

Environmental and Low Temperature Geochemistry

Environmental and Low Temperature Geochemistry

Peter Crowley Ryan

WILEY Blackwell

This edition first published 2014 © 2014 by Peter Crowley Ryan

Registered Office

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Offices

9600 Garsington Road, Oxford, OX4 2DQ, UK

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SO, UK

111 River Street, Hoboken, NJ 07030-5774, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell.

The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Ryan, Peter, 1966- author.

Environmental and low temperature geochemistry / Peter Ryan.

pages cm

Includes bibliographical references and index.

ISBN 978-1-118-86735-8 (cloth) – ISBN 978-1-4051-8612-4 (pbk.) 1. Environmental geochemistry. I. Title. QE516.4.R93 2014

551.9-dc23

2013050119

A catalogue record for this book is available from the British Library.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Cover image: Acid mine drainage. Large pool of red coloured water caused by acid mine drainage; the leeching of acidic minerals from earth exposed to water or air during mining. This is the site of a former copper mine that was closed in the 1960s. Photographed in Macalder, Kenya. Phil Hill/Science Photo Library.

Set in 10/13pt Photina by SPi Publisher Services, Pondicherry, India

Contents

Acknowledgements, xii About the Companion Website, xiii

1 BACKGROUND AND BASIC CHEMICAL PRINCIPLES: ELEMENTS, IONS, BONDING, REACTIONS, 1

- 1.1 An overview of environmental geochemistry history, scope, questions, approaches, challenges for the future. 1
- 1.2 The naturally occurring elements origins and abundances, 2
- 1.3 Atoms and isotopes: a brief review. 6
- 1.4 Measuring concentrations, 8
 - 1.4.1 Mass-based concentrations, 8
 - 1.4.2 Molar concentrations, 9
 - 1.4.3 Concentrations of gases, 10
 - 1.4.4 Notes on precision and accuracy, significant figures and scientific notation, 10
- 1.5 Periodic table, 11
- 1.6 Ions, molecules, valence, bonding, chemical reactions, 14
 - 1.6.1 Ionic bond strength, 14
 - 1.6.2 Covalent bonds, 16
 - 1.6.3 Electronegativity, 17
 - 1.6.4 Metallic bonds, hydrogen bonds and van der Waals forces. 18
- 1.7 Acid–base equilibria, pH, K values, 19
- 1.8 Fundamentals of redox chemistry and chemical reactions. 21

- 1.9 Chemical reactions, 23
- 1.10 Equilibrium, thermodynamics and driving forces for reactions: systems, gibbs energies, enthalpy and heat capacity, entropy, volume, 23
 - 1.10.1 Systems, species, phases and components, 24
 - 1.10.2 First law of thermodynamics, 26
 - 1.10.3 Second law of thermodynamics, 27
 - 1.10.4 Enthalpy, 27
 - 1.10.5 Heat capacity, 29
 - 1.10.6 Gibbs free energy, 30
 - 1.10.7 Gibbs free energy and the equilibrium constant, 31
- 1.11 Kinetics and reaction rates: distance from equilibrium, activation energy, metastability, 33
 - 1.11.1 Reaction rate, reaction order, 34
 - 1.11.2 Temperature and the Arrhenius equation, 36

Review questions, 37 References, 37

2 SURFICIAL AND ENVIRONMENTAL MINERALOGY, 39

- 2.1 Introduction to minerals and unit cells, 40
- 2.2 Ion coordination, Pauling's rules and ionic substitution, 42
 - 2.2.1 Coordination and radius ratio. 42

2.3

2.2.2	Bond-strength
	considerations, 45
2.2.3	Pauling's and Goldschmidt's
	rules of ionic solids, 45
Silicat	es, 48
2.3.1	Nesosilicates, 49
2.3.2	Inosilicates, 50

2.3.3 Phyllosilicates, 522.3.4 Tectosilicates, 58

2.4 Clay minerals (T–O minerals, T–O–T minerals, interstratified clays), 58

2.4.1 Smectite, 59

2.4.2 Smectites with tetrahedrally derived layer charge, 60

2.4.3 Smectites with octahedrally derived layer charge, 60

2.4.4 Vermiculite, 62

2.4.5 Illite, 62

2.4.6 Chlorite and Berthierine. 63

2.4.7 Kaolin (kaolinite and halloysite), 63

2.4.8 Interstratified clay minerals, 64

2.4.9 Trace metals and metalloids in clay minerals, 64

2.5 Crystal chemistry of adsorption and cation exchange, 64

2.5.1 Cation exchange, 66

2.5.2 Double-layer complexes, 68

2.6 Low-temperature non-silicate minerals: carbonates, oxides and hydroxides, sulfides, sulfates, salts, 70

2.6.1 Carbonates, 70

2.6.2 Oxides and hydroxides, 71

2.6.3 Sulfides and sulfates, 72

2.6.4 Halide and nitrate salts, 74

2.7 Mineral growth and dissolution, 74

2.8 Biomineralization, 78 Review questions, 79 References, 80

3 ORGANIC COMPOUNDS IN THE ENVIRONMENT, 82

3.1 Introduction to organic chemistry: chains and rings, single, double, and triple bonds, functional groups, classes of organic compounds, organic nomenclature, 82

3.1.1 Definition of organic compounds, 82

3.1.2 Hybridization of carbon atoms in organic compounds, 83

3.1.3 Alkanes, 84

3.1.4 Alkenes, 86

3.1.5 Functional groups, 86

3.1.6 Aromatic hydrocarbons and related compounds, 88

3.1.7 Nitrogen, phosphorus and sulfur in organic compounds, 92

3.1.8 Pharmaceutical compounds, 93

3.2 Natural organic compounds at the earth surface, 94 3.2.1 Fossil fuels, 95

3.3 Fate and transport of organic pollutants, controls on bioavailability, behavior of DNAPLs and LNAPLs, biodegradation, remediation schemes, 96

3.3.1 Solid–liquid–gas phase considerations, 96

3.3.2 Solubility considerations, 97

3.3.3 Interactions of organic compounds and organisms, 98

3.3.4 Adsorption of organic compounds, 99

3.3.5 Non-aqueous phase liquids (NAPLs) in the environment, 103

3.3.6 Biodegradation, 104

- 3.3.7 Remediation, 105
- 3.4 Summary, 106

Questions, 106

References, 106

4 AQUEOUS SYSTEMS – CONTROLS ON WATER CHEMISTRY, 108

- 4.1 Introduction to the geochemistry of natural waters, 108
 - 4.1.1 Geochemistry and the hydrologic cycle, 108
- 4.2 The structure of water geometry, polarity and consequences, 113
- 4.3 Dissolved versus particulate: examples of solutions and suspensions, 114
 - 4.3.1 Dissolved vs. particulate vs. colloidal. 115
- 4.4 Speciation: simple ions, polyatomic ions and aqueous complexes, 116
- 4.5 Controls on the solubility of inorganic elements and ions, 117
 - 4.5.1 The ratio of ionic charge: ionic radius and its effect on solubility, 119
 - 4.5.2 Reduction—oxidation reactions. 120
 - 4.5.3 Half-cell reactions, 120
 - 4.5.4 Redox reactions in the environment, 122
 - 4.5.5 pH and acid-base consideration, 123
 - 4.5.6 Ligands and elemental mobility, 124
- 4.6 Ion activities, ionic strength, TDS, 125
 - 4.6.1 Ion activity product, 126
 - 4.6.2 Ionic strength, 126
 - 4.6.3 Total dissolved solids, 126
- 4.7 Solubility products, saturation, 127
- 4.8 Co-precipitation, 128
- 4.9 Behavior of selected elements in aqueous systems, 129
 - 4.9.1 Examples of heavy metals and metalloids, 129
 - 4.9.2 Eh-pH diagrams, 132

- 4.9.3 Silicon in solutions, 136
- 4.10 Effect of adsorption and ion exchange on water chemistry, 137
 - 4.10.1 Ionic potential, hydration radius and adsorption, 138
 - 4.10.2 Law of mass action and adsorption, 138
 - 4.10.3 Adsorption edges, 140
 - 4.10.4 Adsorption isotherms, 142
- 4.11 Other graphical representations of aqueous systems: piper and stiff diagrams, 143
- 4.12 Summary, 146

Questions, 147

References, 147

5 CARBONATE GEOCHEMISTRY AND THE CARBON CYCLE, 149

- 5.1 Carbonate geochemistry: inorganic carbon in the atmosphere and hydrosphere, 149
 - 5.1.1 Atmospheric CO₂, carbonate species and the pH of rain, 150
 - 5.1.2 Speciation in the carbonate system as a function of pH, 151
 - 5.1.3 Alkalinity, 152
 - 5.1.4 Carbonate solubility and saturation, 155
 - 5.1.5 The effect of CO₂ partial pressure on stability of carbonate minerals, 157
 - 5.1.6 The effect of mineral composition on stability of carbonate minerals, 157
- 5.2 The carbon cycle, 158
 - 5.2.1 Oxidation states of carbon, 158
 - 5.2.2 Global-scale reservoirs and fluxes of carbon, 159
 - 5.2.3 Fixation of carbon into the crust. 161
 - 5.2.4 Rates of flux to and from the crust, 164

5.2.5 The oce	an reservoir,	166
---------------	---------------	-----

- 5.2.6 Fixation of C into oceans, 166
- 5.2.7 Long-term viability of oceans as *C* sink, 168
- 5.2.8 The atmospheric reservoir, 171
- 5.2.9 Sequestration, 174

Questions, 175 References, 176

6 BIOGEOCHEMICAL CYCLES – N, P, S, 177

- 6.1 The nitrogen cycle, 180
 - 6.1.1 Nitrogen valence, nitrogen species, 181
 - 6.1.2 Processes operating within the nitrogen cycle, 182
 - 6.1.3 Global scale reservoirs and fluxes of nitrogen, 184
 - 6.1.4 Human perturbation of the nitrogen cycle and resulting environmental impacts, 186
- 6.2 The phosphorus cycle, 190
 - 6.2.1 P cycling in soils, 191
 - 6.2.2 The global phosphorus cycle, 193
 - 6.2.3 Phosphorus and eutrophication, 194
- 6.3 Comparison of N and P, 195
- 6.4 The sulfur cycle, 196
 - 6.4.1 Sulfur valence, sulfur species, 196
 - 6.4.2 The global S cycle, 197
 - 6.4.3 The marine S cycle, 198
 - 6.4.4 Soils and biota, 200
 - 6.4.5 Atmosphere, 200
 - 6.4.6 River flux, 201
- 6.5 Integrating the C, N, P and S cycles, 202

Questions, 203

References, 203

7 THE GLOBAL ATMOSPHERE: COMPOSITION, EVOLUTION AND ANTHROPOGENIC CHANGE, 206

- 7.1 Atmospheric structure, circulation and composition, 206
 - 7.1.1 Structure and layering of the atmosphere, 207
 - 7.1.2 Geological record of atmospheric composition, 208
 - 7.1.3 Climate proxies, 209
 - 7.1.4 Orbital control on C, 210
 - 7.1.5 Composition of the current atmosphere, 213
 - 7.1.6 Air circulation, 214
- 7.2 Evaporation, distillation, CO₂ dissolution and the composition of natural precipitation, 218
- 7.3 The electromagnetic spectrum, greenhouse gases and climate, 219
 - 7.3.1 Electromagnetic spectrum, 219
 - 7.3.2 Re-radiation from earth surface, 219
 - 7.3.3 Greenhouse effect and heat trapping, 222
- 7.4 Greenhouse gases: structures, sources, sinks and effects on climate, 223
 - 7.4.1 Molecular structures and vibrations of greenhouse gases, 223
 - 7.4.2 Greenhouse gases, radiative forcing, GWPs, 224
 - 7.4.3 Global warming, 227

Questions, 228

References, 228

8 URBAN AND REGIONAL AIR POLLUTION, 230

- 8.1 Oxygen and its impact on atmospheric chemistry, 231
- 8.2 Free radicals, 232
- 8.3 Sulfur dioxide, 234

- 8.4 Nitrogen oxides, 237
- 8.5 Carbon monoxide, 238
- 8.6 Particulate matter, 240
- 8.7 Lead (Pb), 242
- 8.8 Hydrocarbons and air quality: tropospheric ozone and photochemical smog, 242
- 8.9 Stratospheric ozone chemistry, 245
- 8.10 Sulfur and nitrogen gases and acid deposition, 249
- 8.11 Trace elements in atmospheric deposition: organochlorine pesticides, mercury and other trace elements, 252
 - 8.11.1 Pesticides in air, 252
 - 8.11.2 Hg in air, 253
 - 8.11.3 As, Cd and Ni, 254

Questions, 255 References, 256

9 CHEMICAL WEATHERING AND SOILS, 258

- 9.1 Primary minerals, mineral instability, chemical weathering mechanisms and reactions, soil-forming factors, and products of chemical weathering, 258
 - 9.1.1 Goldich stability sequence, 259
 - 9.1.2 Weathering rates, 260
 - 9.1.3 Chemical weathering, 261
 - 9.1.4 Consequences of chemical weathering: dissolved species and secondary minerals, 264
 - 9.1.5 Geochemical quantification of elemental mobility in soil, 265
 - 9.1.6 Quantifying chemical weathering: CIA, 267
 - 9.1.7 Soil profile, 268
 - 9.1.8 Soil-forming factors, 268
 - 9.1.9 Soil classification soil orders and geochemical controls, 273
- 9.2 Secondary minerals, controls on their formation, and mineral stability diagrams, 275

- 9.2.1 Factors controlling soil mineralogy, 275
- 9.2.2 Mineral stability diagrams, 276
- 9.3 Soils and the geochemistry of paleoclimate analysis, 281
- 9.4 Effects of acid deposition on soils and aquatic ecosystems, 282
 - 9.4.1 Increased solubility of Al in acidic soil solution, 283
 - 9.4.2 Displacement of adsorbed nutrient cations, 284
 - 9.4.3 Leaching of base cations enhanced by increased NO₃ and SO₄, 285
 - 9.4.4 Decrease of soil buffering capacity and base saturation, 286
 - 9.4.5 Acid deposition and heavy metals, 287
- 9.5 Soils and plant nutrients, 287
- 9.6 Saline and sodic soils, 289
- 9.7 Toxic metals and metalloids, 290
- 9.8 Organic soil pollutants and remediation (fuels, insecticides, solvents), 294

Questions, 295 References, 296

10 STABLE ISOTOPE GEOCHEMISTRY, 299

- 10.1 Stable isotopes mass differences and the concept of fractionation, 299
- 10.2 Delta (δ) notation, 302
- 10.3 Fractionation: vibrational frequencies, temperature dependence, 304
 - 10.3.1 Stable isotopes and chemical bond strength, 305
 - 10.3.2 Temperature-dependent stable-isotope fractionation, 305

10.3.3	Equilibrium and
	non-equilibrium isotope
	fractionation, 307
δ^{18} O ar	nd δD, 309

- 10.4
 - 10.4.1 Paleotemperature analysis using oxygen and hydrogen isotopes, 314
 - 10.4.2 Oxygen and hydrogen isotopes as tracers in the hydrologic cycle, 314
 - 10.4.3 Application of oxygen and hydrogen isotopes to paleosol climate records, 316
- 10.5 δ^{15} N. 316
- 10.6 δ^{13} C, 318
 - 10.6.1 Carbon isotope analysis of paleoenvironment, 320
 - 10.6.2 Carbon isotopes in hydrology and chemical weathering, 321
- 10.7 δ^{34} S. 321
 - 10.7.1 Fraction of sulfur isotopes, 322
- 10.8 Non-traditional stable isotopes, 324
 - 10.8.1 $\delta^{65/63}$ Cu, 325
 - 10.8.2 $\delta^{56/54}$ Fe, 326
 - 10.8.3 $\delta^{202/198}$ Hg, 326
 - 10.8.4 δ^{26} Mg and $\delta^{44/42}$ Ca. 328
 - 10.8.5 $\delta^{37/35}$ Cl, 330
- 10.9 Summary, 330

Ouestions, 331 References, 331

11 RADIOACTIVE AND RADIOGENIC **ISOTOPE GEOCHEMISTRY, 335**

- 11.1 Radioactive decay, 335
 - 11.1.1 Decay mechanisms and products, 336
 - 11.1.2 Half-lives, decay rates and decay constants, 337
- 11.2 Radionuclides as tracers in environmental geochemistry, 341

- 11.2.1 ²⁰⁶Pb/²⁰⁷Pb. 341
- 11.2.2 87Sr/86Sr. 342
- 11.3 Radionuclides as environmental contaminants, 342
 - 11.3.1 Controls on U. Th and their decay products, 342
 - 11.3.2 Refined uranium ores and associated nuclear wastes, 346
 - 11.3.3 Geological disposal of high-level radioactive wastes, 349
- 11.4 Geochronology, 350
 - 11.4.1 ¹⁴C, cosmogenic radionuclides and earth-surface dating techniques, 350
 - 11.4.2 Common radioactive decay methods of dating sediments and minerals, 359
 - $11.4.3^{234} \text{U}/^{238} \text{U}$ and $^{234} \text{U}$ disequilibrium, 364

Ouestions, 367 References, 367

APPENDIX I CASE STUDY ON THE RELATIONSHIP OF VOLATILE ORGANIC COMPOUNDS (VOCs), MICROBIAL **ACTIVITY, REDOX REACTIONS,** REMEDIATION AND ARSENIC MOBILITY IN GROUNDWATER, 371

- I.1 Site information, contaminant delineation, 371
- I.2 Remediation efforts, 372
- I.3 Sources of PCE and As, 374
- I.4 Mobilization of arsenic, 374 References, 377

APPENDIX II INSTRUMENTAL ANALYSIS, 378

II.1 Analysis of minerals and crystal chemistry, 378

- II.1.1 Electron microscopy (SEM, TEM and many other acronyms), 378
- II.1.2 X-ray diffraction, 379
- II.1.3 FTIR, 382
- II.1.4 Elements in solution by ICP-AES, ICP-MS, AAS, 384
- II.1.5 XRF, 385
- II.1.6 X-ray absorption spectroscopy (XAS) techniques (EXAFS, XANES), 385
- II.1.7 Isotopic analysis: mass spectrometry, 387 II.1.8 Chromatography, 389 References, 389

APPENDIX III TABLE OF THERMODYNAMIC DATA OF SELECTED SPECIES AT 1 ATM AND 25 °C, 390

Index, 394

Acknowledgements

This text would not have come to fruition without the support of many, first and foremost Margaret Crowley Ryan for her encouragement and suggestions. Our daughters Emma and Sophie helped me to think through certain aspects of the text, and I also would like to thank my parents, Quinn and Jane Ryan, for their support from day one. My graduate advisors Bob Reynolds, Gray Thompson, Don Winston and Page Chamberlain challenged and encouraged me in my early years as a researcher and writer, and Jeff Olson encouraged me to take on this project in its earliest stages. Ian Francis, Kelvin Matthews, Delia Sanford and Alison Woodhouse at Wiley-Blackwell have been supportive and patient throughout.

Inspiration for different sections of this text come from many excellent geochemistry and environmental chemistry texts, particularly those of Berner and Berner, Drever, Faure, Langmuir, Moore and Reynolds, Spiro and Stigliani and Walther. They are referenced at

many points in the text and the well-worn copies on my shelf attest to their influence on my understanding of geochemistry. I am fortunate to be a member of a great cohort of colleagues at Middlebury College, both in the Geology Department and in the Environmental Studies Program. Students in GEOL 323 served as guinea pigs for early versions and made insightful comments — they as well as my colleagues are too numerous to mention but their support has been vital. I am grateful to Amy Larson Rhodes for thorough editing of some sections. Any time I got bogged down with writer's block, exile by the stones turned up to 11 pushed me forward, so thanks to Keith and Mick et al. I would also like to cite my long-running collaboration with Jon Kim of the Vermont Geological Survey as well as support from Javier Huertas, Rafa Bellver and colleagues at the Instituto Andaluz de Ciencias de la Tierra in Granada, Spain.

About the Companion Website

This book is accompanied by a companion website: www.wiley.com/go/ryan/geochemistry

The website includes:

- Powerpoints of all figures from the book for downloading
- PDFs of tables from the book

Background and Basic Chemical Principles: Elements, Ions, Bonding, Reactions

1.1 AN OVERVIEW OF ENVIRONMENTAL GEOCHEMISTRY – HISTORY, SCOPE, QUESTIONS, APPROACHES, CHALLENGES FOR THE FUTURE

"The best way to have a good idea is to have a lot of ideas." (Linus Pauling)

"All my life through, the new sights of nature made me rejoice like a child." (Marie Curie)

Environmental geochemistry encompasses research at the intersection of geology, environmental studies, chemistry and biology, and at its most basic level, is designed to answer questions about the behavior of natural and anthropogenic substances at or near the surface of Earth. The scope includes topics as diverse as trace metal pollution, soil formation, acid rain and sequestration of atmospheric carbon, and most problems in environmental geochemistry require understanding of the relationships among aqueous solutions, geological processes, minerals, organic compounds, gases, thermodynamics, kinetics,

and microbial influences, to name a few. A good example is the fate and transport of lead in the environment. In some areas much of the lead in the Earth surface environment is (was) derived from combustion of leaded gasoline, because even after it had been banned, Pb tends to persist in soil. The original distribution of Pb was controlled at least in part by atmospheric processes ranging from advection to condensation and precipitation.

The fate and transport of Pb deposited on the land surface is controlled by the interactions and relationships among lead atoms, solids compounds (e.g. inorganic minerals or organic matter), potential for uptake into plants or other organisms, and the composition of water in soils, lakes or streams (including dissolved gases like O_2 and CO_2). In cases where Pb falls on soils bearing the carbonate anion (CO_3^{-2}) , the formation of lead carbonate (PbCO₃) can result in sequestration of lead in a solid state where it is largely unavailable for uptake by organisms. If the PbCO₃ is thermodynamically stable, the lead can remain sequestered (i.e. stored), but changes in chemical regime can destabilize carbonates. For example,

acidic precipitation that lowers the pH of soil can cause dissolution of $PbCO_3$, but how much of the carbonate will dissolve? How rapidly? Much like the melting of ice at $10\,^{\circ}$ C, geochemical processes are kinetically controlled (some more than others), so even in cases where phases exist out of equilibrium with their surroundings, we must know something about rate laws in order to predict how fast reactions (e.g. dissolution of $PbCO_3$) will occur.

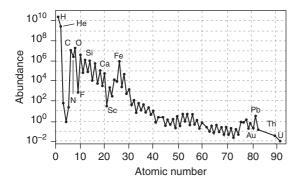
If Pb is dissolved into an aqueous form, additional questions of fate and transport must be addressed - will the Pb remain in solution, thus facilitating its uptake by plants? Or will it be carried in solution into a nearby surface water body, where it could be consumed by a fish or amphibian? Or will other soil solids play a role in its fate? Will it become adsorbed to the surface of a silicate clay or organic matter, transported downstream until it ultimately desorbs in lake sediments? We also need to consider the possibility that the PbCO₃ does not dissolve, but rather is physically eroded into a stream or lake, where it might dissolve or remain a solid, possibly becoming consumed by a bottom feeder, from which point it could biomagnify up the food chain.

Environmental geochemistry has its origins in ground-breaking advances in chemistry and geology ushered in by the scientific breakthroughs of the late 19th and early 20th centuries, particularly advances in instrumental analysis. The Norwegian Victor M. Goldschmidt is considered by many to be the founder of geochemistry, a reputation earned by his pioneering studies of mineral structures and compositions by X-ray diffraction and optical spectrograph studies. These studies led Goldschmidt to recognize the importance and prevalence of isomorphous substitution in crystals, a process where ions of similar radii and charges can substitute for each other in crystal lattices.

Goldschmidt's peer, the Russian Vladimir I. Vernadsky, had come to realize that minerals form as the result of chemical reactions, and furthermore, that reactions at the Earth surface are strongly mediated by biological processes. The application of geochemistry applied to environmental analysis mainly arose in the 1960s and 1970s with growing concern about contamination of water, air and soil. The early 1960s saw publication of Rachel Carson's *Silent Spring*, and early research on acid rain at Hubbard Brook in New England (F.H. Bormann, G.E. Likens, N.M. Johnson, and R.S. Pierce) emphasized the interdisciplinary thinking required for problems that spanned atmospheric, hydrologic, soil, biotic and geologic realms.

Current research in environmental geochemistry encompasses problems ranging from micrometer-scale (e.g. interactions between minerals and bacteria or X-ray absorption analysis of trace metal speciation), local-scale (e.g. acid mine drainage, leaking fuel tanks, groundwater composition, behavior of minerals in nuclear waste repositories) to regional (acid rain, mercury deposition, dating of glacier retreat and advance) and global (climate change, ocean chemistry, ozone depletion). Modern environmental geochemistry employs analytical approaches ranging from field mapping and spatial analysis to spectrometry and diffraction, geochemistry of radioactive and stable isotopes, and analysis of organic compounds and toxic trace metals. While the explosion of activity in this field makes it impossible to present all developments and to acknowledge the research of all investigators, numerous published articles will be cited and highlighted in throughout the text, and a case study that integrates many concepts is presented in Appendix I.

1.2 THE NATURALLY OCCURRING ELEMENTS - ORIGINS AND ABUNDANCES


The chemical elements that comprise Earth were mainly produced during the Big Bang approximately 12–15 billion years ago. The early universe was extremely hot (billions of degrees)

and for the first few seconds was comprised only of matter in its most basic form, quarks. After about 15 s, the atomic building blocks known as neutrons, protons, electrons, positrons, photons and neutrinos began to form from quarks, and within moments after the Big Bang, the first actual atoms formed. Protons combined with neutrons and electrons to form hydrogen (1_1 H) and its isotope deuterium (2_1 H, or D), which rapidly began to form helium (He) through fusion, a process in which the nuclei of smaller atoms are joined to create larger, heavier atoms: $2H \rightarrow He + energy$, or to be more precise:

$${}_{1}^{1}H + {}_{1}^{2}H = {}_{2}^{3}He + \gamma + E$$
 (1.1)

where γ is the symbol for gamma radiation emitted during nuclear fusion. (note: basic principles of atomic theory are presented in Section 1.3).

Small amounts of lithium were probably also produced in the first few minutes or hours after the Big Bang, also by fusion (in a simple sense represented as H + He = Li). From a graph of the abundances of elements in the solar system (Fig. 1.1), it is clear that H and He are the most abundant, and that, for the most part, element abundance decreases exponentially with increasing atomic number up to atomic number 50, and beyond that elements are quite rare.

Fig. 1.1 Abundance of elements in the solar system normalized to $Si = 10^6$ on a logarithmic *y*-axis – this is a standard means of normalizing and plotting values for this type of data set.

It is also clear that some elements (e.g. Li, Be, B, Sc) appear to be anomalously uncommon as compared to their neighbors, whereas others seem to be present in anomalously high concentrations (e.g. Fe, Ni, Pb). It is also interesting to note the sawtooth pattern produced by alternation of relatively abundant even-numbered elements as compared to neighboring odd-numbered elements (a phenomenon described by the Oddo–Harkins rule). How do these observed trends relate to the processes that formed the elements? The answer lies in basic principles of nuclear fusion.

Elements larger than He were formed by fusion in stars in the first few million to hundreds of millions of years after the Big Bang by a process generally referred to as **stellar nucleosynthesis**. Gravitational forces had produced a contracting, spinning disc-like mass of primordial H and He known as the solar nebula that contained the energy necessary to form heavier elements by fusion as follows:

$${}_{2}^{4}\text{He} + {}_{2}^{4}\text{He} = {}_{4}^{8}\text{Be} + \gamma$$
 (1.2)

$${}_{2}^{4}\text{He} + {}_{4}^{8}\text{Be} = {}_{6}^{12}\text{C} + \gamma$$
 (1.3)

$${}_{6}^{12}C + {}_{6}^{12}C = {}_{10}^{20}Ne + {}_{2}^{4}He$$
 (1.4)

This process skipped over $_3\text{Li}$ and $_5\text{B}$ and the $_4^8\text{Be}$ that formed was very unstable and was either rapidly transformed to ^{12}C before it decayed (see middle reaction above) or was destroyed by radioactive decay.

Fusion was able to form elements up to iron $\binom{56}{26}$ Fe), but beyond Fe no heat is produced during fusion – that is, the process is no longer exothermic when fusing nuclei heavier than Fe. In fact, the iron nucleus is so stable that fusion reactions involving iron actually consume energy (it is an endothermic process), so without the heat needed to fuel fusion reactions, another process had to take over to form the heavier elements. This process is known as neutron capture and can be represented like this:

$$_{26}^{56}$$
Fe + $_{0}^{1}$ n = $_{26}^{57}$ Fe (1.5)

$$_{26}^{57}$$
Fe + $_{0}^{1}$ n = $_{26}^{58}$ Fe (1.6)

$$_{26}^{58}$$
Fe + $_{0}^{1}$ n = $_{26}^{59}$ Fe (1.7)

The Fe⁵⁹ atom is unstable and undergoes spontaneous radioactive decay by beta emission as follows:

$$_{26}^{59}$$
Fe = $_{27}^{59}$ Co + β^- (1.8)

In this case, the negatively charged beta particle (sometimes written as $_{-1}^{0}e$ or e^{-}) effectively represents the transformation of a neutron $\binom{1}{0}n$ to a proton $\binom{1}{1}p$). Neutron capture combined with radioactive decay then formed progressively heavier elements up to the heaviest naturally occurring element, uranium. Some elements such as ⁵⁶Ni and ⁵⁶Co are unstable and undergo radioactive decay to form stable 56Fe, helping to explain the relative abundance of Fe as compared to elements with similar atomic number.

Neutron capture (equations 1.5–1.7) takes place via two main mechanisms. The **r-process** ("r" is for rapid) takes place in core-collapse supernovae, where there is a high flux of neutrons and extremely high temperatures (e.g. $> 10^9$ K), and nucleosynthesis involves a rapid series of neutron capture reactions starting (typically) with ⁵⁶Fe – the r-process explains the origin of ~50% of atoms heavier than Fe. The other main means by which heavy elements can be produced is known as the **s-process** ("s" is for secondary), in which nucleosynthesis occurs by means of slow neutron capture. The difference is that s-process neutron-capture nucleosynthesis occurs in asymptotic giant branch (AGB) stars, which have lower temperatures (e.g. $10^3 - 10^4$ K) than supernovae, and thus the s-process requires pre-existing (hence the "secondary" nature) heavy isotopes that can function as seed nuclei.

Getting back to fusion, it is clear that progressive fusion reactions involving atoms with even

numbers of protons will lead to the sawtooth pattern in Fig. 1.1, but there is also another contributing factor to this pattern. The **Oddo**-Harkins rule states that atoms with an even number of protons in their nuclei are more stable than their odd-numbered counterparts. This is because, during nucleosynthesis, nuclei with an unpaired proton were more likely to capture an additional proton, producing a more stable proton arrangement in the nucleus of atoms with even numbers of protons. For additional information on nucleosynthesis and the origin of the elements, the reader is referred to the accessible and moredetailed presentation in Gunter Faure's text *Principles and Applications of Geochemistry.*

As the universe continued to cool, galaxies and solar systems began to form. The solar nebula that was to form our solar system cooled and began to solidify into small masses known as chondrites and eventually larger masses known as planetesimals (on the order of tens of km in diameter). Those bodies closest to the early sun were more enriched in heavier elements (especially Si, Al, Mg, Fe, Ca, Na, K), in part because centrifugal forces effectively flung lighter elements (H, He) preferentially to the farther reaches of the solar system (other important influences include temperature, pressure, redox conditions and nebular density, but these factors that will not be covered here). The end result is that the inner planets are terrestrial and rocky (Mercury through Mars) and enriched in heavier elements, whereas the outer planets are gaseous (Jupiter and beyond) and enriched in lighter elements (think of the possibility of methane oceans or methane ice on Jupiter's moon Titan).

Planets ultimately formed when gravitational forces caused accretion of planetesimals. The accretion of what was to become Earth produced heat that left the proto-planet in a molten or semi-molten state and allowed relatively dense Fe and nickel (Ni) to sink to the **core of the Earth**, whereas relatively light silicon (Si), aluminum (Al), magnesium (Mg), calcium (Ca), sodium (Na) and potassium (K) floated to the top to form **Earth's crust**, leaving the Fe-Mg-Ni-Cr-Si **mantle** in between core and crust. While this is a broad generalization, the result is a differentiated Earth (Table 1.1), one where average continental crust (~ between 25–60 km thick) has a felsic composition much like that of granite, whereas oceanic crust (~ between 5 and 10 km thick) is compositionally mafic (or basic) and comprised mainly of basalt, rock that is less silica-rich and relatively enriched in Fe, Mg and Ca relative to continental crust. The mantle is comprised of rock types like

peridotite and dunite and has an ultramafic (or ultrabasic) composition.

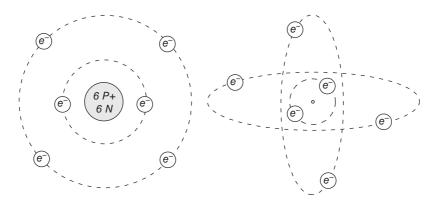
One example of how compositional differentiation of the Earth is important in an environmental sense is related to soils formed by weathering of rocks derived from the mantle – these ultramafic soils tend to be depleted in plant nutrients such as Ca and K, and enriched in the trace metals Ni and Cr (and in some places, arsenic). Finally, the primordial atmosphere of Earth was comprised of CO_2 , $\mathrm{H}_2\mathrm{O}$ and N gases derived from volcanic eruptions. Oxygen in its form as O_2 gas is a relatively

Table 1.1 Chemical differentiation of Earth with major elements and selected trace elements. Major elements (SiO_2 through P_2O_5) are presented in units of wt% oxides and the trace elements are presented in concentrations of parts per million (ppm, or mg/kg). Data sources are as follows: granite is the United States Geological Survey granite standard "G-2"; basalt and ultramafic data are averages from Turekian and Wedepohl (1961) and Vinogradov (1962); sandstone and carbonate rock data are unpublished analyses of early Paleozoic sedimentary rocks from northwestern Vermont performed by the author; and shale is the North American Shale Composite (Gromet et al., 1984). Trace element values with asterisks are averages from Turekian and Wedepohl (1961) and Vinogradov (1962). Additional resource include the text *The Continental Crust: Its Composition and Evolution* by Taylor and McLennan (1985) and the chapter by Rudnick and Gao (2003) in *Treatise on Geochemistry*.

	Granite	Basalt	Ultramafic	Sandstone	Shale	Carbonate
SiO ₂	69.4	49.3	42.1	71.3	64.8	8.34
TiO ₂	0.48	1.86	0.05	0.70	0.80	0.12
Al_2O_3	15.4	15.3	2.25	10.6	17.0	1.52
Fe ₂ O ₃ *	2.66	12.0	13.7	5.03	5.70	1.07
MnO	0.03	0.22	0.20	0.10	0.25	0.07
MgO	0.75	7.39	38.2	2.52	2.83	21.2
CaO	1.96	9.9	2.22	3.03	3.51	66.7
Na_2O	4.08	2.47	0.66	1.56	1.13	0.21
K_2O	4.48	0.98	0.02	4.61	3.97	0.55
P_2O_5	0.14	0.25	0.04	0.16	0.15	0.07
SUM	99.4	99.7	99.4	99.7	100.1	99.8
As	0.25	2.2	0.8	1.0	28	1.6
Ва	1880	315	0.7	595	636	99
Cr	10*	185	1800	20	125	10
Co	4.6	47	175	2.3	20*	3.6
Cu	11	94	15	2.5	45*	1.3
Ni	10*	150	2000	10.1	58	3.3
Pb	30	7	0.5	8.3	20*	2.8
Th	13*	3.5	0.005	4.4	12.3	0.54
U	3*	0.75	0.002	1.3	2.7	1.6
Zn	86	120	40	50	95*	13

recent addition to Earth's atmosphere, having begun to accumulate slowly and in a step-wise manner in the atmosphere after the appearance of photosynthetic algae 3 billion years ago.

1.3 ATOMS AND ISOTOPES: A BRIEF REVIEW


A schematic sketch of a carbon atom, consisting of a central positively charged nucleus surrounded by a negatively charged "cloud" of electrons, is presented in Fig. 1.2. All atoms consist of a nucleus that contains positively charged **protons** and neutral **neutrons**, subatomic particles with a mass of 1 atomic mass unit (1 amu, or 1 Dalton [Da]).

The actual mass of a proton is 1.6726×10^{-24} g, so it is more convenient to say that the mass of a proton is one amu or Da. The +1 charge on a proton = 1.602×10^{-19} coulomb. The number of protons in the nucleus is what distinguishes atoms of one element from another – hydrogen has 1 proton, helium has 2, carbon has 6, uranium has 92 protons, and so on. If there is a nucleus with some other number of protons than

92, it is not uranium. The number of protons is commonly referred to as the **atomic number** (Z).

The mass of a neutron is effectively the same as the mass of a proton (1 amu; 1.6749×10^{-24} g), and sum of protons and neutrons is the atomic mass or mass number or atomic weight all are essentially synonymous terms, (see back inside cover for atomic weights chart). Virtually all of the mass of an atom is contained in its nucleus. The carbon atom in Fig. 1.2 contains a nucleus with 6 protons and 6 neutrons, a configuration represented in this text and in many other places as ${}^{12}_{6}$ C. So, while the number of neutrons is not explicitly given in this notation, it is implied, and in the case of the most common form of uranium, ²³⁸₉₂U, there must be 146 neutrons in the nucleus along with 92 protons to produce the atomic mass of 238.

The carbon atom in Fig. 1.2 contains 6 protons and likely also contains 6 neutrons, but it could contain 7 or 8 neutrons. Differences in the number of neutrons (6, 7 or 8) give rise to the three **isotopes** of carbon. Carbon-12, or ¹²C, is the most abundant isotope of carbon and it contains 6 neutrons; ¹³C contains 7 neutrons and it is much rarer than ¹²C (Chapter 10). ¹²C and ¹³C are both stable

Fig. 1.2 Schematic sketches of Bohr models of a carbon atom (12 C) showing, on the left, 6 protons and 6 neutrons in the nucleus with 6 electrons in 2 separate orbitals, and on the right, an atom that attempts to show the actual size of the nucleus compared to the electron cloud, yet even here the nucleus is ~ 100 times larger than an actual nucleus. The example on the right also introduces the idea of separate orbitals in the outer electron "shell".

isotopes of carbon and the ratios of these two isotopes in plants, rocks, waters and sediments have proven very useful in environmental analysis. Carbon also has a **radioactive isotope**, ¹⁴C, atoms of which are produced in the atmosphere in the presence of cosmic rays and ultimately undergo radioactive decay to nitrogen. This topic and many others in the field of isotope geochemistry are covered in Chapters 10 and 11.

Balancing the positive charge of the protons are **electrons** located in specified positions, or energy levels, outside of the nucleus. The charge on an electron is exactly opposite that of a proton – it is -1, or -1.602×10^{-19} coulomb, and neutrally charged atoms contain equal numbers of protons and electrons. Furthermore, while the "electron cloud" surrounding the nucleus is of a virtually negligible mass, it occupies a volume that is orders of magnitude larger than the volume of the nucleus (atoms are mostly open space).

For the purpose of this text and virtually all environmental geochemistry, the main concern to investigators is the outermost shell of electrons (the **valence shell**), because that is the part of the atom most intimately involved in bonding and ionization. Neutral atoms with atomic number (Z) < 20 contain somewhere between 1 and 7 electrons in their valence (outermost) shell; the noble gases Ne and Ar contain 8 valence-shell electrons. The most stable valence shell electron configuration for elements with Z < 20 is one that consists of 8 electrons, so all atoms with Z < 20 seek to produce ions or form bonds that result in eight valence electrons. This is done either by losing, gaining or sharing electrons (Section 1.6). In elements with Z > 20, the presence of d and f orbitals makes the **octet** rule inapplicable; nonetheless, heavier elements (Fe⁺² and Fe⁺³; Ni⁺²; U⁺⁴ and U⁺⁶) lose electrons in predictable manners to form more-stable configurations, and the forms of these ions are commonly known and enable prediction of their behaviors.

One convenient way to depict valence electrons is with **Lewis electron dot diagrams** (Fig. 1.3).

Fig. 1.3 Lewis electron dot diagrams showing valence electrons of sodium and oxygen in their ground states (left) and in the compound Na_2O (right), where each sodium has lost an electron to oxygen, resulting in two Na^+ and one O^{-2} .

Sodium, with one valence electron, and oxygen, with six, can be depicted as such:

Sodium satisfies the octet rule by losing an electron, becoming Na^{+1} . The neutral oxygen atom with six valence electrons can most easily satisfy the octet rule by gaining two electrons, producing O^{-2} , the most common form of oxygen in nature.

The **Aufbau principle** describes how electron orbitals are populated in a systematic manner. In brief, electrons occupy orbitals of fixed energy levels and tend to occupy the lowest energy levels possible to create a stable atom. Orbitals are filled in a relatively predictable, sequential manner, starting with the lowest quantum number (n = 1), for which there is only one orbital (the s-orbital) which can be occupied by two electrons (of opposite spin).

For a neutral hydrogen atom with only one electron the symbol is $1s^1$. For neutral He with 2 electrons, the notation is $1s^2$. Ouantum number 2 (n = 2) contains both s- and p- orbitals, where the s-orbital again can be occupied by one electron pair and the p-orbital can host up to 3 electron pairs. For neutral lithium with 3 electrons, the notation is $1s^2 2s^1$. For neutral oxygen, the notation is $1s^2$ $2s^2 2p^4$. (to satisfy the octet rule, oxygen gains two electrons, producing O^{-2} with an electron configuration like that of neon: $1s^2 2s^2 2p^6$). The third quantum level (n = 3) contains s-, p- and d-orbitals, where the s- and p-orbitals can contain 1 and 3 electron pairs, respectively, and the d-orbital can host 5 electron pairs $(10e^{-s})$. However, the 3d orbital exists at a higher energy level than the 4 s orbital, so the 4s orbital is filled before the 3d.

8

The sequence in which these orbitals are filled is as follows:

$$1s \rightarrow 2s \rightarrow 2p \rightarrow 3s \rightarrow 3p \rightarrow 4s \rightarrow 3d \rightarrow 4p \rightarrow 5s$$

$$\rightarrow 4d \rightarrow 5p \rightarrow 6s \rightarrow 4f \rightarrow 5d \rightarrow 6p \rightarrow 7s \rightarrow 6d$$

Two examples of larger atoms are calcium and iron. The notation for calcium is:

 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$. Note that the second and third quantum levels contain eight electrons, but that the fourth contains only two. What must calcium do to satisfy the octet rule when forming an ion? It loses two electrons, taking on an electron configuration like that of argon $(1s^2 2s^2 2p^6 3s^2 3p^6)$ and becoming Ca^{+2} . The notation for iron is:

 $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$ (26 electrons balance the 26 protons to produce a neutral Fe atoms). At this point the octet rule cannot be used to predict common oxidation states – iron tends to occur as Fe⁺² or Fe⁺³ depending on redox conditions (more to come on redox later in this chapter).

1.4 MEASURING CONCENTRATIONS

Concentrations of elements or compounds are measured in a few common ways. Only in rare cases do scientists directly measure individual atoms/compounds, for even microscopic crystals of minerals at the micrometer scale such as hydroxides and silicate clays typically contain millions or billions of atoms.

1.4.1 Mass-based concentrations

One common means of measuring concentrations is by units such as milligrams per kilogram (mg/kg) for solids and milligrams per liter (mg/L) for liquids, or sometimes in units of micrograms (μ g/kg or μ g/L) or nanograms (ng/kg or ng/L) for trace elements. Note that mg/L = μ g/mL. Weight percent is a common mass-based

approach for expressing element concentration in cases where elements are in high concentrations (e.g. Table 1.1), a good example being Si, which comprises approximately 28% by weight (or mass) of the continental crust (or, as wt% oxide, approximately 59% of the crust – this conversion is presented below).

A few other useful facts to know about units of concentrations are:

For solids:

mg/kg is also known as parts per million (ppm), where mg is a milligram $(10^{-3}g)$

 $\mu g/kg$ is also known as parts per billion (ppb), where μg is a microgram $(10^{-6}g)$

ng/kg is also known as parts per trillion (ppt), where ng is a nanogram $(10^{-9}g)$

For liquids:

mg/L is also known as parts per million (ppm) μ g/L is also known as parts per billion (ppb) ng/L is also known as parts per trillion (ppt)

Weight percent oxide is a common means of expressing major (abundant) elements in soils and rocks. Note in Table 1.1 that Si, Al, Fe and the other major elements are presented in units of SiO_2 , Al_2O_3 , Fe_2O_3 and so on. This is done partly by convention (or habit) and also because the major elements tend to occur in silicate minerals bonded to oxygen. The conversion factors for wt% element to wt% oxide for the common oxides are presented here in Table 1.2.

In the case of converting Ca to CaO, the conversion is determined as the molar mass of CaO divided by the molar mass of Ca, i.e. $56.08 \div 40.08 = 1.399$.

In the case of Al_2O_3 , the conversion factor is determined as the molar mass of Al_2O_3 divided by the mass of the equivalent amount of Al in the oxide, i.e. $Al_2O_3 \div (2*Al) = 101.957 \div (2*26.98) = 1.889$. For Na to Na₂O, the conversion is the molar mass of Na₂O divided by the molar mass of $2*Na = 61.98 \div (2*22.99) = 1.348$.

For elements that can occur in more than one oxidation state (e.g. Fe⁺², Fe⁺³), values may be

C.F.	Oxide
1.889	Al_2O_3
1.399	CaO
1.286	FeO
1.430	Fe ₂ O ₃
1.205	K_2O
1.658	MgO
1.291	MnO
1.348	Na ₂ O
2.291	$P_{2}O_{5}$
2.139	SiO_2
1.668	TiO ₂
	1.889 1.399 1.286 1.430 1.205 1.658 1.291 1.348 2.291 2.139

Table 1.2 Conversion factors for wt% element to wt% oxide.

presented as either one of the oxidation states (i.e. either as FeO or Fe_2O_3), or as a combination of the two if the relative abundances of Fe^{+2} and Fe^{+3} are known. In many cases where iron oxidation state is not known, all iron is presented in terms of Fe_2O_3 .

However, mass-based measurements like $\mu g/L$ or wt% are not always the best way to express concentrations. Consider for example groundwater with 98.7 $\mu g/L$ nickel (59 Ni) and 98.7 $\mu g/L$ of uranium (238 U); i.e. both elements are present in equal concentrations of 98.7 ppb (evaporating the liter of water would leave 98.7 μ g each of Ni and U). However, given that U atoms (238 g/mol) are \sim 4 times heavier than Ni (59 g/mol), there must be more Ni atoms – in fact, there are approximately four times as many Ni atoms as there are U atoms.

1.4.2 Molar concentrations

Quantifying concentrations on a molar basis has its roots in the work of Italian scientist Amadeo Avogrado, who in 1811 realized that equal volumes of gases at identical pressures and temperatures contain equal numbers of atoms (or molecules in the case of gases like N_2 and O_2),

even though their atomic masses differed. The term **mole** (abbreviated mol) describes the number of atoms of a given element required to form a mass equal to the atomic mass of the substance, in grams. For C, this mass is 12.011 grams. For U, this mass is 238.03 g, and so on. For all elements, the number of atoms required to form the atomic mass in grams is 6.0221×10^{23} atoms, a value known as **Avogadro's number**. 238.03 g of uranium (1 mol of U) contains 6.0221×10^{23} atoms; 4.002 g of helium (1 mol of He) contains 6.0221×10^{23} atoms.

The mole is a very useful concept in chemistry — most equations are expressed in terms of moles of reactants and products. In order to express Ni and U concentrations in terms of moles per liter (mol/L), or for trace elements like these, μ mol/L, the mass concentration must be multiplied by the inverse of the molar mass (and a conversion for g to μ g) as follows:

For Ni: $98.7 \mu g/L * 1 \text{ mol}/58.693 \text{ g} * 1 \text{ g}/10^6 \mu g$ = $1.68 \times 10^{-6} \text{mol}/L$

For U: $98.7\mu g/L * 1 \text{ mol}/238.03 \text{ g} * 1 \text{ g}/10^6 \mu g$ = $0.415 \times 10^{-6} \text{mol}/L$

It is often helpful to express units in easy to communicate terms, so in this case mol/L would probably be converted to micromoles per liter (µmol/L), by multiplying mol/L by $10^6\,\mu\text{mol/mol}$: $1.68\times10^{-6}\text{mol/L}*10^6\mu\text{mol/mol}=1.68\mu\text{mol/L}$

of U in the groundwater $0.415\times 10^{-6} mol/L*10^{6} \mu mol/mol = 0.415 \mu mol/L$

 0.415×10^{-6} mol/L * 10^{6} µmol/mol = 0.415 µmol/L of Ni in the groundwater

In a solid (e.g. sediment or rock) with 1 mol/kg each of Fe (55.85 g/mol) and Al (26.98 g/mol): (1) there is an equal number of atoms of Fe and Al in the soil; and (2) Fe comprises a greater mass of the soil than Al (whether expressed as wt%, g/kg or mg/kg). Given that mass units are a common way of expressing concentration, it may be necessary to convert from molar units to mass units. A few algebraic calculations allow conversion from mol/kg to 3 common units, g/kg, mg/kg and wt%.

Given that 1 mol of Fe = 55.85 g: 55.85 g/mol * 1 mol/kg = 55.85 g/kg Fe ... or 55.85 g/kg * 1000 mg/g = 55850 mg/kg Fe ... or 55.85 g/kg * 0.1 = 5.855% Fe (by weight) 1 mol of Al = 27 g; 27 g/mol * 1 mol/kg =

1 moi oi Al = 27 g; 27 g/moi * 1 moi/kg = 27 g/kg Al

... or 26.98 g/kg * 1000 mg/g = 26980 mg/kg Al ... or 26.98 g/kg * 0.1 = 2.698% Al (by weight)

1.4.3 Concentrations of gases

Atmospheric gas concentrations are typically expressed as the proportion of the total volume accounted for by a given gas. For example, the current atmospheric concentration of CO₂ is \sim 400 ppmv, indicating that 400 out of every one million molecules of gas in Earth's atmosphere is CO_2 . At the onset of the industrial revolution atmospheric CO₂ was 280 ppmv. Less-abundant gases are often expressed in terms of ppbv or pptv (parts per billion or trillion, volumetrically), and the major components of the atmosphere like the fixed gases N_2 , O_2 and Ar, are expressed in terms of percent (by vol): $N_2 = 78.1\%$, $O_2 = 20.9\%$ and Ar = 0.9%(the amounts vary depending on the amount of H₂O vapor in the air, which can range from 0 to 4% by volume). Expressed in this way, CO₂ comprises approximately 0.0400% percent of the atmosphere (vol%), but clearly units of ppmv are more useful for a gas like CO₂. Gases also dissolve in liquids, and units of concentration in these cases are commonly mg/L or mmol/L.

1.4.4 Notes on precision and accuracy, significant figures and scientific notation

A few important topics related to data analysis and presentation of results are encompassed by the concepts of precision and accuracy. Simply stated, **accuracy** describes how closely a measured value agrees with the actual value. The accuracy of chemical analyses can be tested by analyzing standards of known concentration. Consider a certified standard solution that contains 250 mg/L of aluminum (Al), and five analyses of this standard on your spectrometer produces results of 237, 271, 244, 262, and 240 mg/L. The mean of those five values is 251 mg/L – the average value is very close to the certified value of 250 mg/L. One way to express the accuracy of this test is as a percent difference from the certified value:

 $[(251 \text{ mg/L} - 250 \text{ mg/L}) \div 250 \text{ mg/L}] * 100 = 0.4\%$

However, the five results are somewhat lacking in **precision**, which is basically a measure of the reproducibility of results – how closely do measured results agree with each other? It is conceivable to produce results with a high degree of precision that are lacking in accuracy. For example, after recalibrating the spectrometer and re-analyzing the Al standard, values now are 277, 281, 274, 278 and 275 mg/L. The mean value of 277 mg/L is farther from the certified value of 250 mg/L (the difference from the certified value is 10.8%), but the results are definitely more precise.

One way to calculate uncertainty is to determine the standard deviation of the data. The formula for standard deviation and details on its appropriate use can be found in a statistics textbook, but using Microsoft Excel's standard deviation formula produces σ values as follows: For the values 237, 271, 244, 262 and 240 mg/L, $\sigma = 14.9$

For the values 277, 281, 274, 278 and 275 mg/L, $\sigma = 2.74$

Which are better, analyses with greater accuracy but less precision (251 + 14.9 mg/L), or greater precision but less accuracy (277 + 2.74 mg/L)? Precise values are easier to correct because there is less uncertainty than if you have to deal with

accurate values plagued by low precision. This emphasizes one of the reasons why it is important to run standards when making analytical measurements. Of course, the ideal situation is to use a well-calibrated instrument for which accuracy and precision are both high, but regardless, it is imperative that researchers seek to quantify both parameters when making measurements.

In addition to quantifying uncertainty, it is very important to present numerical results in a manner that relates to the sensitivity of the measurement, or the degree of confidence associated with that measurement, while also trying to avoid propagation of error. Every measurement has some limited number of **significant digits** (or **significant figures**). Measurements of pH made using litmus paper can only be reported to 1 significant figure (e.g. pH = 6), whereas measurements made with well-calibrated probes may be reported to 3 significant figures (e.g. pH = 5.87).

As a rule, calculations should be carried out using all figures with each of their representative significant figures, and then the final result should be rounded at the end of the calculation. Using an example where the average concentration of uranium in groundwater in an aquifer is $14.3~\mu g/L$, the aquifer volume is $1.241\times10^8~m^3$ and average porosity (and thus % water in the saturated zone) is 18%, the resulting mass of U in the aquifer is:

$$14.3 \mu g/L * 1.241 \times 10^8 \text{m}^3 * 1000 \text{L/m}^3 * 0.018$$

= $3.2 \times 10^{11} \mu g \text{U}$

The final result is limited by the two significant figures in 18% (note that conversions involving liters to cubic meters, cm³ to mL, etc. do not limit sig figs).

Also important to understand is the significance of zeros. Consider the following values: 7200, 700043, 0.0436, 0.043600. How many significant figures are reported for each, and why?

- 7200 is assumed to have 2 significant figures because any zero at the end of a number *and before a decimal point* is assumed to not be significant. How many significant figures does 847 000 possess? Three. 7200.0 contains 5 significant figures.
- 700 043 has 6 sig figs. Any zeros within a number are significant.
- 0.0436 has 3 sig figs because any zeros after a decimal point and before the first non-zero digit are not significant.
- 0.043600 has 5 significant figures because zeros that follow a non-zero digit after a decimal point are considered significant (as in 7200.0 example above).

Some of these examples serve to illustrate why scientists tend to express values in terms of **scientific notation**. Using scientific notation, the values above become:

 7.2×10^3 (2 sig figs)

 7.2000×10^3 (if we needed to report 7200 to 5 sig figs, this is how it would look)

 7.00043×10^5 (6 sig figs)

 4.36×10^{-2} (3 sig figs)

 4.3600×10^{-2} (5 sig figs)

As a closing thought, one has to wonder about the precision of the road sign in southwestern Ecuador shown in Fig. 1.4. Being literal about significant figures, the distance to Engunga is precisely indicated as being between 14995 and 15005 m. (note: it is a very small town, so the precision may be justified).

1.5 PERIODIC TABLE

The Periodic Table of the Elements (front inside book cover) is one of the most useful tools to researchers and students of chemistry, geochemistry and biochemistry. First fully developed by the Russian chemist Dmitri Mendeleev in 1869 and refined ever since, it lists elements in order of atomic mass (from left to right in each row, and also from top to bottom in each column) and

Fig. 1.4 Road sign in southwestern Ecuador.

by similarities in chemical properties. Row 3 of the periodic table begins with sodium (atomic number Z=11) and progresses to the right with increasing Z all the way up to Ar (Z=18).

The atomic mass for each element represents a weighted average of the mass of the isotopes of that element, normalized to 12 C – observe that the atomic mass of sulfur (S, with Z=16) is 32.065, reflecting weighted average of 32 S and heavier isotopes. The S atomic mass of 32.065 is derived from the abundances of the four stable S isotopes as is demonstrated in the following mass-balance calculation (data from Faure, 1986):

$$^{32}S = 95.02\%$$
 $^{33}S = 0.75\%$ $^{34}S = 4.21\%$ $^{36}S = 0.02\%$ $^{32}S: 0.9502 * 31.97 = 30.377894$ $^{33}S: 0.0075 * 32.97 = 0.247275$ $^{34}S: 0.0421 * 33.97 = 1.430137$ $^{36}S: 0.0002 * 35.97 = 0.007194$ Sum = 32.062500

Atomic masses are sometimes regarded as dimensionless numbers, but are also expressed in terms of amu (Daltons) and also in terms of gram molecular weights (i.e. the gram molecular weight, or mass of one gram of sulfur, is 32.065 g). All atomic masses are normalized to the mass of 12 C, and this is why the mass of 32 S is expressed as 31.97 g/mol.

Columns (or groups) of elements generally contain elements with similar valence electron

configurations, that is, the outermost shell of electrons tends to behave in a similar manner for elements of a given row. Good examples are column 1, the alkali metals, all of which lose one electron when they form chemical bonds, resulting in a series of +1 charged ions including Na^+ and K^+ ; column 2, the alkaline-earth metals that form divalent cations (e.g. Ca^{+2}); and column 8, the noble gases, including elements like argon and neon with complete valence shells (as a result, they do not form chemical bonds in nature). Elements in column 7, the halogens, tend to gain one electron when forming chemical bonds, resulting in halide anions with a-1 charge (e.g. Cl^-).

It may not come as a surprise that alkali metals tend to form bonds with halides, such as:

$$Na^+ + Cl^- \rightarrow NaCl$$
 (1.9)

The point to understand here is that the periodic table presents information in a systematic way that can help to predict the behavior of elements in environmental systems. Like $\mathrm{Na}^+, \mathrm{K}^+$ also can form bonds with chloride (Cl^-) to form a different salt, KCl (a substitute for NaCl in reduced-sodium diets). In fact, K^+ and Na^+ substitute for one another in many minerals. The periodic table also implies that arsenic (As) might substitute for phosphorous (P) in mineral structures, which it does.

In 2003, the environmental geochemist Bruce Railsback from the University of Georgia

developed an innovative new periodic table for geologists known as *An Earth Scientist's Periodic Table of the Elements and Their Ions*, one where elements are organized according to their occurrences in geological environments (http://www.gly.uga.edu/railsback/PT.html). This new formulation is designed to predict how elements and ions behave in the environment. Unlike the conventional periodic table originally envisioned by Mendeleev, the Earth scientist's periodic table organizes elements by charge, so it shows many elements multiple times because many elements have numerous valence states. It also contains abundant information on abundance of different

elements in soils, seawater, mantle vs. crust, ionic radii in crystals, and much more. For example, Fig. 1.5 shows the relative solubilities of oxides of various ions, and from this inset it is apparent that Al and Ti form insoluble oxides (corundum, Al_2O_3 ; rutile, TiO_2) but that Na, K, N and S do not (they are more likely to occur as soluble ions such as Na⁺, K⁺, NO $_3$ and SO_4^{-2}).

The Earth scientist's periodic table also shows the numerous species of nitrogen that exist in natural systems (e.g. valence states and common molecules of N), predicted behaviors, attributes and affinities of the abundant and trace cations in natural systems, and more (Railsback, 2003).

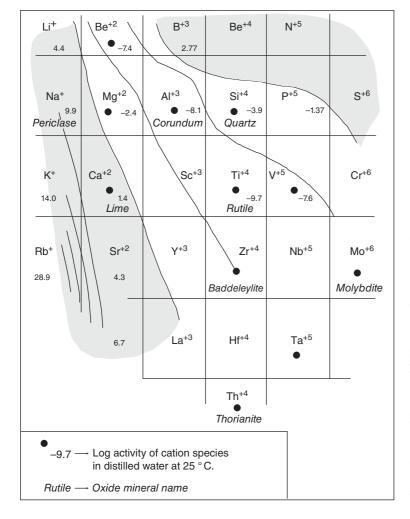


Fig. 1.5 Solubilities of ions as a function of ionic charge, from Inset 4 of An Earth Scientist's Periodic Table of the Elements and Their Ions (Railsback, 2003). Oxides of the elements are used as reference (e.g. lime, periclase, etc.). Note that low-charge base cations/alkali metals and cations of the alkaline Earth metals are relatively soluble. as are high-charge cations such as S⁺⁶ and N⁺⁵, which form polytatomic anions (SO_4^{-2}, NO_3^-) . Cations with +3 and +4 charges (e.g. Al⁺³, Ti⁺⁴, Zr⁺⁴) are insoluble in most surficial environments, with activities in H₂O at 25 °C of $\sim 10^{-8}$ to 10^{-10} . (Railsback 2003.)

1.6 IONS, MOLECULES, VALENCE, BONDING, CHEMICAL REACTIONS

It is relatively rare to find elements in their native, neutral state in nature. A few examples include the diatomic gases hydrogen (H_2) , oxygen (O_2) and nitrogen (N₂), solids like gold (Au) and graphite and diamond (both forms of C), and the noble gases (He, Ne, Ar, etc.). Most elements occur as ions, molecules or compounds in liquids (petroleum, alcohols, H₂O and the dissolved species it contains), solids (minerals, proteins, humus), and gases (CO2, CH4, NO2). Ions are charged atoms, atoms that have either gained or lost one or more electrons from their neutral state. Examples of ions include the cation Na⁺¹ and the anion S^{-2} . Most of the elements form cations, because metals generally lose electrons to form cations, and most of the elements are metals. A few common metal cations are Mg⁺², Al⁺³, $Cr^{+3,+6}$, $Fe^{+2,+3}$ – note that some elements have more than one oxidation state. Generally only those elements in the upper right of the periodic table form anions (e.g. O^{-2} , N^{-3} , F^{-1} , etc). **Oxida**tion state is a term for the charge on an ion: "the oxidation state of iron in swamps is generally +2 (divalent), whereas in streams iron tends to occur in the +3 (trivalent) oxidation state".

Molecules are formed when two or more atoms are joined by a chemical bond, and **compounds** are a specific type of molecule formed when two or more atoms of *different* elements are joined by chemical bonds. The gases H_2 , O_2 and N_2 are comprised of molecules but they are not compounds (they are diatomic gases). Examples of compounds include NaCl, H_2O and C_8H_{18} (octane). Most substances in nature, other than some gases and a few metals, are compounds.

There are two main types of **chemical bonds** responsible for forming molecules and compounds, ionic bonds and covalent bonds. These two bond types represent polar ends of the bonding spectrum, but it is useful to consider each type separately, and then examine intermediate cases.

We will also examine metallic bonds and Van de Waals bonds, but first will begin with ionic bonds.

Ionic bonding occurs between atoms of elements with very different valence electron configurations. Coulomb forces describe interactions between charged atoms or molecules (i.e. ions), and when the charges are opposite (i.e. involving cations and anions), the result is attraction (conversely, the Coulombic interaction between like-charged particles, e.g. 2 cations, causes repulsion).

The classic example of Coulombic attraction is the bond between an alkali metal cation (e.g. Na^+) and a halogen anion (e.g. Cl^-). The cation and anion are electrostatically attracted to each other and the result is formation of an ionic bond producing a solid, in this case cubic vitreous crystals of halite (NaCl).

Loss of an electron by sodium and its incorporation into the valence shell of chlorine can be viewed in the sense of a Lewis electron-dot diagram (Fig. 1.6):

The way this type of bond commonly forms in the natural world is when sodium and chloride ions are dissolved in water and ultimately become attracted to each other when their concentrations become sufficiently high to allow formation of solid crystals. (More details about the controls on aqueous processes are covered in detail in Chapters 4, 5, and 9).

1.6.1 Ionic bond strength

The strength of an ionic bond is largely controlled by the charges on the ions and by the ionic radii of the ions involved in the bonding – this is a concept that should be intuitively apparent because ions with higher (opposite) charges will be attracted

Fig. 1.6 Schematic representation of formation of an ionic bond by transfer of the Na valence electron to Cl.