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Preface 

The explosion in the development of methods for analyzing categorical data that began in 
the 1960s has continued apace in recent years. This book provides an overview of these 
methods, as well as older, now standard, methods. It gives special emphasis to generalized 
linear modeling techniques, which extend linear model methods for continuous variables, 
and their extensions for multivariate responses. 

OUTLINE OF TOPICS 

Chapters 1 -10 present the core methods for categorical response variables. Chapters 1 - 3 
cover distributions for categorical responses and traditional methods for two-way contin-
gency tables. Chapters 4-8 introduce logistic regression and related models such as the 
probit model for binary and multicategory response variables. Chapters 9 and 10 cover 
loglinear models for contingency tables. 

In the past quarter century, a major area of new research has been the development of 
methods for repeated measurement and other forms of clustered categorical data. Chapters 
11-14 present these methods, including marginal models and generalized linear mixed 
models with random effects. Chapter 15 introduces non-model-based methods for classi-
fication and clustering. Chapter 16 presents theoretical foundations as well as alternatives 
to the maximum likelihood paradigm that this text adopts. Chapter 17 is devoted to a 
historical overview of the development of the methods. It examines contributions of noted 
statisticians, such as Pearson and Fisher, whose pioneering efforts—and sometimes vocal 
debates—broke the ground for this evolution. 

Appendices illustrate the use of statistical software for analyzing categorical data. The 
website for the text, w w w . s t a t . u f l . e d u / ~ a a / c d a / c d a . h t m l , contains an appendix 
with detailed examples of the use of software (especially R, SAS, and Stata) for performing 
the analyses in this book, solutions to many of the exercises, extra exercises, and corrections. 

CHANGES IN THIS EDITION 

Given the explosion of research in the past 50 years on categorical data methods, it is an 
increasing challenge to write a comprehensive book covering all the commonly used meth-
ods. The second edition of this book already exceeded 700 pages. In including much new 

xiii 
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material without letting the book grow much, I have necessarily had to make compromises 
in depth and use relatively simple examples. I try to present a broad overview, while pre-
senting bibliographic notes with many references in which the reader can find more details. 
In attempting to make the book relatively comprehensive while presenting substantive new 
material, every chapter of the first two editions has been extensively rewritten. The major 
changes are: 

• A new Chapter 7 presents alternative methods for binary response data, including 
some regularization methods that are becoming popular in this age of massive data 
sets with enormous numbers of variables. 

• A new Chapter 15 introduces non-model-based methods of classification, such as 
linear discriminant analysis and classification trees, and cluster analysis. 

• Many chapters now include a section describing the Bayesian approach for the meth-

ods of that chapter. We also have added material (e.g., Sections 6.5 and 7.4) about ways 

that frequentist methods can deal with awkward situations such as infinite maximum 

likelihood estimates. 

• The use of various software for categorical data methods is discussed at a much ex-
panded website for the text, www. s t a t .u f 1 . e d u / ~ a a / c d a / c d a . h t m l . Examples 
are shown of the use of R, SAS, and Stata for most of the examples in the text, and 
there is discussion also about SPSS, StatXact, and other software. That website also 
contains many of the text's data sets, some of which have only excerpts shown in the 
text itself, as well as solutions for many exercises and corrections of errors found in 
early printings of the book. I recommend that you refer to this appendix (or special-
ized software manuals) while reading the text, perhaps printing the pages about the 
software you prefer, as an aid to implementing the methods. This material was placed 
at the website partly because the text is already so long without it and also because it 
is then easier to keep the presentation up-to-date. 

In this text, I interpret categorical data analysis to refer to methods for categorical 

response variables. For most methods, explanatory variables can be categorical or quan-

titative, as in ordinary regression. Thus, the focus is intended to be more general than 

contingency table analysis, although for simplicity of data presentation, most examples use 

contingency tables. These examples are simplistic, but should help you focus on under-

standing the methods themselves and make it easier for you to replicate results with your 

favorite software. 

Other special features of the text include: 

• More than 100 analyses of data sets. 

• About 600 exercises, some directed toward theory and methods and some toward 

applications and data analysis. 

• Notes at the end of each chapter that provide references for recent research and many 

topics not covered in the text, linked to a bibliography of more than 1200 sources. 

INTENDED AUDIENCE AND USE AS A TEXTBOOK 

I intend this book to be accessible to the diverse mix of students who take graduate-level 

courses in categorical data analysis. But I have also written it with practicing statisticians 
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and biostatisticians in mind. I hope it enables them to catch up with recent advances and 
learn about methods that sometimes receive inadequate attention in the traditional statistics 
curriculum. 

The development of new methods has influenced—and been influenced by—the in-
creasing availability of data sets with categorical responses in the social, behavioral, and 
biomedical sciences, as well as in public health, genetics, ecology, education, marketing and 
the financial industry, and industrial quality control. And so, although this book is directed 
mainly to statisticians and biostatisticians, I also aim for it to be helpful to methodologists 
in these fields. 

Readers should possess a background that includes regression and analysis of variance 
models, as well as maximum likelihood methods of statistical theory. Those not having 
much theory background should be able to follow most methodological discussions. Those 
with mainly applied interests can skip most of Chapter 4 on the theory of generalized linear 
models and proceed to other chapters. However, the book has a distinctly higher technical 
level and is more thorough and complete than my lower-level text, An Introduction to 
Categorical Data Analysis, Second Edition (Wiley, 2007). 

Today, because of the ubiquity of categorical data in applications, most statistics and 
biostatistics departments offer courses on categorical data analysis or on generalized linear 
models with strong emphasis on methods for discrete data. This book can be used as a text 
for such courses. The material in Chapters 1 - 6 forms the heart of most courses. There is 
too much material in this book for a single course, but a one-term course can be based on 
the following outline: 

• Basic contingency table analysis, covering Chapters 1 -3 , perhaps skipping some 

tangential sections such as 1.5.7, 1.6, 2.4, 3.4-3.7. 

• Logistic regression and related methods for binary data, covering Chapters 4 -6 , 

perhaps skipping some tangential sections such as 4.4-4.7 and 6.4-6.6. 

• Multinomial response models, covering at least Sections 8.1 and 8.2. 

• Matched pairs and clustered data, covering at least Sections 11.1-11.2. 

Courses with biostatistical orientation may want to include bits f rom Chapters 12 and 13 

on marginal and random effects models. Courses with social science emphasis may want 

to include some topics on loglinear modeling f rom Chapters 9 and 10. Some courses may 

want to select specialized topics from Chapter 7, such as probit modeling, conditional 

logistic regression, Bayesian binary data modeling, smoothing, and issues in the analysis 

of high-dimensional data. 
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CHAPTER 1 

Introduction: Distributions and 
Inference for Categorical Data 

From helping to assess the value of new medical treatments to evaluating the factors that 
affect our opinions and behaviors, analysts today are finding myriad uses for categorical 
data methods. In this book we introduce these methods and the theory behind them. 

Statistical methods for categorical responses were late in gaining the level of sophistica-
tion achieved early in the twentieth century by methods for continuous responses. Despite 
influential work around 1900 by the British statistician Karl Pearson, relatively little de-
velopment of models for categorical responses occurred until the 1960s. In this book we 
describe the early fundamental work that still has importance today but place primary 
emphasis on more recent modeling approaches. 

1.1 CATEGORICAL RESPONSE DATA 

A categorical variable has a measurement scale consisting of a set of categories. For 
instance, political philosophy is often measured as liberal, moderate, or conservative. Diag-
noses regarding breast cancer based on a mammogram use the categories normal, benign, 
probably benign, suspicious, and malignant. 

The development of methods for categorical variables was stimulated by the need to 
analyze data generated in research studies in both the social and biomedical sciences. 
Categorical scales are pervasive in the social sciences for measuring attitudes and opinions. 
Categorical scales in biomedical sciences measure outcomes such as whether a medical 
treatment is successful. 

Categorical data are by no means restricted to the social and biomedical sciences. They 
frequently occur in the behavioral sciences (e.g., type of mental illness, with the categories 
schizophrenia, depression, neurosis), epidemiology and public health (e.g., contraceptive 
method at last sexual intercourse, with the categories none, condom, pill, IUD, other), 
genetics (type of allele inherited by an offspring), botany and zoology (e.g., whether or 
not a particular organism is observed in a sampled quadrat), education (e.g., whether a stu-
dent response to an exam question is correct or incorrect), and marketing (e.g., consumer 

Categorical Data Analysis, Third Edition. Alan Agresti. 
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2 INTRODUCTION: DISTRIBUTIONS AND INFERENCE FOR CATEGORICAL DATA 

preference among the three leading brands of a product). They even occur in highly quan-

titative fields such as engineering sciences and industrial quality control. Examples are the 

classification of items according to whether they conform to certain standards, and subjec-

tive evaluation of some characteristic: how soft to the touch a certain fabric is, how good a 

particular food product tastes, or how easy a worker finds it to perform a certain task. 

Categorical variables are of many types. In this section we provide ways of classifying 

them. 

1.1.1 Response-Explanatory Variable Distinction 

Statistical analyses distinguish between response (or dependent) variables and explana-

tory (or independent) variables. This book focuses on methods for categorical response 

variables. As in ordinary regression modeling, explanatory variables can be any type. For 

instance, a study might analyze how opinion about whether same-sex marriages should be 

legal (yes or no) changes according to values of explanatory variables, such as religious 

affiliation, political ideology, number of years of education, annual income, age, gender, 

and race. 

1.1.2 Binary-Nominal-Ordinal Scale Distinction 

Many categorical variables have only two categories. Such variables, for which the two 
categories are often given the generic labels "success" and "failure," are called binary 
variables. A major topic of this book is the modeling of binary response variables. 

When a categorical variable has more than two categories, we distinguish between 
two types of categorical scales. Variables having categories without a natural ordering are 
said to be measured on a nominal scale and are called nominal variables. Examples are 
mode of transportation to get to work (automobile, bicycle, bus, subway, walk), favorite 
type of music (classical, country, folk, jazz, rock), and choice of residence (apartment, 
condominium, house, other). For nominal variables, the order of listing the categories is 
irrelevant to the statistical analysis. 

Many categorical variables do have ordered categories. Such variables are said to be 
measured on an ordinal scale and are called ordinal variables. Examples are social class 
(upper, middle, lower), political philosophy (very liberal, slightly liberal, moderate, slightly 
conservative, very conservative), patient condition (good, fair, serious, critical), and rating 
of a movie for Netflix (1 to 5 stars, representing hated it, didn't like it, liked it, really liked 
it, loved it). For ordinal variables, distances between categories are unknown. Although 
a person categorized as very liberal is more liberal than a person categorized as slightly 
liberal, no numerical value describes how much more liberal that person is. 

An interval variable is one that does have numerical distances between any two values. 
For example, systolic blood pressure level, length of prison term, and annual income are 
interval variables. For most such variables, it is also possible to compare two values by 
their ratio, in which case the variable is also called a ratio variable. 

The way that a variable is measured determines its classification. For example, "educa-
tion" is only nominal when measured as (public school, private school, home schooling); 
it is ordinal when measured by highest degree attained, using the categories (none, high 
school, bachelor's, master's, doctorate); it is interval when measured by number of years 
of education completed, using the integers 0, 1 ,2 , 3, 
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A variable's measurement scale determines which statistical methods are appropriate. 
It is usually best to apply methods appropriate for the actual scale. In the measurement 
hierarchy, interval variables are highest, ordinal variables are next, and nominal variables 
are lowest. Statistical methods for variables of one type can also be used with variables at 
higher levels but not at lower levels. For instance, statistical methods for nominal variables 
can be used with ordinal variables by ignoring the ordering of categories. Methods for 
ordinal variables cannot, however, be used with nominal variables, since their categories 
have no meaningful ordering. The distinction between ordered and unordered categories 
is not important for binary variables, because ordinal methods and nominal methods then 
typically reduce to equivalent methods. 

In this book, we present methods for the analysis of binary, nominal, and ordinal 
variables. The methods also apply to interval variables having a small number of distinct 
values (e.g., number of times married, number of distinct side effects experienced in taking 
some drug) or for which the values are grouped into ordered categories (e.g., education 
measured as < 1 2 years, > 1 2 but < 1 6 years, > 1 6 years). 

1.1.3 Discrete-Continuous Variable Distinction 

Variables are classified as discrete or continuous, according to whether the number of 
values they can take is countable. Actual measurement of all variables occurs in a discrete 
manner, due to precision limitations in measuring instruments. The discrete-continuous 
classification, in practice, distinguishes between variables that take few values and variables 
that take lots of values. For instance, statisticians often treat discrete interval variables having 
a large number of values (such as test scores) as continuous, using them in methods for 
continuous responses. 

This book deals with certain types of discretely measured responses: (1) binary vari-
ables, (2) nominal variables, (3) ordinal variables, (4) discrete interval variables hav-
ing relatively few values, and (5) continuous variables grouped into a small number of 
categories. 

1.1.4 Quantitative-Qualitative Variable Distinction 

Nominal variables are qualitative—distinct categories differ in quality, not in quantity. In-

terval variables are quantitative—distinct levels have differing amounts of the characteristic 

of interest. The position of ordinal variables in the qualitative-quantitative classification 

is fuzzy. Analysts often treat them as qualitative, using methods for nominal variables. 

But in many respects, ordinal variables more closely resemble interval variables than they 

resemble nominal variables. They possess important quantitative features: Each category 

has a greater or smaller magnitude of the characteristic than another category; and although 

not possible to measure, an underlying continuous variable is often present. The political 

ideology classification (very liberal, slightly liberal, moderate, slightly conservative, very 

conservative) crudely measures an inherently continuous characteristic. 

Analysts often utilize the quantitative nature of ordinal variables by assigning numerical 

scores to the categories or assuming an underlying continuous distribution. This requires 

good judgment and guidance from researchers who use the scale, but it provides benefits 

in the variety of methods available for data analysis. 
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1.1.5 Organization of Book and Online Computing Appendix 

The models for categorical response variables discussed in this book resemble regres-
sion models for continuous response variables; however, they assume binomial or multi-
nomial response distributions instead of normality. One type of model receives special 
attention—logistic regression. Ordinary logistic regression models apply with binary re-
sponses and assume a binomial distribution. Generalizations of logistic regression apply 
with multicategory responses and assume a multinomial distribution. 

The book has four main units. In the first, Chapters 1 through 3, we summarize descriptive 
and inferential methods for univariate and bivariate categorical data. These chapters cover 
discrete distributions, methods of inference, and measures of association for contingency 
tables. They summarize the non-model-based methods developed prior to about 1960. 

In the second and primary unit, Chapters 4 through 10, we introduce models for cate-
gorical responses. In Chapter 4 we describe a class of generalized linear models having 
models of this text as special cases. Chapters 5 and 6 cover the most important model for bi-
nary responses, logistic regression. Chapter 7 presents alternative methods for binary data, 
including the probit, Bayesian fitting, and smoothing methods. In Chapter 8 we present 
generalizations of the logistic regression model for nominal and ordinal multicategory 
response variables. In Chapters 9 and 10 we introduce the modeling of multivariate cate-
gorical response data, in terms of association and interaction patterns among the variables. 
The models, called loglinear models, apply to counts in the table that cross-classifies those 
responses. 

In the third unit, Chapters 11 through 14, we discuss models for handling repeated 
measurement and other forms of clustered data. In Chapter 11 we present models for 
a categorical response with matched pairs; these apply, for instance, with a categorical 
response measured for the same subjects at two times. Chapter 12 covers models for more 
general types of repeated categorical data, such as longitudinal data f rom several times 
with explanatory variables. In Chapter 13 we present a broad class of models, generalized 
linear mixed models, that use random effects to account for dependence with such data. In 
Chapter 14 further extensions of the models from Chapters 11 through 13 are described, 
unified by treating the response as having a mixture distribution of some type. 

The fourth and final unit has a different nature than the others. In Chapter 15 we consider 
non-model-based classification and clustering methods. In Chapter 16 we summarize large-
sample and small-sample theory for categorical data models. This theory is the basis for 
behavior of model parameter estimators and goodness-of-fit statistics. Chapter 17 presents 
a historical overview of the development of categorical data methods. 

Maximum likelihood methods receive primary attention throughout the book. Many 
chapters, however, contain a section presenting corresponding Bayesian methods. 

In Appendix A we review software that can perform the analyses in this book. The 
website w w w . s t a t . u f l . e d u / ~ a a / c d a / c d a . h t m l for this book contains an appendix 
that gives more information about using R, SAS, Stata, and other software, with sample 
programs for text examples. In addition, that site has complete data sets for many text 
examples and exercises, solutions to some exercises, extra exercises, corrections, and links 
to other useful sites. For instance, a manual prepared by Dr. Laura Thompson provides 
examples of how to use R and S-Plus for all examples in the second edition of this text, 
many of which (or very similar ones) are also in this edition. 

In the rest of this chapter, we provide background material. In Section 1.2 we review the 
key distributions for categorical data: the binomial and multinomial, as well as another that 
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is important for discrete data, the Poisson. In Section 1.3 we review the primary mechanisms 
for statistical inference using maximum likelihood. In Sections 1.4 and 1.5 we illustrate 
these by presenting significance tests and confidence intervals for binomial and multinomial 
parameters. In Section 1.6 we introduce Bayesian inference for these parameters. 

1.2 DISTRIBUTIONS FOR CATEGORICAL DATA 

Inferential data analyses require assumptions about the random mechanism that generated 

the data. For regression models with continuous responses, the normal distribution plays the 

central role. In this section we review the three key distributions for categorical responses: 

binomial, multinomial, and Poisson. 

1.2.1 Binomial Distribution 

Many applications refer to a fixed number n of binary observations. Let yi , y2,..., y„ 

denote observations f rom n independent and identical trials such that P(Yj — 1) = n and 
P(Yj: = 0) = 1 — n . We refer to outcome 1 as "success" and outcome 0 as "failure." 
Identical trials means that the probability of success it is the same for each trial. Independent 

trials means that the {F,} are independent random variables. These are often called Bernoulli 

trials. The total number of successes, Y = i ^ , has the binomial distribution with index 
n and parameter tc, denoted by bin(n, n). 

The probability mass function for the possible outcomes y for Y is 

where the binomial coefficient ( = n\/[y\{n - y)!]. Since E(Yj) = E ( Y f ) = 1XJT + 

0 x (1 —7t) = n , 

The skewness is described by E(Y - /h)3/CT3 = (1 - In j/^nnd - it). The distribution 
is symmetric when n — 0.50 but becomes increasingly skewed as n moves toward either 
boundary. The binomial distribution converges to normality as n increases, for fixed 7r, the 
approximation being reasonable1 when n[min(7r, 1 — 7r)| is as small as about 5. 

There is no guarantee that successive binary observations are independent or identical. 
Thus, occasionally, we will utilize other distributions. One such case is sampling binary 
outcomes without replacement f rom a finite population, such as observations on whether a 
homework assignment was completed for 10 students sampled f rom a class of size 20. The 

y = 0, 1 , 2 , . . . , « , (1.1) 

E(Yi) = 7T and var(F ;) = n(l - n). 

The binomial distribution for Y = Yi h a s mean and variance 

lx = E(Y) = nn and a2 = var(K) = nn{\ — it). 

'See w w w . s t a t . t a m u . e d u / ~ w e s t / a p p l e t s / b i n o m i a l d e m o 2 . h t m l . 
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hypergeometric distribution, studied in Section 3.5.1, is then relevant. In Section 1.2.4 we 

discuss another case that violates the binomial assumptions. 

1.2.2 Multinomial Distribution 

Some trials have more than two possible outcomes. Suppose that each of n independent, 
identical trials can have outcome in any of c categories. Let y,, = 1 if trial i has outcome 
in category j and y,> = 0 otherwise. Then y, = (>', i, y^, • • •, y,-r) represents a multinomial 
trial, with J ^ j >'/; = 1; for instance, (0, 0, 1 , 0 ) denotes outcome in category 3 of four 
possible categories. Note that y,c is redundant, being linearly dependent on the others. 
Let n j — yij denote the number of trials having outcome in category j. The counts 
(«i , «2. • • •, nc) have the multinomial distribution. 

Let 7ij = P(Yjj = 1) denote the probability of outcome in category j for each trial. The 
multinomial probability mass function is 

p{n\,n2, ..., nc-i) = (—-—^ ) 7t"'7r"2 • ••it"''. (1.2) 

Since n j = n< this is (c — l)-dimensional, with nL• = n — (n\ + • • • + «<•-1). The bino-

mial distribution is the special case with c = 2. 

For the multinomial distribution, 

E{nj) = njZj, v&r(nj) = n7Tj(\—7Tj), cov(n¡, n^) =—nji¡71^. (1-3) 

We derive the covariance in Section 16.1.4. The marginal distribution of each n , is binomial. 

1.2.3 Poisson Distribution 

Sometimes, count data do not result from a fixed number of trials. For instance, if Y = 
number of automobile accidents today on motorways in Italy, there is no fixed upper bound n 
for Y (as you are aware if you have driven in Italy!). Since Y must take a nonnegative integer 
value, its distribution should place its mass on that range. The simplest such distribution 
is the Poisson. Its probabilities depend on a single parameter, the mean p. The Poisson 
probability mass function (Poisson 1837, p. 206) is 

P(y) = —p-, y = 0 , 1 , 2 , . . . . (1.4) 

It satisfies E{Y) = var(K) = p. It is unimodal with mode equal to the integer part of p. 
Its skewness is described by E(Y — pf /cr* = 1 / ^ f p . The Poisson distribution approaches 
normality as p increases, the normal approximation being quite good when p is at least 
about 10. 

The Poisson distribution is used for counts of events that occur randomly over time or 
space, when outcomes in disjoint periods or regions are independent. It also applies as an 
approximation for the binomial when n is large and TT is small, with p = nn. For example, 
suppose Y = number of deaths today in auto accidents in Italy (rather than the number of 
accidents). Then, Y has an upper bound. If each of the 50 million people driving in Italy 
is an independent trial with probability 0.0000003 of dying today in an auto accident, the 
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number of deaths Y is a bin(50000000, 0.0000003) variate. This is approximately Poisson 
with p = nn = 50000000(0.0000003) = 1 5 . 

A key feature of the Poisson distribution is that its variance equals its mean. Sample 
counts vary more when their mean is higher. When the mean number of daily fatal accidents 
equals 15, greater variability occurs from day to day than when the mean equals 2. 

1.2.4 Overdispersion 

In practice, count observations often exhibit variability exceeding that predicted by the 
binomial or Poisson. This phenomenon is called overdispersion. We assumed above that 
each person has the same probability each day of dying in a fatal auto accident. More 
realistically, these probabilities vary from day to day according to the amount of road traffic 
and weather conditions and vary from person to person according to factors such as the 
amount of time spent in autos, whether the person wears a seat belt, how much of the 
driving is at high speeds, gender, and age. Such variation causes fatality counts to display 
more variation than predicted by the Poisson model. 

Suppose that Y is a random variable with variance var (K \p) for given p, but p itself 
varies because of unmeasured factors such as those just described. Let 0 = E(p.). Then 
unconditionally, 

E(Y) = E[E(Y\p)], var(K) = £ [va r (y |/i)] + va r [£ (F 

When Y is conditionally Poisson (given p), then E(Y) = E(p) = 0 and var(7) = E(p) + 
var(/i) = 0 + v a r ( p ) > 0. 

Assuming a Poisson distribution for a count variable is often too simplistic, because of 
factors that cause overdispersion. The negative binomial is a related distribution for count 
data that has a second parameter and permits the variance to exceed the mean. We introduce 
it in Section 4.3.4. 

Analyses assuming binomial (or multinomial) distributions are also sometimes invalid 
because of overdispersion. This might happen because the true distribution is a mixture 
of different binomial distributions, with the parameter varying because of unmeasured 
variables. To illustrate, suppose that an experiment exposes pregnant mice to a toxin and 
then after a week observes the number of fetuses in each mouse's litter that show signs of 
malformation. Let nt denote the number of fetuses in the litter for mouse i. The pregnant 
mice also vary according to other factors, such as their weight, overall health, and genetic 
makeup. Extra variation then occurs because of the variability from litter to litter in the 
probability TZ of malformation. The distribution of the number of fetuses per litter showing 
malformations might cluster near 0 and near «, , showing more dispersion than expected 
for binomial sampling with a single value of rt. Overdispersion could also occur when n 
varies among fetuses in a litter according to some distribution (Exercise 1.17). In Chapters 
4, 13, and 14 we introduce methods for data that are overdispersed relative to binomial and 
Poisson assumptions. 

1.2.5 Connection Between Poisson and Multinomial Distributions 

For adult residents of Britain who visit France this year, let Y\ = number who fly there, 

Y2 = number who travel there by train without a car (Eurostar), = number who travel 

there by ferry without a car, and Y4 = number who take a car (by Eurotunnel Shuttle or 
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a ferry). A Poisson model for ( Y\, Y2, V3. Y4) treats these as independent Poisson random 

variables, with parameters (p\, p2, p?,, PA)- The joint probability mass function for {Y, | is 

the product of the four mass functions of form ( 1.4). The total n = J ] , Yj also has a Poisson 

distribution, with parameter p,. 

With Poisson sampling the total count n is random rather than fixed. If we assume a 

Poisson model but condition on n, \YI j no longer have Poisson distributions, since each 

Yj cannot exceed n. Given n, \ Yt} are also no longer independent, since the value of one 

affects the possible range for the others. 

For c independent Poisson variates, with E(Y,) = p,, the conditional probability of a 

set of counts {«, } satisfying Yi = n is 

P[(Y, = «,, Y2 = n2,..., Yc = nc)\ £ Yj = n\ 

j 

= P(Y\ =m ,Y2=n2,...,Yc = nc) 

P ( E j Y j = n ) 

n,-[exp(-M,-K7"/!] n] FT n, n M 

exp n , - , ! 1 , 1 " ' ' 

where {7r, = /.¿/Y( J ^ j M, j )• This is the multinomial (n. (TT, }) distribution, characterized by 

the sample size n and the probabilities ¡7T,}. 

Many categorical data analyses assume a multinomial distribution. Such analyses usually 

have the same inferential results as those of analyses assuming a Poisson distribution, 

because of the similarity in the likelihood functions. 

1.2.6 The Chi-Squared Distribution 

Another distribution of fundamental importance for categorical data is the chi-squared, 

not as a distribution for the data but rather as a sampling distribution for many statistics. 

Because of its importance, we summarize here a few of its properties. 

The chi-squared distribution with degrees of f reedom denoted by df has mean df, vari-

ance 2(df), and skewness /d f . It converges (slowly) to normality as df increases, the 

approximation being reasonably good when df is at least about 50. 

Let Z denote a standard normal random variable (mean 0, variance 1). Then Z 2 has a 

chi-squared distribution with df = 1. A chi-squared random variable with df = v has rep-

resentation Zf + • • • + Z"l, where Z\,..., Z„ are independent standard normal variables. 

Thus, a chi-squared statistic having df = v has partitionings into independent chi-squared 

components—for example, into v components each having df = 1. Conversely, the repro-

ductive property states that if X\ and X\ are independent chi-squared random variables 

having degrees of f reedom v\ and v2, then X2 = X\ + X\ has a chi-squared distribution 

with df = V] + v2. 

1.3 STATISTICAL I N F E R E N C E FOR CATEGORICAL DATA 

In practice, the probability distribution assumed for the response variable has unknown 

parameter values. In this section we review methods of using sample data to make 
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inferences about the parameters. Sections 1.4 and 1.5 illustrate these methods for bino-

mial and multinomial parameters. 

1.3.1 Likelihood Functions and Maximum Likelihood Estimation 

In this book we use maximum likelihood for parameter estimation. Maximum likelihood 
estimators have desirable properties: They have large-sample normal distributions; they 
are asymptotically consistent, converging to the parameter as n increases; and they are 
asymptotically efficient, producing large-sample standard errors no greater than those from 
other estimation methods. These results hold under weak regularity conditions, mainly that 
the number of parameters remains constant as n increases and that the true values of those 
parameters fall in the interior (rather than on the boundary) of the parameter space. 

Given the data, for a chosen probability distribution the likelihood function is the prob-
ability of those data, treated as a function of the unknown parameter. The maximum 
likelihood (ML) estimate is the parameter value that maximizes this function. This is the 
parameter value under which the data observed have the highest probability of occurrence. 
We denote a parameter for a generic problem by ft and its ML estimate by We de-
note the likelihood function by i{fi). The f> value that maximizes l{fi) also maximizes 
L(/?) = log[£(/$)]. It is simpler to maximize L(fi) since it is a sum rather than a product of 
terms. For many models, L(fi) has concave shape and $ is the point at which the derivative 
equals 0. The ML estimate is then the solution of the likelihood equation, dL(/3)/d/3 = 0. 
Often, ¡5 is multidimensional, denoted by /?, and /? is the solution of a set of likelihood 
equations. 

Let cov(/}) denote the asymptotic covariance matrix of /J. Under regularity conditions 
(Rao 1973, p. 364), cov(/?) is the inverse of the information matrix. The (j, k) element of 
the information matrix is 

The standard errors are the square roots of the diagonal elements for the inverse of the 

information matrix. The greater the curvature of the log likelihood function, the smaller 

the standard errors. This is reasonable, since large curvature implies that the log likelihood 

1.3.2 Likelihood Function and ML Estimate for Binomial Parameter 

The part of a likelihood function involving the parameters is called the kernel. Since the 
maximization of the likelihood is done with respect to the parameters, the rest is irrelevant. 

To illustrate, consider the binomial distribution (1.1). The binomial coefficient 
n\/[y\(n — y)!] has no influence on where the maximum occurs with respect to n. Thus, 
we ignore it and treat the kernel as the likelihood function. The binomial log likelihood 
function is then 

(1.6) 

drops quickly as fi moves away from /?; hence, the data would have been much more likely 

to occur if /? took a value near ft rather than a value far from /J. 

L(7T) = log[;r-v(l - n ) " - ? ] = ylog( ; r ) + ( « - y ) l o g ( l - jr). (1.7) 
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Differentiating with respect to it yields 

dL(it)/dit = y/ir - (n - y ) / ( l - IT) = {y - nit)/it (I - it). (1.8) 

Equating this to 0 gives the likelihood equation, which has solution ft = y/n, the sample 
proportion of successes for the n trials. 

Calculating 3 2 L ( i t ) / d i t 2 , taking the expectation, and combining terms, we get 

- E[d2L(it)/dit2] = E[y/it2 + (n - y)/( 1 - jr)2] = n/[it(l - it)]. (1.9) 

Thus, the asymptotic variance of A is 7r(l — it)/n. This is no surprise. Since E(Y) = nit 

and var(y) = nit(\ — IT), the distribution of ft = Y/n has mean and standard deviation 

t-w \ . . . M l " * ) 
E(IT) = IT, CT{TT) •• 

1.3.3 Wald-Likelihood Ratio-Score Test Triad 

There are three standard ways to use the likelihood function to perform large-sample 
inference. We introduce these for a significance test of a null hypothesis H t i: P = Po and 
then discuss their relation to interval estimation. They all exploit the large-sample normality 
of ML estimators. 

Standard errors obtained from the inverse of the information matrix depend on the 
unknown parameter values. When we substitute the unrestricted ML estimates (i.e., not 
assuming the null hypothesis) we obtain an estimated standard error of P, which we denote 
by SE. Denote -E\'d2L(P)/<)p2\ (i.e., the information) evaluated at p by i(P). The first 
large-sample inference method has test statistic using this estimated standard error, 

z = OS - A ) ) / S E , where SE = 1 / J t 0 ) . 

This statistic has an approximate standard normal distribution when p — A - We refer z 
to the standard normal table to obtain one- or two-sided f -va lues . Equivalently, for the 
two-sided alternative, z2 has an approximate chi-squared null distribution with df = 1; 
the P-value is then the right-tailed chi-squared probability above the observed value. This 
type of statistic, using the nonnull estimated standard error, is called a Wald statistic (Wald 
1943). 

The multivariate extension2 for the Wald test of HQ: ft = Po has test statistic 

W = (P - Poflcwifor'Cp - p0). 

The nonnull covariance is based on the curvature (1.6) of the log-likelihood function at P 
and typically itself requires estimation. The asymptotic multivariate normal distribution for 
P implies an asymptotic chi-squared distribution for W. The df equal the rank of cov(/J), 
which is the number of nonredundant parameters in p. 

2The T superscript on a vector or matrix denotes the transpose. 
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A second general-purpose method uses the likelihood function through the ratio of two 

maximizations: (1) the maximum over the possible parameter values under Ho, and (2) the 

maximum over the larger set of parameter values permitting Ho or an alternative //„ to be 

true. Let to denote the maximized value of the likelihood function under Ho, and let l \ 

denote the maximized value generally (i.e., under Ho U //,,). For instance, for parameters 

P = (/}0, /}[) and Ho', Po = 0, t\ is the likelihood function calculated at the p value for 

which the data would have been most likely; IQ is the likelihood function calculated at the 

Pi value for which the data would have been most likely, when Po — 0. Then l\ is always 

at least as large as £Q, since f'o results f rom maximizing over a restricted set of the parameter 

values. 

The ratio A = £o/£i of the maximized likelihoods cannot exceed 1. Wilks (1935, 1938) 

showed that —2 log A has a limiting null chi-squared distribution, as n —• oo. The df equal 

the difference in the dimensions of the parameter spaces under Ho U H„ and under H{). The 

likelihood-ratio test statistic equals 

- 2 log A = - 2 log(£0111) = - 2 ( L 0 ~ L,), 

where LQ and L\ denote the maximized log-likelihood functions. [In this book, we use 

the natural logarithm throughout, for which its inverse is the exponential function; so, if 

a — log(fc), then b — exp(a) = e".] 

The third method uses the score statistic, due to R. A. Fisher and C. R. Rao. The score 

test, referred to in some literature as the Lagrange multiplier test, is based on the slope and 

expected curvature of the log-likelihood function L(P) at the null value Po. It utilizes the 

size of the score function 

u(P) = dL(P)/dp, 

evaluated at Po- The value u(Po) tends to be larger in absolute value when f ) is farther 

f rom Po. Denote — E[d2L(P)/dp2] evaluated at Po by i(Po). The score statistic is the ratio 

of u(Po) to its null SE, which is [¿(A))]' /2- This has an approximate standard normal null 

distribution. The chi-squared form of the score statistic is 

W o ) ] 2
 = [dL(p)/dpo]2 

L(Po) -E[d2L(p)/dp2]' 

where the notation reflects derivatives with respect to P that are evaluated at p0. In the 

multiparameter case, the score statistic is a quadratic form based on the vector of partial 

derivatives of the log likelihood with respect to P and the inverse information matrix, both 

evaluated at the Ho estimates (i.e., assuming that P = Po). 

Figure 1.1 shows a plot of a generic log-likelihood function L(P) for the univariate 

case. It illustrates the three tests of Ho: P = 0. The Wald test uses the behavior of L(P) at 

the M L estimate p, having chi-squared form (fi/SE)2. The SE of p depends on the cur-

vature of L(P) at p. The score test is based on the slope and curvature of L(FI) at p = 0. 

The likelihood-ratio test combines information about L(FI) at both p and Po — 0. It com-

pares the log-likelihood values L\ at P and Lq at po = 0 using the chi-squared statistic 

—2(L0 — L\). In Figure 1.1, this statistic is twice the vertical distance between values of 

L(P) at p and at 0. 
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Figure 1.1 Log-likelihood function and information used in three tests of Ho: fi = 0. 

Section 1.4.1 illustrates the Wald, likelihood-ratio, and score tests for inference about a 
binomial parameter. As n —> oo, the three tests have certain asymptotic equivalences (Cox 
and Hinkley 1974, Sec. 9.3). For small to moderate sample sizes, the likelihood-ratio and 
score tests are usually more reliable than the Wald test, having actual error rates closer to 
the nominal level. 

1.3.4 Constructing Confidence Intervals by Inverting Tests 

In practice, it is more informative to construct confidence intervals for parameters than to 
test hypotheses about their values. For any of the three test methods, we can construct a 
confidence interval by inverting the test. For instance, a 95% confidence interval for fi is 
the set of f$o for which the test of H0: fi = fio has value exceeding 0.05. 

Let za denote the z-score from the standard normal distribution having right-tailed 
probability a; this is the 100(1 — a) percentile of that distribution. A 100(1 — a)% confi-
dence interval based on asymptotic normality uses za/2, for instance Z 0 . 0 2 5 = 1-96 for 95% 
confidence. The Wald confidence interval is the set of for which \fi — ¡3Q\/SE < ZAP_. 
This gives the interval fi ± z a / 2 (S£) . Let Xdf(a) denote the 100(1 — a) percentile of the 
chi-squared distribution with degrees of freedom df. The likelihood-ratio-based confidence 
i n t e rva l is t h e se t o f fa f o r w h i c h — 2[L(PQ) — L(J3)] < XF(A)- [ N o t e t ha t x f ( a ) = z ^ - J 

When ¡3 has a normal distribution, the log-likelihood function has a parabolic shape. For 
small samples with categorical data, fi may be far from normality and the log-likelihood 
function can be far from a symmetric, parabolic-shaped curve. This can also happen with 
moderate to large samples when fi falls near the boundary of the parameter space, such 
as a population proportion that is near 0 or near 1. In such cases, inference based on 
asymptotic normality of fi may have inadequate performance. A marked divergence in 
results of Wald and likelihood-ratio inference indicates that the distribution of ¡3 may not 
be close to normality. The example in Section 1.4.3 illustrates. 

The Wald confidence interval is commonly used in practice, because it is simple to 
construct using ML estimates and standard errors reported by statistical software. The 


