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Foreword

For several centuries, Chemistry has strongly contributed to a fast and almost
unlimited trend of progress and innovation that have deeply modified and improved
human life in all its aspects. But, presently, chemistry is also raising fears about its
immediate and long-term impact on the environment, leading to a growing demand
for development of ‘‘green chemistry’’ preserving the environment and natural non-
renewable resources. Changing raw materials to renewable sources, using low
energy-consumption processes, reprocessing all effluents and inventing new envir-
onment-friendly routes for the manufacture of more efficacious products are
immense challenges that will condition the future of mankind.
In this context of sustainable development, Supercritical Fluids (SCF) and Gas-

Expanded Liquids (GXL) are of rapidly-growing interest because either they are non-
toxic and non-polluting solvents (like carbon dioxide or water) or they help one to
avoid harmful intermediates through new processing routes. After two decades of
development of new extraction/fractionation/purification processes using SCFs -
mainly CO2 - with about 250 industrial-scale plants now in operation around the
world, other applications have been and will be at the centre of new developments for
the present decade and the coming one:

� Manufacture of high-performance materials including pharmaceutical formula-
tions, bio-medical devices and many specific polymeric, inorganic or composite
materials, either by physical processes or chemical synthesis;

� New routes of chemical or biochemical synthesis, coupled with product purifica-
tion;

� Innovative waste management and recycle.

It has to be understood that moving to SCF or GXL media for chemical synthesis
shall not be considered as a ‘‘simple’’ substitution of ‘‘classical’’ organic solvents, but
imposes a complete ‘‘reset’’ of knowledge of synthesis routes, reaction schemes and
parameters. One main difference is related to the physico-chemical properties of
these fluids that are both ‘‘tunable’’ solvents and separation agents. Some are also
reactants at the same time. Because of these properties, reaction rate and selectivity
are very different from those observed in liquid media, as well exemplified by
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hydrogenation reactions over heterogeneous catalysts. Moreover, many new envir-
onmentally-friendly processes using CO2 and water lead to innovative high-tech
materials (especially nano-structured materials), biomass conversion and waste
treatment such as, for example, PET-residues recycling by hydrothermal depolymer-
isation.
This is why this new edition based upon the 1999 book ‘‘Synthesis using Super-

critical Fluids’’ but deeply revised and dealing with new areas, arrives at an optimal
moment when scientists and engineers are facing the new challenges of sustainable
development and demand for higher-performance products. In the fast-changing
world of science, this update is a necessary tool offered to help the scientific
community appreciate the opportunities presented by these fluids and to prepare
chemists and engineers to incorporate these techniques in their process ‘‘tool-box’’.

March 2009 Michel Perrut
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Preface

Reactions under supercritical conditions have been used for industrial production
on various scales for most of the 20th century, but the current intense academic
interest in the science and applications of supercritical fluids (SCFs) dates from the
mid 1980�s (Figure 1) and the application of SCFs in the chemical synthesis of
organic molecules or materials became a ‘‘hot topic’’ starting in the early 1990�s.
Processes involving SCFs can be conducted in a fully homogeneous monophasic
fluid or in biphasic systems. Biphasic conditions can involve a supercritical or
subcritical gas as the upper phase and a gas-expanded liquid (GXL) below. The
optimum situation is often a delicate balance of thermodynamic and kinetic bound-
aries for a given transformation. This book is intended to introduce the reader to the
wide range of opportunities provided by the various synthetic methodologies devel-
oped so far for synthesis in SCFs and GXLs.
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Figure 1 Publications on the topic of supercritical fluids per year
(data mined from the Chemical Abstracts Service).



Applications of SCFs include their use as solvents for extractions, as eluents for
chromatography, and as media for chemical reactions. All of these are worthy topics
for extensive scientific and technical discussion, and in fact have been topics of
books in the past.We decided that a satisfactory coverage of all three topics would not
be possible in a single monograph of a reasonable size, and therefore we chose to
cover only one. While extractions such as decaffeination of coffee and chromato-
graphy such as the supercritical CO2-based preparative chromatography used in
the pharmaceutical industry are great examples of the environmental and eco-
nomic benefits of SCFs, we focus here on chemical synthesis where the fluid is
not only used as a mass separation agent, but also directly affects the molecular
transformation.
Supercritical fluids and gas-expanded liquids may be alternatives to liquid sol-

vents, but they are neither simple nor simply replacements of solvents. The experi-
mental chemist could not modify a written synthetic method by simply crossing out
the word ‘‘benzene’’ and replacing it with the words ‘‘supercritical carbon dioxide’’.
Many other modifications to the procedure would be necessary, not only because of
the need for pressurized equipment but also because of the inferior solvent strength
of many SCFs. On the other hand, additional degrees of freedom in the reaction
parameters emerge from the high compressibility of SCFs, allowing density to be
introduced as an important variable. At the same time, mass transfer can be greatly
enhanced in the presence of SCFs. Selective separation and compartmentalization of
elementary processes in multiphase systems offer another parameter that can be
exploited especially in catalytic processes. These are only some of the reasons why
the result of a chemical synthesis can sometimes be dramatically changed, often for
the better, by this solvent switch. If such beneficial effects can be combined with the
benign nature of many SCFs such as CO2 or H2O, they can contribute to the
development of more sustainable chemical processes, explaining why SCFs and
GXLs are often referred to as ‘‘Green Solvents’’.
It is only fair to say that we are still far away from a detailed understanding of all

the effects of using SCFs and GXLs. More basic research will be needed before we
learn how to exploit the benefits in the most efficient way. In the meantime, it is our
hope that the chemist or engineer considering using one of these fluids as amedium
for a reaction will turn to this volume to find out both what has been done, how to do
it, and, more importantly, what new and innovative directions are yet to be taken.
At this point, we must offer a safety warning and disclaimer. Supercritical fluids

are used at high pressures and in some cases at elevated temperatures. The
chemist contemplating their use must become acquainted with the safety precau-
tions appropriate for experiments with high pressures and temperatures. Some
SCFs also have reactive hazards. The safety considerations mentioned in Chapters 1
and 2 are meant neither to be comprehensive nor to substitute for a proper
investigation by every researcher of the risks and appropriate precautions for a
contemplated experiment.
We have selected the chapter topics to guide the reader through the process of

planning and carrying out chemical syntheses in SCFs and GXLs. The subjects
include a brief overview of the historical development and current use, as well as a
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description of equipment, methods, and phase behaviour considerations. The
properties of biphasic conditions and gas-expanded liquids are spelled out in
chapter 4, and all these themes are elaborated upon in the largest part of the book
which is devoted to various types of chemical reactions involving SCFs and GXLs as
solvents and/or reactants. The emphasis is on synthetic reactions, rather than
reactions tested for the purpose of investigating near-critical phenomena.
This book represents a partial update of our 1999 book on ‘‘Chemical Synthesis

Using Supercritical Fluids’’, but most of the chapters are entirely new and the
selection of topics is not the same. We therefore encourage readers, if they want
more information, to look up the 1999 book.
The contributors to the present volume, all leading experts in the field, have given

us a wide view of the types and methods of chemistry being performed in super-
critical fluids and expanded liquids. Many of the techniques that the reader will find
described in these pages have been laboriously developed by these contributors and
their colleagues. We gratefully thank all of the contributors for agreeing to take time
out from their research schedules to write chapters for this volume.
We also thank the following people and institutions for providing us with informa-

tion or photographic material on the historical aspects and the industrial use of SCFs:
Dr. J. Abeln (Forschungszentrum Karlsruhe), Dr. U. Budde (Schering AG), Dr. H.-E.
Gasche (Bayer AG), Dr. P. Møller (Poul Møller Consultancy), Dr. T. Muto (Idemitsu
Petrochemical), Prof. G. Ourisson and the Académie des Sciences, Dr. A. Rehren
(Degussa AG), M.-C. Thooris (Ecole Polytechnique Palasieau) and representatives of
Eco Waste Technology and General Atomics.
Special thanks are due to Dr. Markus Höslcher at ITMC, RWTH Aachen, and

Drs. Elke Maase and Lesley Belfit at Wiley-VCH for their competent help and
collaboration in producing this book. Furthermore, we wish to express our sincere
thanks to all the members of our research groups, for their talents and their
enthusiasm,whichmake our research efforts devoted to SCFs andGXLs somuch fun.
Finally, and most importantly, we dedicate our own contribution to this book to

our wives and families, for all their love and understanding throughout the years and
especially during the preparation of this volume.

February 2009 Philip Jessop and Walter Leitner
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1
Introduction
Philip Jessop and Walter Leitner

1.1
What is a Supercritical Fluid (SCF)?

A supercritical fluid is a compound, mixture, or element above its critical pressure
(pc) and critical temperature (Tc) but below the pressure required to condense it into a
solid (Figure 1.1). This definition is modified from that of IUPAC [1], which
unfortunately omits the clause concerning condensation into a solid. That the
melting curve extends over the supercritical region [2–4] is often forgotten even
though the pressure is not always impractically high. For example, the minimum
pressure required to solidify supercritical CO2 is only 570Mpa [5].
The conditions under which SCFs are investigated are often described in terms of

�reduced temperature� (Tr) and �reduced pressure� (pr), defined as the actual values
of T and p divided by Tc and pc, respectively (Equations 1.1 and 1.2). The �law of
corresponding states� as introduced by van der Waals [6] implies that compounds
behave similarly under the same values of the reduced variables. This allows valuable
comparisons of different compounds under various conditions, but deviations can be
substantial in close proximity to the critical point.

Tr ¼ T=Tc ð1:1Þ

pr ¼ p=pc ð1:2Þ
The properties of SCFs are frequently described as being intermediate between

those of a gas and a liquid. This Janus-faced nature of SCFs arises from the fact that
the gaseous and liquid phases merge together and become indistinguishable at the
critical point. Figure 1.2 shows how the meniscus between the phases disappears
upon reaching the critical point for CO2. Not all properties of SCFs are intermediate
between those of gases and liquids; compressibility and heat capacity, for example,
are significantly higher near the critical point than they are in liquids or gases (or even
in the supercritical state further from the critical point). Although the properties of a
compoundmay change drastically with pressure near the critical point,most of them
show no discontinuity. The changes start gradually, rather than with a sudden onset,
when the conditions approach the critical point.
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It is common to refer to the somewhat ill-defined region where such changes are
noticeable as the �near-critical� region. Technically, the �near-critical region� extends all
around the critical point, but the expression is commonly used to refer to the non-
supercritical section only. The very similar expression �compressible region� refers to
the area around the critical point in which the compressibility is significantly greater
thanwould be predicted from the ideal gas law. In fact, the compressibility at the critical
point itself approaches infinity, and hence the speed of sound in the fluid reaches a
minimum; a method for the determination of critical data of mixtures based on this
phenomenon has been devised [7]. Although a significant portion of the compressible
region lies inside the SCF section of the phase diagram, there is also overlap with the
liquid and vapor regions as well (Figure 1.1, inset). Thus, even liquids have significant
compressibility near the critical point, although they are virtually incompressible at

Figure 1.1 The phase diagram of CO2 [192, 193]. The critical and
triple points are shown as filled circles. The inset (with a linear
pressure scale) shows an expanded view of the area around the
critical point; the tear-shaped contour indicates the compressible
region.

Figure 1.2 The meniscus separating liquid and gaseous CO2

disappearswhen the critical point is reached by heating liquid CO2

in a closed vessel. A small amount of a highly CO2-soluble and
brightly colored metal complex [194] was added for better
contrast.
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Tr� 1. Liquid phases at temperatures below, but not too far below, Tc are called
�subcritical liquids�, whereas �subcritical gases� are those at pressures below pc.
When working with an SCF, it is valuable to refer to a plot of the dependence of

density (d) on pressure and temperature, as presented for supercritical CO2 (scCO2)
in Figure 1.3.Note that the density changes sharply but continuouslywith pressure in
the compressible region, illustrating the properties outlined above. At higher
pressures, the density changes occur more gradually. The critical density dc (i.e. d
at Tc and pc) is the mean value of the densities of the gas phase and the liquid phase
and amounts to 0.466 gml�1 for CO2. The reduced density is defined in analogy with
the other reduced variables (Equation 1.3). The density data shown in Figure 1.3
correspond to the bulk density of the medium, but density fluctuations lead to
microscopic areas of decreased and increased local densities in SCFs (�local density
augmentation�). Because of the very large compressibility, these density fluctuations
aremost pronounced very near to the critical point. If the fluctuations are of the same
order of magnitude as the wavelength of visible light, scattering of the light leads to
critical opalescence,whichmay be apparent as a clouding or coloration of the SCFand
can also be used to determine the critical point.

dr ¼ d=dc ð1:3Þ
Many solvent properties are directly related to bulk density andwill therefore have a

pressure dependence similar to that shown in Figure 1.3. The best known example is
the continuous variation in �solvent power� over a fairly wide range, which provides
the basis for the technical use of SCFs in highly selective natural product extractions.
The solvent power is a rather ill-defined property, but there have been experimental
approaches to devise scales for liquid solvents. One of the most successful attempts

Figure 1.3 The density and the solvent power (as expressed by the
Hildebrand parameter) of scCO2 as a function of temperature
and pressure [8, 9].
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was put forward by Hildebrand and Scott [8]; the so-called Hildebrand parameter for
solvent power was found to be directly proportional to the density of SCFs [9], as
shown in Figure 1.3 for CO2. Some typical organic solvents are marked on the
Hildebrand scale for comparison to give some indication of the tunability of the
solvent power of CO2. It should be apparent from the diagram that in order for a SCF
to have significant solvating ability, itmust usually have a dr of>1.Note, however, that
the concentration of a solute in a compressed gas or SCFdoesnot depend on solvation
only, but also involves volatility as an important parameter. Changing the solvating
ability of an SCF will have different effects on the solubility of individual solutes.
The possibility of using SCFs as �tunable solvents� not only for supercritical fluid

extraction (SFE) but also for chemical reactions is one of the many interesting
features associated with their application inmodern synthesis. Before we discuss the
many potential benefits in detail (Section 1.3), it seems appropriate to give a brief
introduction to some practical aspects of the use of SCFs on a laboratory scale.

1.2
Practical Aspects of Reactions in Supercritical Fluids

Considerations when selecting a SCF to serve as a reaction solvent include critical
temperature, solubilizing power, inertness, safety, environmental impact, and cost.
An attractive scenario is to use one of the reagents as the supercritical solvent; many
reactions in SCFs in industry use a reagent as the solvent. Inorganic and organic
compounds which are frequently used as SCFs are listed, together with leading
references for their volumetric behavior, in tables inChapter 2. Becausemost organic
syntheses are performed between room temperature and 120 �C, SCFs with critical
temperatures around room temperature are most commonly used; these are CO2,
ethane, ethylene, fluoroform, nitrous oxide, and the partially fluorinated methanes
and ethanes. For many reasons, including inertness, safety, impact, and cost, scCO2

is the most popular of these.
The purity of the SCF is an important consideration in the planning of a synthesis.

Low concentrations of impurities can have noticeable effects on the volumetric and
phase behavior of SCFs. For example, helium can be present in commercial CO2

because it is sometimes added as a �head-gas� to ensure nearly complete delivery of
the cylinder contents and this has been found to affect the use of scCO2 as a solvent
for analytical and preparative purposes [10–12]. The He head-gas is unnecessary if a
cooled pump is used for CO2 delivery. Purity can also have an effect on the cost of the
SCF. For somematerials, especially theC2 or higher hydrocarbons, the price is highly
dependent on the purity and very high purities are prohibitively expensive.
Specialized equipment is required for experiments with supercritical fluids, as

described inmore detail in Chapter 2, mainly because of the requirements to work at
elevated pressures and/or temperatures. The physical and chemical properties of the
SCFs can sometimes present hazards to the experimentalist [13]. All researchers in
the field should search the literature for information concerning the hazards of the
materials with which they are working. The following information is presented as a
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