicine, National University of Córdoba, Argentina

JUDITH COPE, MD, MPH
Director of Safety, Office Pediatric therapeutics, Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD, USA

CATHY CRITCHLOW, PhD
Executive Director & Head, Center for Observational Research, Amgen, Inc., Thousand Oaks, CA, USA

BRENDA CROWE, PhD
Research Advisor, Global Statistical Sciences, Eli Lilly and Company, Indianapolis, IN, USA

CÉSAR DE LA FUENTE, BPharm
Head of Unit, Pharmacoepidemiology, Division of Pharmacoepidemiology and Pharmacovigilance, Agencia Española de Medicamentos y Productos Sanitarios, Madrid, Spain

IAN DOUGLAS, BSc MSc PhD
Lecturer, London School of Hygiene and Tropical Medicine, London, UK

ALEXANDER N.O. DODOO, BPharm, MSc, PhD, FPSGH, FPCPharm, MRPharmS
Associate Professor and Director, WHO Collaborating Centre for Advocacy and Training in Pharmacovigilance, University of Ghana Medical School, Accra, Ghana

BRIAN EDWARDS, BSc MD MRCP
Principal Consultant, NDA Regulatory Science Ltd, Leatherhead, UK

STEPHEN EVANS, BA, MSc, FFRCP(Edin), Hon FRCP
Professor of Pharmacoepidemiology, London School of Hygiene and Tropical Medicine, London, UK

TOMMY ERIKSSON, PhD
Professor, Lund University, Faculty of Medicine, Institution for Laborative Medicine, Lund, Sweden

PADDY FARRINGTON, PhD
Professor of Statistics, Department of Mathematics and Statistics, Faculty of Mathematics, Computing and Technology, The Open University, Milton Keynes, UK
ROBIN E. FERNER, BSc, MSc, MB BS, MD, FRCP
Honorary Professor of Clinical Pharmacology, West Midlands Centre for Adverse Drug Reactions, City Hospital; School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK

FERNANDA FERRAZIN, PharmD
Agenzia Italiana del Farmaco – AIFA, Rome, Italy

ANNE FOURRIER-RÉGLAT, PharmD
Associate Professor, Service de Pharmacologie, Université de Bordeaux, Bordeaux, France

MICK FOY, MD MSc FRCP, PhD

FREDERICK W. FRAUNFELDER, MD, MBA
Director Corneal/External Eye Disease and Refractive Surgery, Professor of Ophthalmology, Martha and Eddie Petersen Endowed Professor of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA

SHELLEY GANDHI, BSc, MSc
Director – Pharmacovigilance and Drug Safety, NDA Regulatory Science Ltd, Leatherhead, UK

SOPHIE GAUTIER, PharmD, PhD
Associate Professor, Centre Regional de pharmacovigilance, University Hospital, Lille, France

ALICIA GILSENAN, PhD
Senior Director, Epidemiology, RTI Health Solutions, Durham, NC, USA

THOMAS GOEDECKE, PharmD, PhD
Regulatory Affairs & Best Evidence Department, Human Medicines Research & Development Support Division, European Medicines Agency, London, UK

WILLIAM GREGORY, PharmDP
Pfizer, New York, NY, USA

KEES VAN GROOTHEEST, MD, PhD
Professor of Pharmacovigilance, University of Groningen, Joos Banckersplantsoen 69, 1056 LD Amsterdam, Netherlands

THOMAS P. GROSS, MD, MPH
Director, Office of Surveillance and Biometrics, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA

SINEM EZGI GÜLMEZ, MD, PhD
Associate Professor, Service de Pharmacologie, CIC Bordeaux, Université de Bordeaux, Bordeaux, France

ULRICH HAGEMANN, PhD
Director and Professor a.D., Senior Pharmacovigilance Consultant, Freelancer, Berlin, Germany

MIRA HARRISON-WOOLRYCH, BM, DM, DFFP, FRCP, FPCP, FPSECP, FPSCOT, FICD
Research Associate Professor, Former Director, Intensive Medicines Monitoring Programme, Department of Preventive and Social Medicine, University of Otago, Dunedin, New Zealand

KENNETH HARTIGAN-GO, MD, MD(UK), FPCP, FPSECP, FPSCOT, FICD
Acting Director-General, Food and Drug Administration, Department of Health, Philippines
ABRAHAM G. HARTZEMA, PhD
Professor and Perry A. Foote Eminent Scholar Chair, College of Pharmacy, University of Florida, Gainesville, Florida, USA; Observational Medical Outcomes Partnership, Foundation for the National Institutes of Health, Bethesda, MD, USA

ANITA HOLDCROFT, MD
Imperial College London; and Chelsea and Westminster Hospital, London, UK

MANFRED HAUBEN, MD
Worldwide Safety Strategy, Pfizer Inc., USA; Department of Computing and Mathematics, Brunel University, London, UK; New York University School of Medicine, New York, NY, USA; New York Medical College, Valhalla, NY, USA

KELLY HOLLIS, MBA
Global Head, Surveys and Observational Studies, RTI Health Solutions, Durham, NC, USA

JUDITH HSIA, MD
Executive Director, Clinical Research, AstraZeneca Pharmaceuticals, Gaithersburg, MD, USA

SOLOMON IYASU, MD, MPH
Office of Pharmacovigilance and Epidemiology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA

CALVIN JOHNSON, BSc, MSc
Regional Associate Director, Affiliate Vigilance Excellence at AbbVie, Maidenhead, UK

JUDITH K. JONES, MD, PhD
President, The Degge Group, Ltd., Arlington, VA, USA; Adjunct Professor, University of Michigan School of Public Health, Ann Arbor, MI, USA; Georgetown University School of Medicine, Washington, DC, USA; and Lecturer, Eudipharm, University of Lyon, Lyon, France

DAVID R. JONES, PhD
Medicines and Healthcare products Regulatory Agency (MHRA), London, UK

ELYSE KINGERY
Senior Regulatory and Legal Services Manager, The Degge Group, Ltd, Arlington, VA, USA

JUDITH L. KINMAN, PhD
Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

KIYOSHI KUBOTA, MD, PhD
Professor, Department of Pharmacoepidemiology, Faculty of Medicine, University of Tokyo, Tokyo, Japan

DESIREE KUNAC, MClinPharm, PhD
Senior Research Fellow, Medication Error Reporting and Prevention System (MERP), New Zealand Pharmacovigilance Centre, Department of Preventive and Social Medicine, University of Otago, Dunedin, New Zealand

JERRY LABADIE, MD
Uppsala Monitoring Centre, World Health Organization, Uppsala, Sweden

"Deceased."
<table>
<thead>
<tr>
<th>Name</th>
<th>Position, Institution and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANGEL LANAS ARBELOA, MD, DSc</td>
<td>Professor and Clinical Chief, Professor of Medicine and Gastroenterology, Scientific Director, Aragon Health Research Institute (IIS Aragón), Vice-Dean for Research Affairs, University of Zaragoza School of Medicine, Lozano Blesa’s University Hospital, Zaragoza, Spain</td>
</tr>
<tr>
<td>DOMINIQUE LARREY, MSc</td>
<td>Liver and Transplantation Unit, Saint Eloi Hospital, Montpellier, France</td>
</tr>
<tr>
<td>DEBORAH LAYTON, BSc, MRPharmS, MSc</td>
<td>Principal Research Fellow, Drug Safety Research Unit (DSRU), Southampton, UK; Honorary Lecturer and Academic Contact, University of Portsmouth, Portsmouth, UK</td>
</tr>
<tr>
<td>STÉPHANE LIÈGE, MSc</td>
<td>Eu2P Multimedia and e-learning Manager, Eu2P Central Office, Université de Bordeaux, Bordeaux, France</td>
</tr>
<tr>
<td>JASON B. LITTEN, MD</td>
<td>Senior Medical Director, Clovis Oncology, San Francisco, CA, USA</td>
</tr>
<tr>
<td>MIGUEL ANGEL MACIÁ, MD</td>
<td>Head of Unit, Risk Evaluation, Division of Pharmacoepidemiology and Pharmacovigilance, Agencia Española de Medicamentos y Productos Sanitarios, Madrid, Spain</td>
</tr>
<tr>
<td>DAVID MADIGAN, PhD</td>
<td>Professor, Department of Statistics, Columbia University, New York, NY, USA; Observational Medical Outcomes Partnership, Foundation for the National Institutes of Health, Bethesda, MD, USA</td>
</tr>
<tr>
<td>MICHEL MALLARET, PhD</td>
<td>Centre régional de pharmacovigilance, CHU de Grenoble, France</td>
</tr>
<tr>
<td>FRANK MAY, MApplSci, FISPE</td>
<td>Service Director, Drug & Therapeutics Information Service – DATIS, Pharmacy Department, Repatriation General Hospital, Daw Park, SA, Australia</td>
</tr>
<tr>
<td>JAMES W. MCBLANE, PhD</td>
<td>Medicines and Healthcare Products Regulatory Agency (MHRA), London, UK</td>
</tr>
<tr>
<td>SARAH E. MCDOWELL, MSc, PhD</td>
<td>Senior Research Associate, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham; School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK</td>
</tr>
<tr>
<td>JOHN MCEWEN, MBBS, MSc, MPS</td>
<td>Adjunct Associate Professor, Discipline of Pharmacy, University of Canberra, Canberra, ACT, Australia</td>
</tr>
<tr>
<td>DOLORES MONTERO, MD, PhD</td>
<td>Head, Division of Pharmacoepidemiology and Pharmacology, Department on Human Medicines, Agencia Española de Medicamentos y Productos Sanitarios, Madrid, Spain</td>
</tr>
<tr>
<td>NICHOLAS MOORE, MD, PhD, FRCP(Edin), FISPE</td>
<td>Department of Pharmacology, INSERM U657, CIC-1401, University of Bordeaux, Bordeaux, France</td>
</tr>
</tbody>
</table>
M. DIANNE MURPHY, MD, FAAP
Director, Office of Pediatric Therapeutics, Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD, USA

KARINE NOUETTE-GAULAIN, MD, PhD
Professor, Head of Department, CHU de Bordeaux, Service d’Anesthésie Réanimation III, CFXM, Hôpital des enfants, F-33000 Bordeaux, France; Université de Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, F-33000 Bordeaux, France

J. MARC OVERHAGE, MD, PhD
Chief Medical Informatics Officer, Siemens Healthcare, Malvern, PA, USA; Observational Medical Outcomes Partnership, Foundation for the National Institutes of Health, Bethesda, MD, USA

NORBERT PAESCHKE, MD
Federal Institute for Drugs and Medical Devices, Bonn, Germany

KARINE PALIN, PhD
Eu2P Project Manager, Eu2P Central Office, Université de Bordeaux, Bordeaux, France

ANTOINE PARIENTE, MD, PhD
Department of Pharmacology, Université Bordeaux Segalen, Bordeaux, France

JOHN PARKINSON, PhD
CPRD, Medicines & Healthcare Products Regulatory Agency, London, UK

MUNIR PIRMOHAMED, FRCP, PhD
NHS Chair of Pharmacogenetics and Professor of Clinical Pharmacology, The Wolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK

RICHARD PLATT, MD, MSc
Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA

EUGÈNE VAN PUIJENBROEK MD, PhD
Head, Scientific Department, Netherlands Pharmacovigilance Centre, ’s-Hertogenbosch, Netherlands

JUNE M. RAINE, MD MSc FRCP, PhD

CHRISTIAN G. REICH, MD, PhD
Global Head of Discovery and Clinical Informatics, AstraZeneca PLC, Waltham, Massachusetts, USA; Observational Medical Outcomes Partnership, Foundation for the National Institutes of Health, Bethesda, MD, USA

ALEJANDRA ROSETE, MD, MSHCA, CCRP
Head of Operations and Strategic Management, Center of Pharmacological and Biotechnology Research (CIF-BIOTEC), Medica Sur, Professor, Faculty of Chemistry, Pharmacy Department, Universidad Nacional Autónoma de México, Mexico City, Mexico
JEAN-CLAUDE ROUJEAU, MD Emeritus Professor of Dermatology, Université Paris-Est, Créteil, France

PATRICK RYAN, PhD Head of Epidemiology Analytics, Janssen Research and Development, LLC, Titusville, NJ, USA; Observational Medical Outcomes Partnership, Foundation for the National Institutes of Health, Bethesda, MD, USA

DANIEL J. SAFER, MD Associate Professor, Departments of Psychiatry and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA

TSUGUMICHI SATO, PhD NPO Drug Safety Research Unit Japan, Tokyo, Japan

LINDA SCARAZZINI, MD, RPh Director (former), Division of Pharmacovigilance I, Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA

THOMAS P. SCARNECCHIA, MS Partner, Digital Aurora, Manchester, VT, USA; Observational Medical Outcomes Partnership, Foundation for the National Institutes of Health, Bethesda, MD, USA

RALPH SCHIMMER, MD, PhD, MBA Eu2P Coordinator, Global Head Drug Safety Science, F-Hoffmann-La Roche Ltd, Basel, Switzerland

RITA SCHINNAR, MPA Senior Project Manager and Analyst, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA

CHARLES M. SCHUBERT, MD, MPH Senior Medical Director, Patient Safety, AstraZeneca, Wilmington, DE, USA

SAAD SHAKIR, MB, ChB, LRCP&S, FRCP, FFPM, FISPE, MRCGP Director, Drug Safety Research Unit (DSRU), Southampton, UK; Professor, University of Portsmouth, Portsmouth, UK

GUNILLA SJÖLIN-FORSBERG, MD, PhD Secretary-General, Council for International Organizations of Medical Sciences (CIOMS), Geneva, Switzerland

ALFRED SORBELLO, DO, MPH Medical Officer, Division of Pharmacovigilance II, Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA

CARLOS SOSTRES HOMEDES, MD, Research Fellow Aragon’s Health Science Institute (IACS), Lozano Blesa’s University Hospital, Gastroenterology and Hepatology Service, Zaragoza, Spain

LAURA SOTTOSANTI, MD Agenzia Italiana del Farmaco – AIFA, Rome, Italy
J. MICHAEL SPRAFKA, PhD
Executive Director, Center for Observational Research, Amgen, Inc., Thousand Oaks, CA, USA

PAUL STANG, PhD
VP Global Epidemiology, Janssen Research and Development, LLC, Titusville, NJ, USA; Observational Medical Outcomes Partnership, Foundation for the National Institutes of Health, Bethesda, MD, USA

BRIAN L. STROM, MD, MPH
George S Pepper Professor of Public Health and Preventive Medicine, Professor of Biostatistics and Epidemiology, of Medicine, and of Pharmacology, Director, Center for Clinical Epidemiology and Biostatistics, Center for Pharmacoepidemiology Research and Training, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

JOHN T. SULLIVAN, MB, ChB, FRACP, FACP
Executive Director, Global Regulatory Affairs and Safety, Amgen, Inc., Thousand Oaks, CA, USA

JIE TANG, PhD
Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China

MICHAEL TATLEY, MB, ChB, FFCH(CM(SA), FAFPHM, FNZCPHM, B.Bus Sci (Hon)
Director, New Zealand Pharmacovigilance Centre, Department of Preventive and Social Medicine, University of Otago, Dunedin, New Zealand

MONDHER TOUMI, PhD
Professor, Department of Complex Decision Sciences and Health Policies, Lyon University, Paris, France and Creativ-Ceutical, Paris, France

GIANLUCA TRIFIRÒ, MD, PhD
Assistant Professor, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy; Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, Netherlands

JOHN URQUHART, MD, Dr hc (Utrecht), FRCPE, FAAAS, FISPE, FBMES, FRSE
MWV Healthcare, Visé, Belgium and Palo Alto, California, USA; Department of Bioengineering & Therapeutic Sciences, University of California San Francisco Medical Center, San Francisco, CA, USA

LAURENCE VALEYRIE-ALLANORE, MD
Department of Dermatology, Referral Center for Autoimmune and Toxic Bulous Diseases, Henri Mondor Hospital, Créteil, France

SATISH VALLURI, PhD, MS, MPH
Adjunct Assistant Professor, School of Pharmacy, University of Maryland, Baltimore, MD, USA; Director, Global Market Access, Pfizer Inc., Collegeville, PA, USA

PATRICE VERPILLAT
Head of International Epidemiology Department, Global Outcomes Research Division, H. Lundbeck A/S, Issy-les-Moulineaux, France

PATRICE VERPILLAT, MD, MPH, PhD
Director, Real-World Data Investigations, Global Market Access and Pricing Department, Integrated Patient-Centered Solutions, Sanofi Group, Paris, France
<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>GERT A. VERPOOTEN, MD, PhD</td>
<td>Professor of Medicine and Nephrologist, Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium</td>
</tr>
<tr>
<td>WENDY A. VISSCHER, PhD</td>
<td>Privacy Officer and Senior IRB Advisor, RTI International, Research Triangle Park, NC, USA</td>
</tr>
<tr>
<td>DANIEL VON SYDOW, MSc Pharmacy</td>
<td>Senior Product Manager, The Uppsala Monitoring Centre, Uppsala, Sweden</td>
</tr>
<tr>
<td>BERNARD VRIJENS, PhD</td>
<td>MWV Healthcare, Visé, Belgium; Department of Biostatistics and Medical Informatics, University of Liège, Liège, Belgium</td>
</tr>
<tr>
<td>BRADFORD B. WALTERS, MD, PhD, MBA, FAANS</td>
<td>Vice President and Chief Medical Officer, RTI International, Research Triangle Park, NC, USA</td>
</tr>
<tr>
<td>EMILY WELEBOB, RN, MS</td>
<td>Senior Program Manager, Observational Medical Outcomes Partnership, Foundation for the National Institutes of Health, Bethesda, MD, USA</td>
</tr>
<tr>
<td>SUZANNE L. WEST, PhD, MPH, FISPE</td>
<td>Fellow and Senior Scientist, RTI International, Research Triangle Park, NC, USA; UNC Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA</td>
</tr>
<tr>
<td>EMILY JANE WOO, MD, MPH</td>
<td>Medical Officer, US Food and Drug Administration, Silver Spring, MD, USA</td>
</tr>
<tr>
<td>H. AMY XIA, PhD</td>
<td>Executive Director, Biostatistics, Global Biostatistical Science, Amgen, Inc., Thousand Oaks, CA, USA</td>
</tr>
<tr>
<td>FAN-DIAN ZENG, PhD</td>
<td>Professor, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China</td>
</tr>
<tr>
<td>HONG-HAO ZHOU, MD</td>
<td>Director and Professor, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China</td>
</tr>
<tr>
<td>JULIE MAGNO ZITO, PhD</td>
<td>Professor of Pharmacy and Psychiatry, School of Pharmacy and School of Medicine, University of Maryland, Baltimore, MD, USA</td>
</tr>
</tbody>
</table>
The publication of a third edition of this book in twelve years bear’s ample testimony to the continuing importance of pharmacovigilance, the study of the safety of marketed medicines.

It is also a memorial to the founding editor, Professor Ronald Mann, who sadly died in December 2013, shortly before the new edition appeared. It had already been decided by the new editors to rename the book Mann’s Pharmacovigilance, made more prescient by recent events. Ron Mann, as he was universally known, had spent a professional lifetime in the field of drug safety as a regulator, as an educator and as a physician. I had the privilege of working with him at the (then) UK Medicines Control Agency some twenty years ago when the word pharmacovigilance had not even been invented. Ron’s quest to instil scientific rigour into the then disorganised field of drug safety represented a great step forward in the regulation of medicines, and the three editions of this book clearly demonstrate this achievement. The title Mann’s Pharmacovigilance is richly deserved.

Over the lifetime of the book, several trends in drug safety have become more evident. We have seen advances in the science of pharmacovigilance and with this, progress in the technology to allow them. Examples such as the electronic submission of case reports and the invention of automated data mining techniques have been matched by greater attention to benefit-risk assessment rather than mere considerations of drug safety, and by emphasis on proactive risk management planning. The frameworks of medicines regulation – the scientific, the legal and the public health – are increasingly accepted not only by major regulatory authorities but by those in the developing world. The role of the patient has become more insistent and that of the health care professional more important.

Drug safety is no longer the preserve of the regulator and the pharmaceutical industry. These trends are clearly reflected in the changes in the structure of this third edition of Mann’s Pharmacovigilance. Three major changes can be seen. First there is evidence of greater global reach, with descriptions of spontaneous reporting systems in many more countries than covered in previous editions. Second, there is more focus on active surveillance using multiple population based databases. There are new chapters on collaborative efforts to enhance signal detection and evaluation. Thirdly, the scope of the book has broadened beyond drugs and medical devices with new chapters on vaccine surveillance and the evaluation of the safety of biologics. In many respects, vaccine safety practice is more effective than that of medicines; we should also question whether the techniques of medicines surveillance as currently applied are appropriate for biopharmaceutical products, or whether a new approach is needed.

Ron Mann would have approved of these changes.

Alasdair Breckenridge
January 2014
Introduction: Updated from Second Edition

RONALD D. MANN
University of Southampton, Waterlooville, Hampshire, UK

ELIZABETH B. ANDREWS
RTI Health Solutions, Research Triangle Institute, Research Triangle Park, NC, USA and School of Public Health and School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA

BACKGROUND

Pharmacovigilance – the study of the safety of marketed drugs under the practical conditions of clinical use in large communities – involves the paradox that what is probably the most highly regulated industry in the world is, from time to time, forced to remove approved and licensed products from the market because of clinical toxicity. Why is such close regulation not effective in preventing the withdrawal of licensed products? The question has been with us from the very early days of the 1960s and remains with us today, and its consideration tells us a great deal about pharmacovigilance.

The greatest of all drug disasters was the thalidomide tragedy of 1961–1962. Thalidomide had been introduced, and welcomed, as a safe and effective hypnotic and anti-emetic. It rapidly became popular for the treatment of nausea and vomiting in early pregnancy. Tragically, the drug proved to be a potent human teratogen that caused major birth defects in an estimated 10,000 children in the countries in which it was widely used in pregnant women. The story of this disaster has been reviewed elsewhere (Mann, 1984).

The thalidomide disaster led, in Europe and elsewhere, to the establishment of the drug regulatory mechanisms of today. These mechanisms require that new drugs shall be licensed by well-established regulatory authorities before being introduced into clinical use. This, it might be thought, would have made medicines safe – or, at least, acceptably safe. But Table 1.1 summarizes a list of 46 licensed medicines withdrawn, after marketing, for drug safety reasons since the mid 1970s in the UK.

Why should the highly regulated pharmaceutical industry need, or be compelled, to withdraw licensed medicines for drug safety reasons? Why do these problems of licensed products being found toxic continue despite the accumulated experience of more than 50 years since the thalidomide tragedy?
Table 1.1 Drugs withdrawn in the UK by the marketing authorization holder or suspended or revoked by the Licensing Authority, 1975–2010.

<table>
<thead>
<tr>
<th>Brand name (drug substance)</th>
<th>Year action taken</th>
<th>Major safety concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secholex (polidexide)</td>
<td>1975</td>
<td>Safety concerns because of impurities</td>
</tr>
<tr>
<td>Eraldin (practolol)</td>
<td>1975</td>
<td>Ocutilomucocutaneous syndrome</td>
</tr>
<tr>
<td>Opren (benoxaprofen)</td>
<td>1982</td>
<td>Hepatotoxicity, serious skin reactions</td>
</tr>
<tr>
<td>Devryl (clomacran phosphate)</td>
<td>1982</td>
<td>Hepatotoxicity</td>
</tr>
<tr>
<td>Flonint (indoprofen)</td>
<td>1982</td>
<td>Gastrointestinal toxicity</td>
</tr>
<tr>
<td>Zomax (zomepirac)</td>
<td>1983</td>
<td>Anaphylaxis</td>
</tr>
<tr>
<td>Osmosin (indomethacin-modified release)</td>
<td>1983</td>
<td>Small-intestine perforations</td>
</tr>
<tr>
<td>Zelmid (zimeldine)</td>
<td>1983</td>
<td>Neurotoxicity</td>
</tr>
<tr>
<td>Flenac (fenclofenac)</td>
<td>1984</td>
<td>Lyell’s syndrome</td>
</tr>
<tr>
<td>Methrazone (teprazone)</td>
<td>1984</td>
<td>Serious skin reactions, multisystem toxicity</td>
</tr>
<tr>
<td>Althesin (alphaxolone plus alphadolone)</td>
<td>1984</td>
<td>Anaphylaxis</td>
</tr>
<tr>
<td>Pexid (perhexilene)</td>
<td>1985</td>
<td>Hepatotoxicity, neurotoxicity</td>
</tr>
<tr>
<td>Suprol (suprofen)</td>
<td>1986</td>
<td>Nephrotoxicity</td>
</tr>
<tr>
<td>Merital (nomifensine)</td>
<td>1986</td>
<td>Hemolytic anemia</td>
</tr>
<tr>
<td>Unicard (dilevalol)</td>
<td>1990</td>
<td>Hepatotoxicity</td>
</tr>
<tr>
<td>Glauline eye drops 0.6% (metipranolol)</td>
<td>1990</td>
<td>Uveitis</td>
</tr>
<tr>
<td>Halcion (triazolam)</td>
<td>1990</td>
<td>Psychiatric reactions</td>
</tr>
<tr>
<td>Micturin (terodiline)</td>
<td>1991</td>
<td>Arrhythmias</td>
</tr>
<tr>
<td>Teflox (temafloxacin)</td>
<td>1992</td>
<td>Multisystem toxicity</td>
</tr>
<tr>
<td>Centoxin (nebucumab)</td>
<td>1993</td>
<td>Mortality</td>
</tr>
<tr>
<td>Roxim (remoxipride)</td>
<td>1994</td>
<td>Aplastic anemia</td>
</tr>
<tr>
<td>Volital (pemolin)</td>
<td>1997</td>
<td>Hepatotoxicity</td>
</tr>
<tr>
<td>Romazin (troglitazone)</td>
<td>1997</td>
<td>Hepatotoxicity</td>
</tr>
<tr>
<td>Serdolect (sertindole)</td>
<td>1998</td>
<td>Arrhythmias</td>
</tr>
<tr>
<td>Tasmar (tolcapone)</td>
<td>1998</td>
<td>Hepatotoxicity</td>
</tr>
<tr>
<td>Ponderax (fenfluramine)</td>
<td>1998</td>
<td>Cardiac valvular disease</td>
</tr>
<tr>
<td>Adifax (dexfenfluramine)</td>
<td>1998</td>
<td>Cardiac valvular disease</td>
</tr>
<tr>
<td>Posicor (mibefradil)</td>
<td>1998</td>
<td>Drug interactions</td>
</tr>
<tr>
<td>Trovan (trovafloxacin)</td>
<td>1999</td>
<td>Hepatotoxicity</td>
</tr>
<tr>
<td>Grepafloxacin (Raxar)</td>
<td>1999</td>
<td>QT interval prolongation</td>
</tr>
<tr>
<td>Prepulsid (cisapide)</td>
<td>2000</td>
<td>QT interval prolongation</td>
</tr>
<tr>
<td>Alec (pumactant)</td>
<td>2000</td>
<td>Adverse comparative trial results</td>
</tr>
<tr>
<td>Droleptan (droperidol)</td>
<td>2001</td>
<td>Increased cardiac risks</td>
</tr>
<tr>
<td>Lipobay (cerivastatin)</td>
<td>2001</td>
<td>Rhabdomyolysis</td>
</tr>
<tr>
<td>Kava-Kava</td>
<td>2001</td>
<td>Liver toxicity</td>
</tr>
<tr>
<td>Anorectic agents (amfepramone, phentermine)</td>
<td>2000</td>
<td>Heart valve disorders</td>
</tr>
<tr>
<td>Vioxx (rofecoxib)</td>
<td>2004</td>
<td>Increased cardiovascular event risks</td>
</tr>
<tr>
<td>Non-proprietary (co-proxamol)</td>
<td>2005</td>
<td>Use in suicide</td>
</tr>
<tr>
<td>Bextra (valdecoxib)</td>
<td>2005</td>
<td>Stevens–Johnson syndrome</td>
</tr>
<tr>
<td>Prexige (lumiracoxib)</td>
<td>2007</td>
<td>Hepatotoxicity</td>
</tr>
<tr>
<td>Carisoma (carisoprodol)</td>
<td>2007</td>
<td>Abuse potential</td>
</tr>
<tr>
<td>Trasylol (aprotinpin)</td>
<td>2007</td>
<td>Death following cardiac surgery</td>
</tr>
<tr>
<td>Accomplia (rimonabant)</td>
<td>2008</td>
<td>Depression, Suicide</td>
</tr>
<tr>
<td>Raptiva (efalizumab)</td>
<td>2009</td>
<td>Progressive Multifocus Leukoencephalopathy</td>
</tr>
<tr>
<td>Reductil (sibutramine)</td>
<td>2010</td>
<td>Cardiovascular mortality</td>
</tr>
<tr>
<td>Avandia (rosiglitazone)</td>
<td>2010</td>
<td>Increased cardiovascular event risk</td>
</tr>
</tbody>
</table>
Partly, the problem is one of numbers. For example, the median number of patients contributing data to the clinical safety section of new drug licensing applications in the UK is only just over 1500 (Rawlins and Jefferys, 1991). Increasing regulatory demands for additional information before approval have presumably increased the average numbers of patients in applications, especially for new chemical entities; nevertheless, the numbers remain far too small to detect uncommon or rare adverse drug reactions (ADRs), even if these are serious.

The size of the licensing applications for important new drugs cannot be materially increased without delaying the marketing of new drugs to an extent damaging to diseased patients. Thus, because of this problem with numbers, drug safety depends very largely on the surveillance of medicines once they have been marketed.

A second reason for difficulty is that the kinds of patients who receive licensed medicines are very different from the kinds of volunteers and patients in whom premarketing clinical trials are undertaken. The patients in formal clinical trials almost always have only one disease being treated with one drug. The drug, once licensed, is likely to be used in an older group of patients, many of whom will have more than one disease and be treated by polypharmacy. The drug may also be used in pediatric patients, who are generally excluded from initial clinical trials. The formal clinical trials may be a better test of efficacy than they are of safety under the practical conditions of everyday clinical usage.

A third problem is that doctors may be slow or ineffective in detecting and reporting adverse drug effects. Many of the drugs summarized in Table 1.1 were in widespread, long-term use before adverse reactions were detected, and even now hospital admissions due to ADRs have shown an incidence of between 2.4% and 3.6% of all admissions in Australia, with similar or greater figures in France and the USA (Pouyanne et al., 2000). Even physicians astute in detecting adverse drug effects are unlikely to identify effects of delayed onset.

A fourth reason for difficulty is that drugs are often withdrawn from the market for what may be very rare adverse effects – too infrequent by far to have shown up in the pre-licensing studies – and we do not yet have effective means in place for monitoring total postmarketing safety experience. This situation may well change as large comprehensive databases such as the Clinical Practice Research Datalink (CPRD, formerly the GPRD) in the UK and the Mini-Sentinel Network of databases in the USA become more widely used for signal detection and evaluation. These databases record, in quite large and representative populations, all usage of many specific medicines and clinical outcomes and can be used to systematically screen for and evaluate serious adverse events. Because they contain comprehensive information on some important data, such as age, sex, dose, and clinical events on all patients in the represented population, they are systematic compared with spontaneous reporting systems. They may offer a better chance of detecting long-latency adverse reactions, effects on growth and development, and other such forms of adverse experience.

Some of the difficulties due to numbers, patient populations, and so on were recognized quite early. The Committee on Safety of Drugs in the United Kingdom (established after the thalidomide disaster, originally under the chairmanship of Sir Derrick Dunlop, to consider drug safety whilst the Medicines Act of 1968 was being written) said – quite remarkably – in its last report (for 1969 and 1970) that “no drug which is pharmacologically effective is without hazard. Furthermore, not all hazards can be known before a drug is marketed.” This then has been known for over 40 years. Even so, many prescribers still seem to think that licensed drugs are “safe,” and they are surprised when a very small proportion of licensed drugs have to be withdrawn because of unexpected drug toxicity. Patients themselves may have expectations that licensed drugs are “completely safe” rather than having a safety profile that is acceptably safe in the context of the expected benefit and nature of the underlying health condition.

The methodological problems have been long recognized. The Committee on Safety of Medicines, the successor in the UK to the Dunlop Committee, investigating this and related problems, established a Working Party on Adverse Reactions. This group, under the chairmanship of Professor David Grahame-Smith, published its second report
in July 1985. The report supported the continuation of methods of spontaneous reporting by professionals but recommended that postmarketing surveillance studies should be undertaken on “newly-marketed drugs intended for widespread long-term use”; the report also mentioned record-linkage methods and prescription-based methods of drug safety surveillance as representing areas of possible progress (Mann, 1987).

Similar reviews and conclusions have emerged from the USA since the mid 1970s. A series of events in the USA recently created a resurgence of interest in drug safety evaluation and management. The Prescription Drug User Fee Act (PDUFA) of 1992 provided additional resources at the Food and Drug Administration (FDA) for drug reviews through user fees and established target time-lines for FDA reviews. The shorter approval times led to some medications being approved sooner in the USA than in Europe, in contrast to the pre-PDUFA experience. A few highly visible drug withdrawals led to a perception that perhaps drugs were being approved too quickly. Lazarou et al. (1998) published the results of a meta-analysis that estimated that 106,000 fatal adverse reactions occurred in the USA in 1994. This and other articles (Wood et al., 1998) stimulated considerable public, congressional, and regulatory attention on reducing the societal burden of drug reactions and medication errors (FDA, 1999; Institute of Medicine, 1999; United States General Accounting Office, 2000). As a result, greater attention and resources are currently being devoted to signal generation and evaluation by the FDA, industry, and academic centers. Moreover, efforts are underway to develop better tools to manage recognized risks through a variety of interventions, such as communications with healthcare providers and patients, restricted product distribution systems, and other mechanisms. Additional effort is being focused on measuring the success of these risk-management interventions. This new initiative represents a fundamental shift in the safety paradigm in the USA and offers new challenges to pharmacovigilance professionals. In fact, the shift is not restricted to the USA, as both the FDA and the European Medicines Agency (EMEA) in 2005 issued guidance documents for industry on signal detection, evaluation, good pharmacovigilance practice and recommendations for managing risks after the approval (FDA, 2005a–c).

We have long recognized then that the safety of patients depends not only on drug licensing by regulatory bodies, but also on postmarketing drug safety surveillance, pharmacovigilance. It is also important to note that the same postmarketing information needed to confirm new safety signals is also needed to refute signals and protect the ability of patients to benefit from needed medicines that may be under suspicion due to spurious signals.

DIAGNOSING ADVERSE DRUG REACTIONS

There are two types of ADRs. Type A reactions are common, predictable, usually dose-dependent, and appear as excessive manifestations of the normal pharmacology/toxicology of the drug; they are seldom fatal. Type B reactions are uncommon, unpredictable, often independent of dose, and usually represent abnormal manifestations of the drug’s pharmacology/toxicology; they involve relatively high rates of serious morbidity and mortality.

ADRs frequently mimic ordinary diseases and, if they are uncommon, may easily be overlooked. They
tend to affect the skin, hematopoietic system, and lining of the gut (situations in which there is rapid cell multiplication) or the liver or kidneys (where drugs are detoxified and excreted). These special sites are frequently involved in iatrogenic (doctor-induced), type B illnesses, such as toxic epidermal necrolysis, aplastic anemia, pseudomembranous colitis, drug-induced hepatitis, or nephritis.

A high index of suspicion is needed if ADRs are to be successfully diagnosed. The clinician always has to think: “Could this be drug-induced – is this an ADR?” The question is important, for withdrawal of the cause of an ADR is usually essential.

Iatrogenic ADRs are usually uncommon or rare, and this adds to the difficulty of diagnosis. Some are avoidable, such as skin rashes in patients with glandular fever given ampicillin. Some are accidental, such as the noniatrogenic disaster of an asthmatic given a beta-adrenergic blocking agent by another member of the family. It is a truism that the detection of common or uncommon ADRs requires vigilance. Many of the known serious ADRs have been recognized by astute clinicians with a high level of awareness, and such awareness is likely to be just as important as new methods of pharmacovigilance are developed as it has been in the past.

Linked with this problem of diagnosing ADRs is the problem of understanding them. Why does one patient in 10 000 get some bizarre type B reaction and the rest of this population not get it? Clearly, our increasing knowledge of clinical pharmacology, drug metabolism, and genetics will contribute to our understanding of these things, and these subjects are explored in many of the chapters in this book.

CURRENT METHODS OF PHARMACOVIGILANCE

Pharmacoepidemiology is the study of the use of, and effects of, drugs in large numbers of people. As the term implies, this form of enquiry uses the methods of epidemiology; it is concerned with all aspects of the benefit/risk ratio of drugs in populations. Pharmacovigilance is a branch of pharmacoepidemiology but is restricted to the study, on an epidemiological scale, of drug events or adverse reactions.

“Events,” in this context, are happenings recorded in the patient’s notes during a period of drug monitoring; they may be because of the disease for which the drug is being given, some other intercurrent disease or infection, an adverse reaction to the drug being monitored, or the activity of a drug being given concomitantly. They can also be because of drug–drug interactions.

Public health surveillance methods are used to identify new signals of possible ADRs. Studies in pharmacoepidemiology are intended to be either “hypothesis generating” or “hypothesis testing,” or to share these objectives. Hypothesis-generating studies, with a recently marketed drug, aim to detect unexpected ADRs; hypothesis-testing studies aim to prove whether any suspicions that may have been raised are justified.

HYPOTHESIS-GENERATING METHODS

SPONTANEOUS ADVERSE DRUG REACTION REPORTING

Doctors (in some countries, other healthcare professionals, and patients as well) are provided with forms upon which they can notify a central authority of any suspected ADRs that they detect. In the UK, the “yellow card” has been used for this purpose since 1964. Similar forms are provided in the FP10 prescriptions pads, the British National Formulary, and other sources. In the USA, the MedWatch form is used and is made broadly available to health professionals to encourage reporting.

The great strength of spontaneous reporting is that it operates for all drugs throughout the whole of their lifetime; it is the only affordable method of detecting really rare ADRs. The data may represent merely the suspicions of the reporter, but they provide the opinion of a doctor or health professional attending a real-life patient. The main weaknesses are that there is gross underreporting, and the data provide a “numerator” (the number of reports of each suspected reaction) only. Moreover,
some case reports are described in the medical literature but may not be reported by the clinician; such published case reports are subsequently reported by industry sponsors through the spontaneous reporting system. Nevertheless, the scheme is invaluable, and it is essential that health professionals should be provided with the means of reporting their suspicions.

Spontaneous reporting has led to the identification and verification of many unexpected and serious ADRs. These findings have resulted in many marketed drugs being withdrawn or additional information being provided to guide safer use of the product.

A variety of formal epidemiological studies can be undertaken to generate or test hypotheses.

PRESCRIPTION–EVENT MONITORING

Prescription–event monitoring (PEM), as conducted in the UK and New Zealand, represents a “hybrid” method, combining aspects of public health surveillance and spontaneous reporting with aspects of formal epidemiological studies. In the UK, this important technique takes advantage of many features of the British National Health Service (NHS). Within the NHS, prescriptions written by general practitioners are sent, once they have been dispensed, to a central Prescription Pricing Authority (PPA). The PPA provides confidential copies of certain prescriptions for newly introduced drugs that are being monitored to the Drug Safety Research Unit (DSRU) at Southampton. At 6 or 12 months after the first prescription for an individual drug in an individual patient, the DSRU sends a “green form” questionnaire to the general practitioner who wrote the original prescription. Changing requirements regarding confidentiality and the effect that these have had on PEM are discussed in the appropriate chapter of this volume.

Thus, the prescriptions provide the “exposure data” showing which patients have been exposed to the drug being monitored, and the green forms provide the “outcome data” showing any events noted during the period of monitoring. Pregnancies, deaths, or events of special interest can be followed up by contact between the DSRU and the prescribing doctor who holds, within the NHS, the lifetime medical record of all of their registered patients.

The great strengths of this method are that it provides a numerator (the number of reports) and a denominator (the number of patients exposed), both being collected over a precisely known period of observation. Furthermore, nothing happens to interfere with the doctor’s decision regarding which drug to prescribe for each individual patient, and this avoids selection biases, which can make data interpretation difficult. The main weakness of PEM is that only 50–70% of the green forms are returned, and the experience of the patients whose forms are not returned may differ from those returned. In addition, because PEM limits follow-up to 6 or 12 months, it cannot identify events of long latency. Thus, it is of great importance that doctors should continue to support the scheme by returning those green forms that they receive.

So far, some 100 drugs have been studied by PEM, and the average number of patients included in each study (the cohort size) has been over 10 000. This is a substantial achievement and a tribute to the general practitioners who have participated. PEM in the UK and a similar program in New Zealand are unique in providing a monitored-release program that can detect or help refute new signals in the early life of a medicine.

Considerable interest centers around those patients who produce major ADRs that are too rare to be detected in cohorts of around 10 000 patients. How many of these patients have inborn errors of metabolism or other rarities that reflect features of the patient rather than the drug? We do not have adequate facilities to investigate the genetic and metabolic features of those patients who produce these very rare type B adverse reactions.

OTHER HYPOTHESIS-GENERATING METHODS

Other systematic methods are used in signal generation. In some cases, data being collected for general public health surveillance, such as cause-of-death files, cancer registries, and birth defect registries are used to identify patterns of events that might be associated with medication use. Other programs, such as case–control surveillance of birth defects,