Ligand Design in Medicinal Inorganic Chemistry
Ligand Design in Medicinal Inorganic Chemistry

Edited by

TIM STORR
Department of Chemistry, Simon Fraser University, Burnaby, BC V5A-1S6, Canada

WILEY
Contents

About the Editor
List of Contributors

<table>
<thead>
<tr>
<th>1</th>
<th>Introduction to Ligand Design in Medicinal Inorganic Chemistry</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael R. Jones, Dustin Duncan, and Tim Storr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Platinum-Based Anticancer Agents</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice V. Klein and Trevor W. Hambley</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2.2 The advent of platinum-based anticancer agents</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2.3 Strategies for overcoming the limitations of cisplatin</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2.4 The influence of ligands on the physicochemical properties of platinum anticancer complexes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4.1 Lipophilicity</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2.4.2 Reactivity</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>2.4.3 Rate of reduction</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2.5 Ligands for enhancing the anticancer activity of platinum complexes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5.1 Ligands for improving DNA affinity</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2.5.2 Ligands for inhibiting enzymes</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>2.6 Ligands for enhancing the tumour selectivity of platinum complexes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6.1 Ligands for targeting transporters</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>2.6.2 Ligands for targeting receptors</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>2.6.3 Ligands for targeting the EPR effect</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>2.6.4 Ligands for targeting bone cancer</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>2.7 Ligands for photoactivatable platinum complexes</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>2.8 Conclusions</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>37</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Coordination Chemistry and Ligand Design in the Development of Metal Based Radiopharmaceuticals</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eszter Boros, Bernadette V. Marquez, Oluwatayo F. Ikotun, Suzanne E. Lapi, and Cara L. Ferreira</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>3.1.1 Metals in nuclear medicine</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>3.1.2 The importance of coordination chemistry</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>3.1.3 Overview</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
3.2 General metal based radiopharmaceutical design
 3.2.1 Choice of radionuclide 50
 3.2.2 Production of the radiometal starting materials 51
 3.2.3 Ligand and chelate design consideration 51

3.3 Survey of the coordination chemistry of radiometals applicable to nuclear medicine 53
 3.3.1 Technetium 53
 3.3.2 Rhenium 56
 3.3.3 Gallium 57
 3.3.4 Indium 60
 3.3.5 Yttrium and lanthanides 61
 3.3.6 Copper 62
 3.3.7 Zirconium 65
 3.3.8 Scandium 66
 3.3.9 Cobalt 68

3.4 Conclusions 71
References 71

4 Ligand Design in d-Block Optical Imaging Agents and Sensors 81
 Mike Coogan 81
 4.1 Summary and scope 81
 4.2 Introduction 82
 4.2.1 Criteria for biological imaging optical probes 82
 4.3 Overview of transition-metal optical probes in biomedical applications 83
 4.3.1 Common families of transition metal probes 83
 4.4 Ligand design for controlling photophysics 87
 4.4.1 Photophysical processes in transition metal optical imaging agents and sensors 87
 4.4.2 Photophysically active ligand families – tuning electronic levels 87
 4.4.3 Ligands which control photophysics through indirect effects 90
 4.4.4 Transition metal optical probes with carbonyl ligands 90
 4.5 Ligand design for controlling stability 91
 4.6 Ligand design for controlling transport and localisation 91
 4.6.1 Passive diffusion 91
 4.6.2 Active transport 92
 4.7 Ligand design for controlling distribution 92
 4.7.1 Mitochondrial-targeting probes 92
 4.7.2 Nuclear-targeting probes 93
 4.7.3 Bioconjugation 94
 4.8 Selected examples of ligand design for important individual probes 101
 4.8.1 A pH-sensitive ligand to control Ir luminescence 101
 4.8.2 Dimeric NHC ligands for gold cyclophanes 102
 4.9 Transition metal probes incorporating or capable of more than one imaging mode 103
 4.9.1 Bimodal MRI/optical probes 103
 4.9.2 Bimodal radio/optical probes 104
 4.9.3 Bimodal IR/optical probes 106
 4.10 Conclusions and prospects 106
Abbreviations 108
References 108
5 Luminescent Lanthanoid Probes 113
Edward S. O’Neill and Elizabeth J. New
5.1 Introduction 113
5.2 Luminescent probes 114
5.3 The lanthanoids – an overview 116
5.4 Photophysical properties of luminescent lanthanoid complexes 116
5.4.1 The need for a sensitisier 117
5.5 The suitability of lanthanoid complexes as luminescent probes 119
5.6 Modulating chemical properties by ligand design 120
5.6.1 Chemical stability 120
5.6.2 Photophysical properties 122
5.6.3 Analyte response 123
5.7 Modulating biological properties by ligand design 129
5.7.1 Cellular uptake 129
5.7.2 Localisation to desired region of the cell 131
5.7.3 Maintenance of cellular homeostasis 135
5.8 Concluding remarks 138
Acknowledgement 138
References 138

6 Metal Complexes of Carbohydrate-targeted Ligands in Medicinal Inorganic Chemistry 145
Yuji Mikata and Michael Gottschaldt
6.1 Introduction 145
6.2 Radioactive metal complexes bearing a carbohydrate moiety 147
6.3 MRI contrast agents utilizing metal complexes bearing carbohydrate moieties 150
6.4 Fluorescent complexes with carbohydrate-conjugated functions 153
6.5 Carbohydrate-attached photosensitizers for photodynamic therapy (PDT) 157
6.6 Carbohydrate-based metal complexes exhibiting anticancer activity 161
6.7 Carbohydrate-appended metallic nanoparticles, quantum dots, electrodes and surfaces 165
6.8 Concluding remarks 167
References 168

7 Design of Schiff Base-derived Ligands: Applications in Therapeutics and Medical Diagnosis 175
Rafael Pinto Vieira and Heloisa Beraldo
7.1 Introduction 175
7.2 Design of thiosemicarbazones and hydrazones as drug candidates for cancer chemotherapy 176
7.3 Design of bis(thiosemicarbazone) ligands 184
7.3.1 Bis(thiosemicarbazones) and their metal complexes as anticancer agents 184
7.3.2 Design of bis(thiosemicarbazones) as ligands for copper(II) complexes with potential applications in medical diagnosis 186
7.3.3 Design of functionalized bis(thiosemicarbazone) ligands to target selected biological processes 189
7.4 Design of Schiff base-derived ligands as anti-parasitic drug candidates: Applications in the therapeutics of chagas disease 193
8 Metal-based Antimalarial Agents

Maribel Navarro and Christophe Biot

8.1 Background

8.2 Standard antimalarial chemotherapy
 8.2.1 Quinoline-based antimalarials
 8.2.2 Quinoline-based antimalarials target
 8.2.3 Other standard antimalarial therapies

8.3 Metal complexes in malaria
 8.3.1 Chloroquine as an inter-ligand in the design of metal-based antimalarial agents
 8.3.2 Chloroquine as an intra-ligand in the design of metal-based antimalarial agents
 8.3.3 Trioxaquines as a ligand in the design of metal-based antimalarial agents
 8.3.4 Other standard antimalarial drugs and diverse ligands used in the design
 of metal-based antimalarial agents

8.4 Conclusion

Acknowledgements

References

9 Therapeutic Gold Compounds

Susan J. Berners-Price and Peter J. Barnard

9.1 Introduction

9.2 Antiarthritic gold drugs
 9.2.1 Gold (I) thiolates
 9.2.2 Gold (I) phosphines
 9.2.3 Design of specific enzyme inhibitors

9.3 Gold complexes as anticancer agents
 9.3.1 Gold(I) compounds
 9.3.2 Gold (III) compounds

9.4 Gold complexes as antiparasitic agents
 9.4.1 Metal drug synergism
 9.4.2 Emerging parasite drug targets for gold compounds

9.5 Concluding remarks: Design of gold complexes that target specific proteins

Acknowledgements

References

10 Ligand Design to Target and Modulate Metal–Protein Interactions in Neurodegenerative Diseases

Michael W. Beck, Amit S. Pithadia, Alaina S. DeToma, Kyle J. Korshavn, and Mi Hee Lim

10.1 Introduction
 10.1.1 Metals in the brain
 10.1.2 Aberrant metal–protein interactions
 10.1.3 Oxidative stress

10.2 Neurodegenerative diseases
 10.2.1 Alzheimer’s disease (AD)
 10.2.2 Parkinson’s disease (PD)
11 Rational Design of Copper and Iron Chelators to Treat Wilson’s Disease and Hemochromatosis
Christelle Gateau, Elisabeth Mintz, and Pascale Delangle
11.1 Introduction
11.2 Chelating agents
 11.2.1 Thermodynamic parameters
 11.2.2 Principles of coordination chemistry applied to chelation therapy
 11.2.3 Examples of classical chelating agents
11.3 Modern medicinal inorganic chemistry and chelation therapy
11.4 Iron overload
 11.4.1 Iron distribution and homeostasis
 11.4.2 Iron overload diseases
 11.4.3 Fe³⁺ chelators
 11.4.4 Current developments
11.5 Copper overload in Wilson’s disease
 11.5.1 Copper metabolism
 11.5.2 Copper homeostasis
 11.5.3 Wilson’s disease
11.6 Current developments in copper overload treatments
 11.6.1 From Cu homeostasis understanding to the rational design of drugs
 11.6.2 Cu⁺ chelating units inspired from proteins involved in Cu homeostasis
 11.6.3 Cu⁺ chelators inspired from metallochaperones
 11.6.4 Cysteine-rich compounds inspired from metallothioneins
 11.6.5 Liver-targeting: the ASGP-R
 11.6.6 Two glycoconjugates that release high affinity Cu chelators in hepatocytes
11.7 Conclusion
Acknowledgments
References

12 MRI Contrast Agents
Célia S. Bonnet and Éva Tóth
12.1 Introduction to MRI contrast agents
12.2 Ligand optimization to increase relaxivity
 12.2.1 Hydration number
 12.2.2 Optimization of water exchange kinetics via rational ligand design
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2.3</td>
<td>Optimization of the rotational dynamics via rational ligand design: Size and flexibility</td>
<td>329</td>
</tr>
<tr>
<td>12.3</td>
<td>Ligand design for CEST agents</td>
<td>332</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Application of paramagnetic ions – PARACEST</td>
<td>333</td>
</tr>
<tr>
<td>12.4</td>
<td>Ligand design for responsive probes</td>
<td>333</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Probes responsive to pH</td>
<td>334</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Probes responsive to physiological cations</td>
<td>338</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Probes responsive to enzymes</td>
<td>344</td>
</tr>
<tr>
<td>12.5</td>
<td>Conclusions</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>Abbreviations</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>348</td>
</tr>
<tr>
<td>13</td>
<td>Photoactivatable Metal Complexes and Their Use in Biology and Medicine</td>
<td>355</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>355</td>
</tr>
<tr>
<td>13.2</td>
<td>Cisplatin-inspired photoactivatable chemotherapeutics</td>
<td>358</td>
</tr>
<tr>
<td>13.3</td>
<td>Metal-based photosensitizers in photodynamic therapy</td>
<td>360</td>
</tr>
<tr>
<td>13.4</td>
<td>Photoinduced interactions of coordination complexes with DNA</td>
<td>362</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Photocleavage of DNA with coordination complexes</td>
<td>362</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Photoactivatable complexes as antisense agents</td>
<td>364</td>
</tr>
<tr>
<td>13.5</td>
<td>Photoactivatable metal complexes that release small bioactive molecules</td>
<td>367</td>
</tr>
<tr>
<td>13.6</td>
<td>Conclusion</td>
<td>371</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>372</td>
</tr>
<tr>
<td>14</td>
<td>Metalloprotein Inhibitors</td>
<td>375</td>
</tr>
<tr>
<td>14.1</td>
<td>Metal binding groups in metalloprotein inhibitor design</td>
<td>375</td>
</tr>
<tr>
<td>14.2</td>
<td>Thiols, carboxylates, phosphates, and hydroxamates</td>
<td>379</td>
</tr>
<tr>
<td>14.3</td>
<td>MBGs related to hydroxamic acids</td>
<td>382</td>
</tr>
<tr>
<td>14.4</td>
<td>MBGs related to carboxylic acids</td>
<td>387</td>
</tr>
<tr>
<td>14.5</td>
<td>MBGs related to thiols</td>
<td>391</td>
</tr>
<tr>
<td>14.6</td>
<td>Amine, alcohol, and carbonyl MBGs</td>
<td>393</td>
</tr>
<tr>
<td>14.7</td>
<td>Other MBGs</td>
<td>395</td>
</tr>
<tr>
<td>14.8</td>
<td>Conclusion</td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>401</td>
</tr>
<tr>
<td>15</td>
<td>Ruthenium Anticancer Compounds with Biologically-derived Ligands</td>
<td>405</td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>405</td>
</tr>
<tr>
<td>15.1.1</td>
<td>Simple coordination complexes</td>
<td>406</td>
</tr>
<tr>
<td>15.1.2</td>
<td>Ruthenium(III) complexes with heterocyclic N-donor and/or DMSO ligands</td>
<td>406</td>
</tr>
<tr>
<td>15.1.3</td>
<td>Ruthenium(II) arene complexes</td>
<td>408</td>
</tr>
<tr>
<td>15.1.4</td>
<td>Polypyridyl complexes</td>
<td>410</td>
</tr>
<tr>
<td>15.1.5</td>
<td>Other ruthenium anticancer compounds</td>
<td>411</td>
</tr>
<tr>
<td>15.2</td>
<td>Amino acids and amino acid-containing ligands</td>
<td>411</td>
</tr>
<tr>
<td>15.3</td>
<td>Peptides and peptide-functionalized ligands</td>
<td>413</td>
</tr>
<tr>
<td>15.4</td>
<td>Coordinated proteins as ligands</td>
<td>416</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>15.5</td>
<td>Carbohydrate-based ligands</td>
<td>419</td>
</tr>
<tr>
<td>15.6</td>
<td>Purine, nucleoside, and oligonucleotide ligands</td>
<td>422</td>
</tr>
<tr>
<td>15.7</td>
<td>Other selected ruthenium complexes with biological ligands</td>
<td>424</td>
</tr>
<tr>
<td></td>
<td>15.7.1 steroids</td>
<td>424</td>
</tr>
<tr>
<td></td>
<td>15.7.2 Curcumin – an example of a natural product ligand</td>
<td>425</td>
</tr>
<tr>
<td>15.8</td>
<td>Conclusion</td>
<td>426</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>426</td>
</tr>
</tbody>
</table>

Index

439
About the Editor

Tim Storr obtained his B.Sc. from the University of Victoria, Canada, and his Ph.D. in Medicinal Inorganic Chemistry from the University of British Columbia, Canada, in 2005 working with Professor Chris Orvig. He then pursued postdoctoral studies with Professor T. Daniel P. Stack at Stanford University studying metalloenzyme mimics. In 2008 he joined the faculty at Simon Fraser University, Canada, as an assistant professor where his bioinorganic chemistry research programme targets the development of new chemical tools to diagnose and treat disease. His research is funded by the Natural Sciences and Engineering Research Council and the Michael Smith Foundation for Health Research. Current research interests include metal overload disorders, Alzheimer’s disease, cancer, diagnostic imaging, site-selective therapies, and catalysis.
List of Contributors

Peter J. Barnard
Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne Victoria, 3086, Australia

Michael W. Beck
Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA

Heloisa Beraldo
Departamento de Química, Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil

Susan J. Berners-Price
Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast Queensland, 4222, Australia

Christophe Biot
UMR CNRS 8576, Unité de Glycobiologie Structurale et Fonctionnelle, Université Lille 1, 59650 Villeneuve d’Ascq, France

Célia S. Bonnet
Centre de Biophysique Moléculaire, UPR 4301 CNRS, Rue Charles Sadron, Université d’Orléans, Orléans, 45071, France

Eszter Boros
A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA, USA, 02129

Seth M. Cohen
Department of Chemistry and Biochemistry, 9500 Gilman Drive, University of California, San Diego, CA, 92093, USA

Mike Coogan
Department of Chemistry, Faraday Building, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK

Tara R. deBoer-Maggard
Department of Chemistry and Biochemistry, University of California, 1156, High Street, Santa Cruz, CA, 95064, USA

Pascale Delangle
UMR-E3, Laboratoire Reconnaissance ionique et Chimie de Coordination, Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, 17 rue des martyrs, 38054, Grenoble, France

Alaina S. DeToma
Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109, USA
Dustin Duncan
Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A-1S6, Canada

Cara L. Ferreira
Nordion, 4004 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A3

Christelle Gateau
UMR-E3, Laboratoire Reconnaisance ionique et Chimie de Coordination, Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, 17 rue des martyrs, 38054, Grenoble, France

Michael Gottschaldt
Laboratory for Organic and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstrasse 10, 07743, Jena, Germany
Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany

Trevor W. Hambley
School of Chemistry, University of Sydney, City Road, Darlington, NSW 2008, Australia

Oluwatayo F. Ikotun
Department of Radiology, Washington University, 510 S. Kingshighway Blvd, St Louis, MO, USA, 63110

Michael R. Jones
Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A-1S6, Canada

Alice V. Klein
School of Chemistry, University of Sydney, NSW 2006, Australia

Kyle J. Korshavn
Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109, USA

Suzanne E. Lapi
Department of Radiology, Washington University, 510 S. Kingshighway Blvd, St Louis, MO, USA, 63110

Mi Hee Lim
Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109, USA
Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, Michigan, 48109, USA
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyan-eup, Ulju-gun, Ulsan, 698-798, Korea

Bernadette V. Marquez
Department of Radiology, Washington University, 510 S. Kingshighway Blvd, St Louis, MO, USA, 63110

David P. Martin
Department of Chemistry and Biochemistry, 9500 Gilman Drive, University of California, San Diego, CA, 92093, USA

Pradip K. Mascharak
Department of Chemistry and Biochemistry, University of California, 1156, High Street, Santa Cruz, CA, 95064, USA
Yuji Mikata
KYOUSEI Science Center, Nara Women’s University, Kitauoya-Higashi-machi, Nara 630-8506, Japan

Elisabeth Mintz
UMR 5249, Laboratoire Chimie et Biologie des Métaux, Université Joseph Fourier – Grenoble 1/CNRS/CEA/Institut de Recherches en Sciences et Technologies pour le Vivant/LCBM, 17 rue des martyrs, 38054, Grenoble, France

Changhua Mu
Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada

Maribel Navarro
Chemistry and Analytical Sciences, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia 6150, Australia

Elizabeth J. New
School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia

Edward S. O’Neill
School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia

Amit S. Pithadia
Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109, USA

David T. Puerta
Department of Chemistry and Biochemistry, 9500 Gilman Drive, University of California, San Diego, CA, 92093, USA

Tim Storr
Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A-1S6, Canada

Éva Tóth
Centre de Biophysique Moléculaire, UPR 4301 CNRS, Rue Charles Sadron, Université d’Orléans, Orléans, 45071, France

Rafael Pinto Vieira
Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A-1S6, Canada
Departamento de Química, Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil

Charles J. Walsby
Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
Introduction to Ligand Design in Medicinal Inorganic Chemistry

Michael R. Jones, Dustin Duncan, and Tim Storr

Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A-1S6, Canada

Medicinal inorganic chemistry continues to provide significant innovation in both diagnostic and therapeutic medicine. The field can be divided into two main categories: drugs that target metal ions in some form, and metal-based drugs in which the central metal ion is essential for the clinical application. Although the field of medicinal inorganic chemistry is not new, a better understanding of metal ion interactions in the body has enabled the development of many effective disease treatment strategies involving metal ions. The development of Cisplatin ($\text{cis} \cdot [\text{Pt(NH}_3)_2\text{Cl}_2]$) has played an instrumental role in bringing the field of medicinal inorganic chemistry into the mainstream [1]. Cisplatin and the second generation analog Carboplatin, shown in Figure 1.1, are the most commonly prescribed anticancer agents which greatly improve survival rates in ovarian, bladder, cervical, and testicular cancers [2].

However, as recently written by Norman and Hambley, “with the notable exception of platinum anticancer drugs, metal-based therapeutics occupy a relatively minor place in the organic dominated history of drug development [3].” Therefore, there is a broad scope for innovation in the field of medicinal inorganic chemistry! An inherent advantage of metal complexes lies in the accessibility of multiple oxidation states, overall charge, and geometries. However, these properties can become a disadvantage if not controlled in the biological application. Predicting the behavior of metal-based medicinal agents in vivo is a major challenge facing medicinal inorganic chemists today. The history and basic concepts of medicinal inorganic chemistry have been comprehensively reviewed [4–11]. The main goal of this book is to highlight the role of ligand design in the rapidly expanding field of medicinal inorganic chemistry [12–14]. Through a series of 14 chapters, expert researchers describe the importance of ligand design in medicinal inorganic chemistry.
Metal ions have an essential role in the human body by providing charge balance, facilitating electron transport, and catalyzing enzymatic transformations. For each application, the metal cation and the atoms immediately surrounding the metal cation (i.e., coordination sphere) can be tuned specifically. The type, number, and geometry of the ligands, commonly in the form of amino acid side-chains, ensure that the active site is maintained (Table 1.1).

Continued research into the uptake, transport, and utilization of metal ions in the body has enabled the development of many disease treatment strategies targeting metals. For example, the role of ligand design in essential metal overload disorders such as Wilson’s disease (Cu) and Hemochromatosis (Fe) is discussed by Delangle and co-workers in Chapter 11. In addition, the role of dysregulated metal ions in protein misfolding diseases of the brain, and the design of molecules targeting these processes, are discussed by Lim and co-workers in Chapter 10. Finally, the design of metal-binding molecules that inhibit the biological function of metalloproteins is discussed by Cohen and co-workers in Chapter 14 [16].

Table 1.1 A brief introduction to essential metal ions in the body and their functions [15]

<table>
<thead>
<tr>
<th>Metal ions</th>
<th>Coordination number, geometry, ligand preferences</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na⁺</td>
<td>6, octahedral, carboxylate/ether/hydroxyl</td>
<td>Charge balance, osmotic pressure, and nerve activity</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>6, octahedral, carboxylate/phosphate</td>
<td>Structural role in hydrolases, isomerases, and phosphate transfer</td>
</tr>
<tr>
<td>K⁺</td>
<td>6–8, flexible, carboxylate/ether/hydroxyl</td>
<td>Charge balance, osmotic pressure, and nerve activity</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>6–8, flexible, carbonyl/carboxylate/phosphate</td>
<td>Structural, charge balance, reaction initiator, and phosphate transfer</td>
</tr>
<tr>
<td>Cr³⁺</td>
<td>6, octahedral, oxygen-donors</td>
<td>Essential to carbohydrate/lipid metabolism</td>
</tr>
<tr>
<td>Mn²⁺/³⁺</td>
<td>6, tetragonal/octahedral, carboxylate/hydroxide/imidazole/phosphate</td>
<td>Structural role in oxidases</td>
</tr>
<tr>
<td>Fe²⁺/³⁺</td>
<td>4 or 6, tetrahedral or octahedral, carboxylate/oxygen/phenololate/thiolate/imidazole/pyrrole</td>
<td>Electron transfer in oxidases and oxygen binding/transport</td>
</tr>
<tr>
<td>Co²⁺/²⁺</td>
<td>4 or 6, tetrahedral or octahedral, carboxylate/imidazole/thioether/thiolate</td>
<td>Alkyl group transfer (B₉₁₂), oxidases</td>
</tr>
<tr>
<td>Cu²⁺</td>
<td>3–5, trigonal planar, tetrahedral, square planar, square pyramid, carboxylate/imidazole/thioether/thiolate</td>
<td>Electron transfer, oxidases, and hydroxylases</td>
</tr>
<tr>
<td>Zn²⁺</td>
<td>4 or 5, tetrahedral or square pyramid, carbonyl/carboxylate/imidazole/thiolate</td>
<td>Structure in zinc fingers, gene regulation, anhydrases, dehydrogenases, and peptidases</td>
</tr>
</tbody>
</table>
Natural systems provide much of the inspiration for the strategies employed by medicinal inorganic chemistry researchers. Thus, the design of active agents uses many of the same features present in biological systems to stabilize metal ions. The ligand(s) play a key role in determining the pharmacokinetic parameters of the metal-containing drug molecule allowing for tuning of a compound for the specific application. Basic inorganic chemistry concepts such as Hard Soft Acid Base (HSAB) Theory, kinetic inertness, and thermodynamic stability, can be used in the design process [17, 18]. Ligands can be purposefully chosen to limit complex dissociation and metal-associated toxicity in vivo in the presence of endogenous metal-binding molecules such as citrate, phosphate, bicarbonate, and biomolecules such as glutathione, transferrin, and albumin. Additional factors that must be considered include: matching the oxidation state and coordination preferences of the metal ion, kinetics of complex formation, water solubility, overall charge, and the pathway of excretion from the body. Depending on the application, a larger degree of importance may be placed on specific design features of the medicinal agent. For magnetic resonance imaging (MRI) contrast agents discussed by Bonnet and Tóth in Chapter 12, the Gd$^{3+}$ ion offers the best response and is incorporated into all but one of the commercially-approved agents. However, the high concentration used and known toxicity of the Gd$^{3+}$ ion in the body necessitates the use of ligands that confer kinetic inertness and high thermodynamic stability to the complex. High thermodynamic stability of Gd$^{3+}$ complexes, along with other lanthanides, is achieved with multidentate poly(amino)polycarboxylate ligands which form strong electrostatic interactions with the hard cation. Example ligands include the linear diethylenetriaminepentaacetic acid (DTPA) and macrocyclic 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). The Gd$^{3+}$ complexes of both of these ligands have been approved for clinical use and are shown in Figure 1.2.

Many of the same important design features for MRI contrast agents are applicable to metal-based radio-pharmaceutical research as described by Ferreira and co-workers in Chapter 3. For metal-based radiopharmaceuticals, the low concentration of the radionuclide available in the ligand complexation step, as well as the short half-life of many radionuclides (e.g., 68Ga = 68 minutes), require careful consideration of the kinetics of complex formation. For the binding of metal ions in vivo, as described in Chapter 11 for metal overload disorders of Cu and Fe, ligand design needs to take into account the binding preferences of a specific oxidation state of the metal ion. As an example, in the Fe-overload disorder Hemochromatosis, the development of binding agents that stabilize the more kinetically-inert Fe$^{3+}$ oxidation state are of interest. A high affinity for Fe$^{3+}$ is necessary in order to compete with the iron transport protein, transferrin. An additional important design consideration is the Fe$^{3+}$/Fe$^{2+}$ redox potential of the resulting complex. A value below −300 mV (vs. the Normal Hydrogen Electrode (NHE)) is hypothesized to prevent redox-cycling in the presence of biological reducing agents, such as ascorbate and glutathione, and the possibility of generating reactive oxygen species (ROS) in vivo [19, 20]. However, the design of metal complexes that undergo redox processes under controlled conditions in the body has proven to be an effective targeting method in cancer diagnosis and therapy. Under certain conditions, the reducing environment of hypoxic tumor tissues [21] can be exploited for the

![Figure 1.2](image-url)
Figure 1.2 Examples of gadolinium complexes used in MRI imaging (a) Gd-DTPA and (b) Gd-DOTA. See Chapter 12 for further details.
selective activation of metal-based diagnostics and therapeutics [22]. Examples include Ru-based anticancer agents (Chapter 15), PtIV complexes (Chapter 2), CoIII compounds [23, 24], and the radiopharmaceutical 64CuII-diacetyl-bis-N4-methylthiosemicarbazone (64CuATSM) (Chapters 3 and 7). The anticancer activity of the ferrocene-containing ferrocifens [25], and antimalarial activity of ferrocene-containing agents discussed in Chapter 8 [26], may in part be due to redox activation of the ferrocene unit and generation of ROS.

In addition to providing a stable complex, ligands can impart additional properties to metal ions. For example, ligand photosensitization of metal complexes can provide an emissive response useful for imaging and/or drug activation. Ligands are essential to the development of emissive metal complexes for biological applications. There has been significant interest in the development of both transition metal- (Chapter 4) and lanthanide- (Chapter 5) containing optical probes. In Chapters 4 and 5, the important design features of metal-based optical probes are described in detail. Optical probes, in general, permit the in vitro visualization of biological processes at the subcellular level, and have recently been reported for in vivo diagnostic applications [30, 31]. Properties such as biological stability, large Stokes shift (difference in energy between excitation and emission wavelengths), and long luminescence lifetimes of metal-based probes provide an improvement over organic fluorophores. In almost all cases, metal-containing optical probes depend on photophysical processes involving the ligand, and the majority of ligands used are conjugated heterocycles including bipyridine, phenanthroline, and phenylpyridines. These same planar aromatic heterocyclic ligands can also display DNA-intercalating ability, thereby providing a targeting feature to certain optical probes [32]. As discussed by Coogan in Chapter 4, transition metal optical probes containing d6 complexes (ReI, RuII, and IrIII) are the most commonly studied (Figure 1.4), and more recently d8 and d10 platinum and gold complexes have been reported. The combination of optical imaging and cytotoxicity in one agent is briefly described for both Pt (Chapter 2) and Au (Chapter 9) complexes. Lanthanide probes employ much of the same design features as MRI agents (thermodynamic stability and kinetic inertness), and in contrast to the transition metal optical probes, the emission is primarily metal-based (4f electrons), thus leading to sharp line-like emission spectra. The low extinction coefficients of lanthanide ions (f-f transitions are Laporte forbidden) necessitates the use of a sensitizing moiety, an organic absorber which can transfer energy to the lanthanide excited state. In the majority of cases, the sensitizer is either directly bound to the lanthanide ion, or attached to a chelating ligand that is bound to the lanthanide ion (Figure 1.4). As described by O’Neill and New in Chapter 5, the long luminescence lifetimes, and information rich spectra of lanthanide complexes, provide many opportunities in optical imaging research. Ligand photosensitization of metal complexes can be used in a number of pharmaceutical applications, where following excitation, the energy transfer can initiate ligand
Introduction to Ligand Design in Medicinal Inorganic Chemistry

Figure 1.4 Examples of photoactivated metal complexes: (a) An emissive ReI tricarbonyl complex [33]. (b) An emissive EuIII complex containing a sensitizer (in bold) for in vitro imaging [34]. (c) A Mn complex that releases NO under photoexcitation [35].

Dissociation leading to the release of bioactive agents. Energy transfer can also occur to exogenous molecules such as O2, which is the mechanism of activation in photodynamic therapy. In Chapter 13, Mascharak and co-workers describe the design features of metal complexes that are activated by light. Through ligand design, they show that photoactivation is controlled by the power, wavelength, and exposure time of the light. Specific examples include photoactivated toxicity and the release of small-molecule signaling agents such as NO and CO (Figure 1.4).

The targeting of a diagnostic and/or therapeutic agent in the body is essential to an accurate diagnosis as well as for limiting the off-target toxicity of the administered drug in therapeutic applications. In the case of Cisplatin, uptake is not specific to cancer cells and thus off-target toxicity is a major limiting factor, with less than 1% of the injected drug reaching its tumor DNA target [36]. Despite this drawback, Cisplatin is still an effective front-line treatment. A major research focus for medicinal chemists today is to improve the targeting of the medicinal agent and a large number of innovative ideas are presented in this book. We will only highlight a few specific examples here. Information on the uptake, transport, localization, and eventual excretion of a drug molecule is instrumental in the design of more effective agents. An interesting example is the longstanding (several thousand years!) application of Au in medicine. The emergence of specific thiol and selenol protein drug targets such as thioredoxin reductase, and the use of ligands to control cellular uptake and reactivity of the Au metal center, are excellently described by Berners-Price and Barnard in Chapter 9. In Chapter 7, Vieira and Beraldo detail the design of Schiff base-derived ligands in a number of disease applications. Many of the chapters describe the attachment of a biological targeting vector to a metal complex. Biological targeting vectors include, but are not limited to: carbohydrates, amino acids, peptides, antibodies, and active drug molecules. The distance between the targeting vector and the metal complex is an important design consideration. Mikata and Gottschaldt review the use of carbohydrate targeting ligands in Chapter 6. Appending a carbohydrate moiety to a metal complex has the ability to reduce toxicity, and improve solubility and molecular targeting of the metal-based drug via use of carbohydrate active transport pathways. In Chapter 8, Navarro and Biot describe the attachment of the known antimalarial Chloroquine (CQ), either pendent or directly bound to a metal complex, which affords a series of new leads that overcome the CQ-resistance of the malaria parasite (Figure 1.5). A major mechanism of drug transport in the blood is via binding to the hydrophobic pockets of the protein human serum albumin (HSA). Targeted HSA binding greatly enhances contrast for the commercially available blood pool imaging agent MS-325 (Chapter 12); a pendent lipophilic phosphine moiety is attached to the GdIII complex which interacts with HSA and slows the rotational correlation time (τR) of the complex (Figure 1.5). The development of a series of Ru anticancer agents that employ ligands designed to interact with HSA and improve targeting are described by Mu and Walshy in Chapter 15.
Metal complexes attached to peptide targeting vectors are of great interest in medicinal inorganic chemistry and the identification of new disease targets will lead to continual development in this area. A number of radiodiagnostic agents containing tumor-specific peptides attached to radiometal chelates are discussed by Ferreira and co-workers in Chapter 3. High target to background ratios provide non-invasive images of tumors and metastatic tissue, and also present the possibility of attaching therapeutic isotopes (e.g., 90Y and 153Sm) for treatment. Similar peptide targeting strategies are discussed for Pt (Chapter 2) and Au (Chapter 9) anticancer agents to take advantage of specific active transport pathways. The use of radiolabeled antibodies for tumor imaging and therapy is of significant interest. The extended plasma half-life of antibodies requires a long-lived isotope to obtain useful diagnostic images. The application of 89Zr (Chapter 3), and the use of desferrioxamine (DFO) as the metal chelate (a biological siderophore shown in Figure 1.6), in combination with antibodies such as Bevacizumab demonstrates the influence of medicinal inorganic chemistry in modern diagnostic imaging. Finally, the recent development of a CuI pro-ligand that is selectively activated in liver hepatocytes shows considerable promise as a Wilson’s disease treatment (Chapter 11) [39]. These compounds are decorated with carbohydrate residues that are recognized by the asialoglycoprotein receptor (ASGP-R), and once internalized, cleavage of disulfide bonds in the reducing intracellular medium releases the active chelator. Pro-chelator molecules also show considerable promise in binding dysregulated metals in neurodegenerative disease (Chapter 10) [40, 41].

The field of medicinal inorganic chemistry offers an important opportunity to expand our ability to diagnose and treat disease. Throughout this book, the authors have described the importance of ligand design in tailoring the properties of drug candidates to the specific application. Each individual chapter shares significant

Figure 1.6 Desferrioxamine (DFO) is a bacterial siderophore produced by the actinobacteria Streptomyces pilosus. DFO is used to treat acute iron poisoning (Chapter 11), and is also used as a radiometal chelate (Chapter 3)
insight into how ligand design is increasing our understanding of pathophysiology of disease, and providing a mechanism to increase the efficacy of drug molecules. We hope you enjoy each chapter as much as we have, and apply the concepts and insights within to your own research in medicinal inorganic chemistry.

References

2

Platinum-Based Anticancer Agents

Alice V. Klein and Trevor W. Hambley

School of Chemistry, University of Sydney, NSW 2006, Australia

2.1 Introduction

The ligands of platinum anticancer complexes influence everything from the type of pharmaceutical formulation required, to the pharmacokinetics and the mode of cytotoxicity. The ligands determine the aqueous solubility of platinum complexes, which in turn determines the route of drug administration; for instance, oral versus intravenous. Once the platinum complex enters the circulation, its reactivity dictates the number of unwanted side-reactions with blood proteins, while the size, charge, lipophilicity and shape of the ligands influence the distribution of the complex throughout the body and the rate at which it is excreted. High molecular weight ligands are useful for trapping platinum complexes in tumour tissue; a phenomenon known as the enhanced permeability and retention (EPR) effect [1, 2], while charged ligands can be employed to enhance tumour penetration [3, 4]. Lipophilic ligands are useful for increasing cellular uptake [5, 6], while the shape of the ligands can be tailored to improve DNA affinity, facilitate binding with receptors on the surface of tumour cells, and inhibit enzymes involved in cancer progression. The ligands also determine the type of DNA-adduct that is formed, as well as the mode of cell-death that ensues. As a result, careful consideration must be exercised in the choice of ligands, in order to optimise the anticancer properties of novel platinum complexes.

2.2 The advent of platinum-based anticancer agents

The era of platinum-based chemotherapy dawned in the 1960s, following Barnett Rosenberg’s serendipitous discovery of the antiproliferative effects of cisplatin (1) [7]. Cisplatin was granted FDA approval in 1978, with its success paving the way for the regulatory approval of the second- and third-generation platinum
anticancer agents, carboplatin (2) and oxaliplatin (3) [8, 9] (Figure 2.1). Platinum drugs play a central role in cancer treatment and are used today in almost half of all chemotherapeutic regimes, often in combination with other anticancer agents [8, 10].

Since the discovery of the anticancer properties of cisplatin, a vast amount of research has been directed towards understanding its mode of action. To reach its biological target, DNA, cisplatin must travel through the bloodstream, in which the relatively high chloride concentration (≈100 mM) largely prevents aquation of the chlorido ligands [8, 9, 11, 12], although binding to blood proteins including human serum albumin and haemoglobin is known to occur [13–15]. Upon arrival at the tumour site, cellular uptake of cisplatin is achieved either by passive diffusion down a concentration gradient [11, 12], or by facilitated transport mechanisms, for instance, via the copper transporter-1 (CTR1) [16–19] or the organic cation transporters (OCTs) [20–22]. Once the drug enters cells, the lowered chloride ion concentration (3–20 mM) allows activation of the platinum complex by aquation of one or both of the chlorido ligands [11, 12]. In its activated form, cisplatin can bind to DNA, usually by forming crosslinks with adjacent purines on the same DNA strand, though crosslinks can also form between guanines separated by another base or between opposite strands [9, 23, 24]. These platinum-DNA adducts cause distortions in the DNA structure, including unwinding and bending, which can trigger apoptotic cell death [9, 24, 25]. Alternatively, the drug may react with intracellular components including glutathione, metallothionein, membrane phospholipids and cytoskeletal microfilaments [9, 11, 26]. Cisplatin can also be removed from tumour cells by the copper efflux transporters ATP7A and ATP7B and the GS-X efflux pumps, a family of organic anion transporters which are able to export platinum-glutathione adducts out of cells [17, 27–30]. The extracellular and intracellular promiscuity of cisplatin results in less than 1% of intravenously administered drug reaching its tumour DNA target [10].

Cisplatin has been used to treat many tumour types, including ovarian, bladder, head and neck, cervical and non-small-cell lung cancer, and is particularly useful for treating testicular cancer, for which it boasts an overall cure rate exceeding 90% [10, 25, 31]. There are, however, several limitations related to its clinical use. The leading drawback of the drug is its severe dose-limiting side-effects, which arise from its indiscriminate uptake by all rapidly dividing cells (including tumour cells but also, for instance, bone marrow cells), and the pressure on the kidneys to excrete the drug from the body [8]. Side-effects include nephrotoxicity, emetogenesis, neurotoxicity, myelosuppression and otorrhea [8, 10, 25]. Furthermore, numerous cancer types are able to develop resistance to cisplatin, by means of enhanced DNA adduct repair and tolerance, reduced cellular uptake and increased efflux, downregulation of cell-death pathways, and inactivation by proteins and thiols [8, 9, 11, 25]. Finally, cisplatin has been found to suffer from poor tumour penetration, with evidence suggesting that clinically effective doses of the drug are only delivered to tumour cells situated closest to blood vessels [32, 33].