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Preface

The physical theory of diffraction (PTD) is a high-frequency asymptotic technique for
the investigation of antennas and scattering problems. PTD was announced publically
under this name for the first time in a report and a book by Ufimtsev, 1962a,b.
An anniversary article (Ufimtsev, 2013a) contains comments on its origination and
development. This monograph presents a complete and comprehensive description
of modern PTD based on the concept of elementary edge waves. Its basic subject is
the diffraction of acoustic and electromagnetic waves by perfectly reflecting objects.
Here are new features of the revised version:

e New Sections 1.3.6 and 1.4.2 establish that the shadow radiation equals zero
in the directions of the reflected rays, and the reflected field equals zero in the
shadow direction.

e New Sections 1.3.7 and 1.4.3 extend the theory of shadow radiation and reflec-
tion to opaque objects.

e New Section 1.5 provides physical interpretations of the shadow radiation via
Fresnel diffraction and forward scattering.

e New Section 2.7 develops the “magic zero” procedure to derive fast convergent
integrals and uniform asymptotics, which are convenient for numerical and
analytic analysis of the canonical wedge diffraction problem.

e Chapter 3 simplifies the physical optics (PO) approximation, introducing new
functions Uiog(kr, W).

e New Section 3.3 derives the fast convergent integrals and uniform asymptotics
for the PO diffracted field.

xiii
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® New Section 4.3.2 extends the topic of polarization coupling, which is critical
in PTD. It also clarifies the nature of this phenomenon.

® New Section 7.8.2 describes the diffracted field inside a perfectly reflecting
wedge and explains its origination as a consequence of the equivalence theorem.

® New Section 7.8.3 presents numerical data for diffraction coefficients of elec-
tromagnetic elementary fringe waves.

® New Section 8.3 clarifies the relationships between PTD and GTD.

® New Section 10.4 studies diffraction at a strip to test the asymptotic theory of
the secondary diffraction derived in Chapter 10.

® New Section 14.1.5 studies the PO shooting-through rays and their cancellation
by fringe rays. It highlights the fundamental role of the nonuniform/fringe
components introduced in PTD.

® An essential supplement to the main text is provided by the end-of-chapter
problems followed by their solutions. They will be helpful in the study and
application of PTD.

* MATLAB codes presented in the appendices allow for quick numerical calcu-
lations of fringe waves and axial backscattering at bodies of revolution.

® Compared to the first edition, more attention is given to the theory of electro-
magnetic waves.

® Additional smaller insertions and corrections are incorporated throughout the
book.

The theory developed in the book may find various applications. Among them are
problems associated with the design of microwave antennas, estimation of scattering
cross-sections, identification of scattering objects, and propagation of waves in an
urban environment. The most significant example of practical applications of PTD
represents the design of the American F-117 stealth fighter and B-2 stealth bomber.
In combination with numerical methods, PTD can be used for the development of
efficient hybrid techniques for the investigation of complex diffraction problems.

The book is intended for researchers working on antennas and scattering problems
in industry and university laboratories. It can also be useful for teaching a variety
of university courses, including topics on high-frequency asymptotic techniques in
diffraction theory. University instructors and graduate students will benefit from this
book as well.

I am very grateful to Dr. Feray Hacivelioglu and Prof. Levent Sevgi, who produced
MATLAB codes for numerical calculation of diffracted waves. Many thanks are also
due to the reviewers for their valuable comments.

PYoTR YA. UFIMTSEV

Los Angeles, California
August 2013



Foreword to the
First Edition

Ideas have consequences. Great ideas have far-reaching consequences.

The physical theory of diffraction (PTD) that Professor Ufimtsev introduced in the
1950s—a methodology for approximate evaluation at a high enough frequency of the
scattering from a body, especially a body of complicated shape—has proven to be a
truly great idea.

The first form of PTD developed by Professor Ufimtsev, the vector form applicable
to electromagnetic scattering from three-dimensional bodies, has played a key role
in the development of modern low-radar-reflectivity weapons systems, such as the
Lockheed F-117 stealth fighter and the Northrop B-2 stealth bomber, functioning
both as a design tool and as a conceptual framework. These systems in turn have
revolutionized the conduct of large-scale government-versus-government warfare
and thus have helped to shape history.

Ben Rich, who oversaw the F-117 project as head of Lockheed’s fabled Skunk
Works, refers to Professor Ufimtsev’s work as “the Rosetta Stone breakthrough for
stealth technology.” At Northrop, where I worked on the B-2 project, we were so
enthusiastic about PTD that a co-worker and I sometimes broke into choruses of
“Go, Ufimtsev” to the tune of “On, Wisconsin.” At both Lockheed and Northrop we
referred to PTD as “industrial-strength” diffraction theory, to distinguish it from the
approach to diffraction then being favored in the universities, which was not well
enough developed to handle the problems of stealth design.

Like many good theories, PTD is much easier to apply than to explain. But let us
now nevertheless examine the inner workings of PTD and seek to understand why it is

Xy



xvi FOREWORD TO THE FIRST EDITION

such a useful approach. First of all, PTD is based on two important principles, which
it will be convenient to refer to here as the physical principle and the geometrical
principle.

The physical principle shows how the scattered field at a point outside a scattering
body can be determined from an integral of appropriate field quantities over the
surface of the body. In acoustics these quantities are the pressure at a hard surface,
the normal velocity at a soft surface, both at an impedance boundary or the surface
of a penetrable body. In electromagnetics they are the tangential magnetic field at
the surface of a perfect conductor, the tangential magnetic and electric fields at an
impedance boundary or the surface of a penetrable body.

The geometrical principle states that at high enough frequency, when the wave-
length is small enough compared to the critical dimensions of the scattering body,
the surface integrals can be evaluated asymptotically to yield a description of the
total field outside the body in terms of geometrical rays, including diffracted rays.
The change in field amplitude along a ray can be calculated geometrically by tracing
the divergence and convergence of ray bundles except in the regions surrounding (a)
a geometrical shadow boundary, for which ray tracing predicts a field discontinuity
across the boundary, and (b) a caustic, that is, a locus where adjacent geometrical
rays meet or cross (such as, in the simplest case, a focal point), at which ray tracing
predicts an infinite field. The correct value for the field in these regions, which shrink
as frequency increases, can be found by using uniform asymptotic techniques to
evaluate the surface integrals.

One of the important features of PTD is this ability to calculate the field accurately
in shadow boundary and caustic regions. It is especially important in low observables
design because we are often interested in far-field scattering of a plane wave from
a body with straight or slightly curved edges, a configuration for which parts of the
far-field region lie in caustic regions.

The other major advantages of PTD arise from the way the surface fields are
handled. There is a uniform part that is defined everywhere on the surface and a
nonuniform part that serves as a correction term.

For electromagnetics the uniform part is usually, though not always, given by the
physical optics (PO) approximation: namely, that the surface fields at a point are
the same as if the point lay on an infinite plane surface tangent to the actual body
at the point and with the same boundary conditions as at the point. For acoustics
the uniform part is usually given by the analogous approximation. Because this
acoustics approximation does not have a firmly established name and because other
investigators have set the precedent, Professor Ufimtsev uses the terminology PO
in both electromagnetics and acoustics throughout this book. Much of Chapter 1 is
devoted to PO and its implications.

The nonuniform fields for a nonpenetrable body—for example, a hard body in
acoustics or a perfect conductor in electromagnetics—tend to be strongest near a
diffracting feature such as an edge where two faces of a faceted surface meet, and these
fields often diminish rapidly with distance from the feature. It should be emphasized
here that this desirable behavior is a consequence of the judicious choice of the
uniform part.
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The nonuniform surface fields are determined using the results of simpler scatter-
ing problems, often called canonical problems. Consider again, for example, an edge
on a faceted surface. Let the body be a perfect conductor and the edge be straight with
the wedge angle formed by the two faces constant along its length, let the illuminating
field be a plane wave, and let us choose the PO fields as the uniform part. Then the
canonical problem is diffraction of an appropriately oriented plane wave from an
infinitely long wedge with perfectly conducting flat faces (even if the faces on the
body of interest are not flat). This problem reduces to two scalar two-dimensional
problems, one for an incident electric field normal to the edge, the other for an inci-
dent magnetic field normal to the edge, and exact solutions exist for these problems.
The vector surface fields can be constructed from the two scalar solutions, and the
nonuniform surface fields associated with the edge are then found by subtracting the
physical optics fields of the canonical problem from the full solution.

There now arises the problem of reconciling the uniform part and the nonuniform
part, which is defined on a surface that may not exactly match the body surface.
Professor Ufimtsev addresses this in Chapter 7, where he reduces the nonuniform
part to a continuous array of elementary edge waves concentrated along the edge.
These elementary edge waves are sources of diffracted rays and have a directivity
pattern that is related to the canonical problem. In the parlance of engineering they
would be called diffraction coefficients.

The nonuniform contribution to the field diffracted from the edge is now given by
an integral of the elementary edge waves over the length of the edge. But when we
evaluate asymptotically the integral for the physical optics diffraction from a face, we
see that it reduces to an integral along the illuminated part of the face perimeter plus
possibly other localized terms (such as a specular reflection contribution). Thus, there
are edge diffraction contributions from the uniform part of the surface field on both
faces that meet at the edge (if both are illuminated) as well as from the nonuniform
part, and these three terms give the total edge diffraction. Furthermore, it turns out
that each element of the edge produces diffraction in essentially all directions.

We can now, from this investigation of how the surface fields are modeled, extract
these additional important features of PTD:

1. PTD can find accurately the reflection and diffraction from a body of compli-
cated shape without having to match the entire body to canonical problems,
just the regions that give rise to diffraction.

2. PTD minimizes the difficulty of reconciling the geometries of the body and of
the canonical problem.

3. PTD yields diffracted rays in all directions from each element of a linear
diffracting feature rather than just in directions on the well-known diffraction
cone.

The third point is extremely important in low-observables work, where the off-cone
rays can sometimes yield the strongest fields in a region.
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This book presents a thorough development of the fundamentals of PTD for
both scalar and vector cases as applied to acoustics and electromagnetics, including
important aspects of the theory only recently developed by Professor Ufimtsev. For
acoustics it is, of course, the scalar theory that is of interest. For electromagnetics
both scalar and vector theory should be of interest. Canonical problems are often
two-dimensional, and two-dimensional problems can be reduced to scalar form.

Emphasis in the book is on nonpenetrable bodies with “classical” boundary con-
ditions at the surface: the Dirichlet and Neumann problems of applied mathematics,
the corresponding soft and hard boundary problems of acoustics, and the perfect
conductor problem of electromagnetics.

PTD is, however, in principle readily extended to cases of a body with an
impedance boundary condition at its surface and of a penetrable but opaque body,
and has in fact been used extensively for such bodies, although much of the work
is classified, proprietary, or otherwise restricted. The extension to translucent and
transparent bodies is more challenging, not because of any shortcoming of PTD but
because it can be necessary to deal with such complicated phenomena as diffracted
waves that travel through the body and are then refracted out of the body.

Much has been said and written about the relative merits of the two major modern
approaches to diffraction theory: PTD on one hand, and on the other, Professor
Joseph Keller’s geometrical theory of diffraction (GTD) and its modified versions,
the uniform theory of diffraction (UTD) developed at the Ohio State University and
the similar uniform asymptotic theory of diffraction (UAT).

Both approaches are valid, each yields a ray description of the field (PTD as an
end result, GTD as a starting point), each has its advantages, and the two have now
been cross-fertilizing each other for half a century. The work of the next generation,
I fervently hope, will be to mold these approaches and other contributions together
into a single modern theory of diffraction from bodies.

By his detailed exposition of the fundamentals of PTD in this volume, Professor
Ufimtsev has not only produced a work of great contemporary value but also a
compendium that can be extremely useful in this reconciliation process.

KENNETH M. MITZNER

November 2006



Preface to the
First Edition

The physical theory of diffraction (PTD) is a high-frequency asymptotic technique
for the investigation of antennas and scattering problems. This monograph presents
the first complete and comprehensive description of the modern PTD based on the
concept of elementary edge waves (EEWs). Its subject is the diffraction of acoustic
and electromagnetic waves by perfectly reflecting objects located in a homogeneous
lossless medium.

The basic idea of PTD is that the diffracted field is considered as the radiation gen-
erated by scattering sources (currents) induced on objects. Uniform and nonuniform
scattering sources are introduced in PTD. Uniform sources are defined as sources
induced on an infinite plane tangent to the object at a source point. Nonuniform
sources are caused by any deviation of the scattering surface from the tangent plane.
For large convex objects with sharp edges, the basic contributions to the scattered field
are produced by uniform sources and by those nonuniform sources that concentrate
near edges (often called fringe sources).

The integration of uniform sources leads to the physical optics (PO) approximation
for the scattered field. The PTD is the natural extension of the PO approximation by
taking into account the additional field created by the nonuniform/fringe sources.

The book provides high-frequency asymptotics for the scattering sources and
for the scattered field in the far zone. Scattering characteristics are calculated for a
variety of objects, such as strips, polygonal cylinders, cones, bodies of revolution
with nonzero Gaussian curvature (including paraboloids and spherical segments),
and finite circular cylinders with flat bases.

The title of the book underlines the fact that a great deal of attention is to be given
to scattering physics. The analytic expressions derived clearly explain the physical
structure of a scattered field and describe, in detail, all of the reflected and diffracted

Xix
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rays and beams, as well as the fields in the vicinity of caustics and foci. Also, a new
fundamental component of the field, shadow radiation, is introduced. It is shown that
this component contains half of the total scattered power. The physical manifestations
of shadow radiation are the well-known phenomena of Fresnel diffraction and forward
scattering.

Plotted numerical results supplement the theory and provide visualizations of
the individual contributions of different parts of the scattering objects to the total
diffracted field. Detailed comments explain all critical steps in the analytic and
numerical calculations to facilitate their examination and utilization by readers. All
chapters are followed by problems for independent investigation, which will be
helpful in studying PTD, especially for students.

This book is intended for researchers working on antennas and scattering problems
in industrial and university laboratories. It can also be useful for teaching a variety
of university courses that include topics on high-frequency asymptotic techniques in
diffraction theory. University instructors and graduate students will benefit from this
book as well.

P. YA. UFIMTSEV

Los Angeles, California
June 2006
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Introduction

The physical theory of diffraction (PTD) is an asymptotic high-frequency technique
originated in earlier work by this author (Ufimtsev, 1957, 1958a,b,c, 1961). The results
of initial journal publications on PTD were summarized in a monograph (Ufimtsev,
1962b), which became a bibliographical rarity a long time ago. To acquaint a new
generation of readers with the original form of PTD, some sections of this mono-
graph were updated and included in two books (Ufimtsev, 2003, 2009). Comments
on origination and development of PTD were presented recently in an anniversary
article (Ufimtsev, 2013a). The selected topics of the modern form of PTD were pub-
lished in concise form in articles by Butorin and Ufimtsev (1986), Butorin et al.
(1987), Ufimtsev (1989, 1991), Ufimtsev and Rahmat-Samii (1995), Ufimtsev (1998,
2006a,b, 2008a,b), and Hacivelioglu et al. (2011).

This book presents the first complete and comprehensive description of modern
PTD based on the concept of elementary edge waves (EEW). The theory is developed
for acoustic and electromagnetic waves scattered by perfectly reflecting objects.

For acoustic waves, soft (Dirichlet) or hard (Neumann) boundary conditions are
imposed on scattering objects located in a homogeneous nonviscous medium. The
absence of viscosity is justified for a fluid (such as air and water) in the linear
approximation (Kinsler et al., 1982; Pierce, 1994).

In diffraction problems for electromagnetic waves, the scattering objects are con-
sidered as perfectly conducting bodies located in vacuum. The assumption of infinite
conductivity is acceptable for metallic objects detected by radar. The boundary condi-
tion related to electromagnetic waves states that on the surface of perfectly conducting
bodies, the tangential component of the electric vector is equal to zero (Balanis, 1989,
2012).

The diffraction theory of acoustic waves is scalar, and it is simpler than the vector
theory of electromagnetic waves. Because of this, we investigate first an acoustic
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diffraction problem in detail and then present its electromagnetic version, referring
to similar elements in acoustic theory. This facilitates the study of electromagnetic
problems. Note also that from a mathematical point of view, all two-dimensional
diffraction problems have identical solutions for acoustic and electromagnetic waves.
These problems are considered in the book for acoustic waves. The relationships
between acoustic and electromagnetic diffracted waves are emphasized throughout
the book. They are also formulated in the boxes located at the beginning of most
chapters and sections.

PTD has found various applications. Some related references are collected at the
end of the book in the section “Additional References Related to the PTD Concept:
Applications, Modifications, and Developments.” In particular, PTD was used suc-
cessfully in the design of the American F-117 stealth fighter and B-2 stealth bomber
(Browne,1991a,b; Rich, 1994; Rich and Janos, 1994; Grant, 2013; see also Mitzner’s
foreword for three Ufimtsev books (2003, 2007, 2009). The present book contains
only original results obtained by the author (some of them in collaboration with
colleagues).

The distinctive feature of PTD is that it belongs to the class of source-based
theories. The scattered/diffracted field is considered as radiation by surface sources
which are induced (due to diffraction) on the scattering objects by incident waves.
In the case of electromagnetic waves and metallic scattering objects, these sources
are surface electric charges and currents. In the case of acoustic waves, these sources
are the surface distributions of the “acoustic pressure” on rigid objects, or the surface
distributions of the “fluid velocity” on soft (pressure-release) objects. Compared to
ray-based techniques, the advantage of this approach is that it allows calculation of
the scattered field everywhere, including diffraction regions, such as foci and caustics,
where the diffracted field does not have a ray structure.

The central and original idea of PTD is the separation of surface sources into
uniform and nonuniform components. This separation is a flexible procedure, based
on an appropriate choice of canonical diffraction problems (Ufimtsev, 1998). In the
present book (except Section 7.9), the uniform component is defined as the scattering
sources induced on the infinite plane tangent to the object at a source point. In the case
of incident waves with a ray structure, this component is determined according to the
geometrical optics (GO) (geometrical acoustics, GA) for electromagnetic (acoustic)
waves. The field found by integration of the uniform component is considered a high-
frequency approximation for the scattered field. In acoustic diffraction problems, this
approximation is interpreted as the Kirchhoff approximation (KA). In electromagnetic
diffraction problems, it is known as the physical optics (PO) approach. In the present
book we use the term physical optics for both electromagnetic and acoustic waves,
just as in the work by Bowman et al. (1987, p. 29).

The PTD is the natural extension of PO and takes into account the additional
field generated by the nonuniform component, which has a diffraction nature and
is caused by any deviation of the scattering surface from an infinite tangent plane.
Another definition of the uniform and nonuniform scattering sources is introduced in
Section 7.9. Here, the uniform component is defined as the field induced on the half-
plane tangential to the illuminated face of the scattering edge (and to the edge itself).
The nonuniform component is the difference between the exact field on the tangential
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wedge and this new uniform component. This type of separation of the surface field
allows formulation of the advanced version of PTD, which is free of the grazing
singularity (Section 7.9).

The localization principle related to the behavior of a high-frequency diffracted
fields is used to determine the asymptotic approximations for the nonuniform com-
ponent. In particular, according to this principle, the nonuniform sources induced
in the vicinity of sharp curved edges are asymptotically identical to the nonuniform
sources induced on a tangential wedge near the tangency point. Because these sources
concentrate in the vicinity of the scattering edge, they are often called fringe sources,
and the diffracted fields generated by these sources are termed fringe waves. The
fundamental role of the fringe waves is emphasized and demonstrated throughout the
book

Thus, the wedge diffraction is the basic canonical problem for the investigation of
edge waves, and it is studied in detail in this book. Exact and asymptotic expressions
for two-dimensional edge waves are derived in Chapters 2, 3, and 4. These results
are then used in Chapter 5 to construct simple asymptotic expressions for the field
diffracted at strips and polygonal cylinders.

Notice that two-dimensional diffraction problems for acoustically soft (hard) scat-
tering objects are equivalent to electromagnetic problems where the electric vector E
(magnetic vector H)is parallel to the generatrix of perfectly conducting objects. Due
to this equivalence, some results obtained by Ufimtsev (1962b) for two-dimensional
electromagnetic problems are transferable for acoustic problems, with proper redefi-
nitions of physical quantities. For the same reason, the asymptotics derived in Chapter
5 for acoustic waves are also valid for electromagnetic waves diffracted at perfectly
conducting strips and trilateral cylinders.

A new physical interpretation of classical physical optics is introduced in Chapter
1. The scattered PO field is separated into the reflected field and shadow radiation. The
first part contains ordinary reflected rays and beams and dominates in the geometrical
optics region. The shadow radiation is equivalent to the field scattered at a blackbody
(of the same shape and size as the actual scattering object) and dominates in the
vicinity of the shadow region (Figs. 1.4 and 14.6). Manifestations of the shadow
radiation are the well-known phenomena Fresnel diffraction and forward scattering.

The shadow contour theorem established in Section 1.3.5 states that different
objects with identical shadow boundaries on their surfaces generate identical shadow
radiation. This theorem significantly facilitates the approximate estimation of
scattering at complex objects (Alekseev et al., 2007). It is also shown here that the
shadow radiation contains half of the total power scattered by perfectly reflecting
objects. Thus, the new formulation of the PO field elucidates the scattering physics
and explains the nature of the fundamental diffraction law according to which
the total scattering cross-section of large (compared to the wavelength) perfectly
reflecting objects equals double the transverse area of geometrical optics shadow
zone behind the object.

A significant part of this book is devoted to the theory of elementary edge waves
and to its applications. An elementary edge wave is a wave radiated by surface sources
induced in the vicinity of an infinitesimal element of the edge. The high-frequency
asymptotic expressions found for elementary edge waves allows one to investigate
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diffraction at arbitrary curved edges with large radii of curvature (compared to the
wavelength).

Elementary edge waves can also be interpreted as elementary edge-diffracted rays.
The PO field as well can also be understood as the linear superposition of the other
type of elementary rays. Because of this, PTD can be considered as a ray theory on
the level of elementary rays. Even in diffraction regions such as geometrical optics
boundaries, foci, and caustics, the wave field can be represented in terms of elementary
rays. Ordinary reflected and diffracted rays are found in PTD by the asymptotic
evaluation of field integrals and can be interpreted as the beams of elementary rays
generated in the vicinity of stationary points. Such a possible interpretation of PTD
goes back to the intuitive Huygens’ principle, which was rigorously formulated by
Helmholtz in terms of elementary spherical waves/rays (Baker and Copson, 1939).

The general theory of elementary waves is utilized in the book to solve a variety
of diffraction problems. Backscattering and bistatic scattering at bodies of revolution
are considered in Chapter 6. Ray and caustic asymptotics are derived in Chapter 8.
Slope and multiple diffraction at large objects are investigated in Chapters 9 and 10.
The results of these chapters are utilized in Chapters 11 and 12 to analyze the focusing
of multiple edge waves on the symmetry axis of bodies of revolution. An example
of the disk diffraction problem (whose exact asymptotic solution is known) estab-
lishes that PTD provides correct expressions for the first term in the total asymptotic
expansion for each multiple edge-diffracted wave. This result is a matter of principle
because it provides validation of PTD. Also notice other examples of theoretical and
experimental validation of PTD in diffraction problems for electromagnetic waves
(Nefedov and Fialkovsii, 1972; Ufimtsev, 1962b, 2003, 2009).

Chapters 13 and 14 derive the PTD asymptotics for the field scattered at a finite
cylinder under oblique incidence of a plane wave. Together with the numerical results
illustrated in the figures, they explain the physical structure of the scattered field. New
features of the theory are emphasized here. They concern the necessity to calculate
high-order terms in the PO field as well as radiation by nonuniform component of
the scattering sources caused by smooth bending of a cylindrical surface.

The theory developed in the book can find various applications. Among them are
the problems associated with the design of microwave antennas, the estimation of
scattering cross-sections, the identification of scattering objects, and the propagation
of waves in an urban environment. In combination with numerical methods, it can
be used for the development of efficient hybrid techniques for the investigation of
complex diffraction problems. The book can also be useful for teaching a variety
of university courses, including topics on high-frequency asymptotic techniques in
diffraction theory. The problems (together with their solutions) following each chapter
will be helpful in studying PTD, especially for students. MATLAB codes presented
in the appendices allow for quick numerical calculations of fringe waves and axial
backscattering at bodies of revolution.

The International System of Units (SI) and the time dependence of exp (—iwt) for
wave fields and sources are used in this book. Readers who prefer the dependence
exp(jwt) can easily transform the book equations to this time format by simple

replacement of the positive imaginary unit i = 4/—1 by the negative unit —j = —v/—1.



Basic Notions in Acoustic
and Electromagnetic
Diffraction Problems

1.1 FORMULATION OF THE DIFFRACTION PROBLEM

In this book the physical theory of diffraction (PTD) is developed for both acoustic
and electromagnetic waves diffracted at perfectly reflecting objects.

In two-dimensional problems, this theory is valid for both electromagnetic and
acoustic waves.

First we present the theoretical fundamentals for acoustic waves and then for elec-
tromagnetic waves. In the linear approximation, the velocity potential # of harmonic
acoustic waves satisfies the Helmholtz wave equation (Kinsler et al., 1982; Pierce,
1994):

Viu+ku=1 (1.1)

Here k = 2z /2 = w/cis the wave number, A the wavelength,  the angular frequency,
c the speed of sound, and I the source strength characteristic. The time dependence is
assumed to be in the form exp(—iwt) and is suppressed below. The acoustic pressure
p and the velocity v of fluid particles, caused by sound waves, are determined through
the velocity potential (Kinsler et al., 1982; Pierce, 1994),

ou

3 = ia)p u, U= Vu, (1~2)

p=-r
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2 BASIC NOTIONS IN ACOUSTIC AND ELECTROMAGNETIC DIFFRACTION PROBLEMS

where p is the mass density of a fluid. The power flux density of sound waves, which
is the analog of the Poynting vector for electromagnetic waves, equals

P=pi=pvu (1.3)
Its value averaged over the period of oscillations 7 = 27z /w equals

P, = sRe(p*D). (1.4)
Two types of boundary conditions are imposed on the surface of perfectly reflecting
objects: the Dirichlet condition,

u=0 or p=0 (soft), (1.5)

for objects with a soft (pressure-release) surface, and the Neumann condition,

ou _ A-V'u=0 (hard), (1.6)

on
for objects with a hard (rigid) surface. Here u is the total field that is the sum of
incident and scattered waves. The symbol 7 stands for a unit outward vector, which
is normal to the scattering surface S (Fig. 1.1). The gradient operator V' is applied to
coordinates of the integration/source point Q.

To complete formulation of the diffraction problem and to ensure the uniqueness

of its solution, the wave equation and boundary conditions above are supplemented
by the Sommerfeld radiation condition for the scattered field:

1imr(3—u—iku)=0 with 7 — oo, (1.7)
r

where r is the distance from the scattering object to the observation point.

Figure 1.1 Scattering surface S. Here r is the distance between the observation point P (which can be
in the far zone) and the integration point Q (on the surface of the scatterer). The unit vector /7 is directed
from point Q to point P.



