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Preface

The study of functional equations has a long history. In 1791 and 1809, Legendre
[152] and Gauss [90] attempted to provide a solution of the following functional
equation:

f (x + y) = f (x) + f (y)

for all x, y ∈ R, which is called the Cauchy functional equation. A function f :
R → R is called an additive function if it satisfies the Cauchy functional equation.
In 1821, Cauchy [30] first found the general solution of the Cauchy functional equa-
tion, that is, if f : R → R is a continuous additive function, then f is linear, that is,
f (x) = mx, where m is a constant. Further, we can consider the biadditive function
on R×R as follows:

A function f :R×R→ R is called an biadditive function if it is additive in each
variable, that is,

f (x + y, z) = f (x, z) + f (y, z)

and

f (x, y + z) = f (x, y) + f (x, z)

for all x, y, z ∈ R. It is well known that every continuous biadditive function f :
R×R →R is of the form

f (x, y) = mxy

for all x, y ∈ R, where m is a constant.
Since the time of Legendre and Gauss, several mathematicians had dealt with

additive functional equations in their books [2–4, 126, 145] and a number of them
have studied Lagrange’s mean value theorem and related functional equations, Pom-
peiu’s mean value theorem and associated functional equations, two-dimensional
mean value theorem and functional equations as well as several kinds of functional
equations. We know that the mean value theorems have been motivated to study the
functional equations (see the book “Mean Value Theorems and Functional Equa-
tions” by Sahoo and Riedel, 1998 [239]).
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viii Preface

In 1940, S.M. Ulam [250] proposed the following stability problem of functional
equations:

Given a group G1, a metric group G2 with the metric d(· , ·) and a positive num-
ber ε, does there exist δ > 0 such that, if a mapping f : G1 → G2 satisfies

d
(
f (xy), f (x)f (y)

)≤ δ

for all x, y ∈ G1, then a homomorphism h : G1 → G2 exists with

d
(
f (x),h(x)

)≤ ε

for all x ∈ G1?

Since then, several mathematicians have dealt with special cases as well as gen-
eralizations of Ulam’s problem.

In fact, in 1941, D.H. Hyers [107] provided a partial solution to Ulam’s problem
for the case of approximately additive mappings in which G1 and G2 are Banach
spaces with δ = ε as follows:

Let X and Y be Banach spaces and let ε > 0. Then, for all g : X → Y with

sup
x,y∈X

∥∥g(x + y) − g(x) − g(y)
∥∥≤ ε,

there exists a unique mapping f : X → Y such that

sup
x∈X

∥∥g(x) − f (x)
∥∥≤ ε,

f (x + y) = f (x) + f (y)

for all x, y ∈ X.

This proof remains unchanged if G1 is an Abelian semigroup. Particularly, in
1968, it was proved by Forti (Proposition 1, [88]) that the following theorem can be
proved.

Theorem F Let (S,+) be an arbitrary semigroup and E be a Banach space. As-
sume that f : S → E satisfies

∥∥f (x + y) − f (x) − f (y)
∥∥≤ ε. (A)

Then the limit

g(x) = lim
n→∞

f (2nx)

2n
(B)

exists for all x ∈ S and g : S → E is the unique function satisfying
∥∥f (x) − g(x)

∥∥≤ ε, g(2x) = 2g(x).

Finally, if the semigroup S is Abelian, then G is additive.
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Here, the proof method which generates the solution g by the formula like (B)

is called the direct method.
If f is a mapping of a group or a semigroup (S, ·) into a vector space E, then we

call the following expression:

Cf (x, y) = f (x · y) − f (x) − f (y)

the Cauchy difference of f on S ×S. In the case that E is a topological vector space,
we call the equation of homomorphism stable if, whenever the Cauchy difference
Cf is bounded on S × S, there exists a homomorphism g : S → E such that f − g

is bounded on S.
In 1980, Rätz [230] generalized Theorem F as follows: Let (X,∗) be a power-

associative groupoid, that is, X is a nonempty set with a binary relation x1 ∗ x2 ∈ X

such that the left powers satisfy xm+n = xm ∗ xn for all m,n ≥ 1 and x ∈ X. Let
(Y, | · |) be a topological vector space over the field Q of rational numbers with Q

topologized by its usual absolute value | · |.

Theorem R Let V be a nonempty bounded Q-convex subset of Y containing the
origin and assume that Y is sequentially complete. Let f : X → Y satisfy the fol-
lowing conditions: for all x1, x2 ∈ X, there exist k ≥ 2 such that

f
(
(x1 ∗ x2)

kn)= f
(
xkn

1 ∗ xkn

2

)
(C)

for all n ≥ 1 and

f (x1) + f (x2) − f (x1 ∗ x2) ∈ V. (D)

Then there exists a function g : X → Y such that g(x1) + g(x2) = g(x1 ∗ x2) and
f (x) − g(x) ∈ V , where V is the sequential closure of V for all x ∈ X. When Y is
a Hausdorff space, then g is uniquely determined.

Note that the condition (C) is satisfied when X is commutative and it takes the
place of the commutativity in proving the additivity of g. However, as Rätz pointed
out in his paper, the condition

(x1 ∗ x2)
kn = xkn

1 ∗ xkn

2

for all x1, x2 ∈ X, where X is a semigroup, and, for all k ≥ 1, does not imply the
commutativity.

In the proofs of Theorem F and Theorem R, the completeness of the image space
E and the sequential completeness of Y , respectively, were essential in proving the
existence of the limit which defined the additive function g. The question arises
whether the completeness is necessary for the existence of an odd additive func-
tion g such that f − g is uniformly bounded, given that the Cauchy difference is
bounded.

For this problem, in 1988, Schwaiger [240] proved the following:
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Theorem S Let E be a normed space with the property that, for each function
f : Z → E, whose Cauchy difference Cf = f (x +y)−f (x)−f (y) is bounded for
all x, y ∈ Z and there exists an additive mapping g : Z → E such that f (x) − g(x)

is bounded for all x ∈ Z. Then E is complete.

Corollary 1 The statement of theorem S remains true if Z is replaced by any vector
space over Q.

In 1950, T. Aoki [14] generalized Hyers’ theorem as follows:

Theorem A Let E1 and E2 be two Banach spaces. If there exist K > 0 and 0 ≤
p < 1 such that

∥∥f (x + y) − f (x) − f (y)
∥∥≤ K

(‖x‖p + ‖y‖p
)

for all x, y ∈ E1, then there exists a unique additive mapping g : E1 → E2 such that

∥∥f (x) − g(x)
∥∥≤ 2K

2 − 2p
‖x‖p

for all x ∈ E1.

In 1978, Th.M. Rassias [216] formulated and proved the stability theorem for
the linear mapping between Banach spaces E1 and E2 subject to the continuity of
f (tx) with respect to t ∈ R for each fixed x ∈ E1. Thus, Rassias’ theorem implies
Aoki’s theorem as a special case. Later, in 1990, Th.M. Rassias [218] observed that
the proof of his stability theorem also holds true for p < 0. In 1991, Gajda [89]
showed that the proof of Rassias’ theorem can be proved also for the case p > 1
by just replacing n by −n in (B). These results are stated in a generalized form as
follows (see Rassias and Šemrl [228]):

Theorem RS Let β(s, t) be nonnegative for all nonnegative real numbers s, t and
positive homogeneous of degree p, where p is real and p 	= 1, that is, β(λs,λt) =
λpβ(s, t) for all nonnegative λ, s, t . Given a normed space E1 and a Banach space
E2, assume that f : E1 → E2 satisfies the inequality

∥∥f (x + y) − f (x) − f (y)
∥∥≤ β

(‖x‖,‖y‖)

for all x, y ∈ E1. Then there exists a unique additive mapping g : E1 → E2 such
that

∥∥f (x) − g(x)
∥∥≤ δ‖x‖p

for all x ∈ E1, where

δ :=
{

β(1,1)
2−2p , p < 1,

β(1,1)
2−2p , p > 1.
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The proofs for the cases p < 1 and p > 1 were provided by applying the direct
methods. For p < 1, the additive mapping g is given by (B), while in case p > 1
the formula is

g(x) = lim
n→∞ 2nf

(
x

2n

)
.

Corollary 2 Let f : E1 → E2 be a mapping satisfying the hypotheses of Theo-
rem RS and suppose that f is continuous at a single point y ∈ E1, then the additive
mapping g is continuous.

Corollary 3 If, under the hypotheses of Theorem RS, we assume that, for each fixed
x ∈ E1, the mapping t → f (tx) from R to E2 is continuous, then the additive map-
ping g is linear.

Remark 4 (1) For p = 0, Theorem RS, Corollaries 2 and 3 reduce to the results of
Hyers in 1941. If we put β(s, t) = ε(sp + tp), then we obtain the results of Rassias
[216] in 1978 and Gajda [89] in 1991.

(2) The case p = 1 was excluded in Theorem RS. Simple counterexamples
prove that one can not extend Rassias’ Theorem when p takes the value one (see
Z. Gajda [89], Rassias and Šemrl [228] and Hyers and Rassias [109] in 1992).

A further generalization of the Hyers-Ulam stability for a large class of mappings
was obtained by Isac and Rassias [110] by introducing the following:

Definition 5 A mapping f : E1 → E2 is said to be φ-additive if there exist Φ ≥ 0
and a function φ : R+ →R+ satisfying

lim
t→+∞

φ(t)

t
= 0

such that
∥∥f (x + y) − f (x) − f (y)

∥∥≤ Φ
[
φ
(‖x‖)+ φ

(‖y‖)]

for all x, y ∈ E1.

In [110], Isac and Rassias proved the following:

Theorem IR Let E1 be a real normed vector space and E2 be a real Banach space.
Let f : E1 → E2 be a mapping such that f (tx) is continuous in t for each fixed
x ∈ E1. If f is φ-additive and phi satisfies the following conditions:

(a) φ(ts) ≤ φ(t)φ(s) for all s, t ∈R;
(b) φ(t) < t for all t > 1,
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then there exists a unique linear mapping T : E1 → E2 such that

∥∥f (x) − T (x)
∥∥≤ 2θ

2 − φ(2)
φ
(‖x‖)

for all x ∈ E1.

Remark 4 (1) If φ(t) = tp with p < 1, then, from Theorem IR, we obtain Rassias’
theorem [216].

(2) If p < 0 and φ(t) = tp with t > 0, then Theorem IR is implied by the result
of Gajda in 1991.

Since the time the above stated results have been proven, several mathe-
maticians (see [1, 5–13, 17, 18, 20–25, 28, 31–35, 37, 38, 42–44, 46, 47, 50–
63, 67–99, 105, 108, 111–120, 124, 132–137, 144–159, 169–208, 212–215, 219–
238, 243, 245–260, 262] and [263]) have extensively studied stability theorems
for several kinds of functional equations in various spaces, for example, Banach
spaces, 2-Banach spaces, Banach n-Lie algebras, quasi-Banach spaces, Banach
ternary algebras, non-Archimedean normed and Banach spaces, metric and ultra
metric spaces, Menger probabilistic normed spaces, probabilistic normed space, p-
2-normed spaces, C∗-algebras, C∗-ternary algebras, Banach ternary algebras, Ba-
nach modules, inner product spaces, Heisenberg groups and others. Further, we
have to pay attention to applications of the Hyers-Ulam-Rassias stability problems,
for example, (partial) differential equations, Fréchet functional equations, Riccati
differential equations, Volterra integral equations, group and ring theory and some
kinds of equations (see [29, 114, 121–123, 128, 129, 142, 143, 153, 155, 157, 170–
172, 209–211, 255, 257]). For more details on recent development in Ulam’s type
stability and its applications, see the papers of Brillouët-Belluot [19] and Ciepliński
[41] in 2012.

The notion of random normed space goes back to Sherstnev [242] as well as the
works published in [100, 101, 241] who were dulled from Menger [160], Schweizer
and Sklar [241] works. After the pioneering works by several mathematicians in-
cluding authors [9, 10, 148–150, 236] who focused at probabilistic functional anal-
ysis, Alsina [8] considered the stability of a functional equation in probabilistic
normed spaces and, in 2008, Miheţ and Radu considered the stability of a Cauchy
additive functional equation in random normed space via fixed point method [161].

The book provides a recent survey of both the latest and new results especially
on the following topics:

(1) Basic theory of random normed spaces and related spaces;
(2) Stability theory for several new functional equations in random normed spaces

via fixed point method, under the special t-norms as well as arbitrary t-norms;
(3) Stability theory of well known new functional equations in non-Archimedean

random normed spaces;
(4) Applications in the class of fuzzy normed spaces.
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Chapter 1
Preliminaries

In this chapter, we recall some definitions and results which will be used later on in
the book.

1.1 Triangular Norms

Triangular norms first appeared in the framework of probabilistic metric spaces in
the work of Menger [160]. It turns also out that this is a essential operation in sev-
eral fields. Triangular norms are an indispensable tool for the interpretation of the
conjunction in fuzzy logics [104] and, subsequently, for the intersection of fuzzy
sets [261]. They are, however, interesting mathematical objects for themselves. We
refer to some papers and books for further details (see [100, 138–141] and [241]).

Definition 1.1.1 A triangular norm (shortly, t-norm) is a binary operation on the
unit interval [0,1], that is, a function T : [0,1] × [0,1] → [0,1] such that, for all
a, b, c ∈ [0,1], the following four axioms are satisfied:

(T1) T (a, b) = T (b, a) (commutativity);
(T2) T (a, (T (b, c))) = T (T (a, b), c) (associativity);
(T3) T (a,1) = a (boundary condition);
(T4) T (a, b) ≤ T (a, c) whenever b ≤ c (monotonicity).

The commutativity of (T1), the boundary condition (T3) and the monotonicity
(T4) imply that, for each t-norm T and x ∈ [0,1], the following boundary conditions
are also satisfied:

T (x,1) = T (1, x) = x,

T (x,0) = T (0, x) = 0,

and so all the t-norms coincide with the boundary of the unit square [0,1]2.

Y.J. Cho et al., Stability of Functional Equations in Random Normed Spaces,
Springer Optimization and Its Applications 86, DOI 10.1007/978-1-4614-8477-6_1,
© Springer Science+Business Media New York 2013
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The monotonicity of a t-norm T in the second component (T4) is, together with
the commutativity (T1), equivalent to the (joint) monotonicity in both components,
that is, to

T (x1, y1) ≤ T (x2, y2) (1.1.1)

whenever x1 ≤ x2 and y1 ≤ y2.
Basic examples are the Łukasiewicz t-norm TL:

TL(a, b) = max{a + b − 1,0}
for all a, b ∈ [0,1] and the t-norms TP , TM , TD defined as follows:

TP (a, b) := ab,

TM(a, b) := min{a, b},

TD(a, b) :=
{

min{a, b}, if max{a, b} = 1;
0, otherwise.

If, for any two t-norms T1 and T2, the inequality T1(x, y) ≤ T2(x, y) holds for all
(x, y) ∈ [0,1]2, then we say that T1 is weaker than T2 or, equivalently, T2 is stronger
than T2.

From (1.1.1), it follows that, for all (x, y) ∈ [0,1]2,

T (x, y) ≤ T (x,1) = x,

T (x, y) ≤ T (1, y) = y.

Since T (x, y) ≥ 0 = TD(x, y) for all (x, y) ∈ (0,1)2 holds trivially, for any t-norm
T , we have

TD ≤ T ≤ TM,

that is, TD is weaker and TM is stronger than any others t-norms. Also, since
TL < TP , we obtain the following ordering for four basic t-norms:

TD < TL < TP < TM.

Proposition 1.1.2 [100] (1) The minimum TM is the only t-norm satisfying
T (x, x) = x for all x ∈ (0,1).

(2) The weakest t-norm TD is the only t-norm satisfying T (x, x) = 0 for all
x ∈ (0,1).

Proposition 1.1.3 [100] A t-norm T is continuous if and only if it is continuous in
its first component, i.e., for all y ∈ [0,1], if the one-place function

T (·, y) : [0,1] → [0,1], x 
→ T (x, y),

is continuous.
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For example, the minimum TM and Łukasiewicz t-norm TL are continuous, but
the t-norm T Δ defined by

T Δ(x, y) :=
{

xy
2 , if max{x, y} < 1;

xy, otherwise,

for all x, y ∈ [0,1] is not continuous.

Definition 1.1.4 (1) A t-norm T is said to be strictly monotone if

T (x, y) < T (x, z)

whenever x ∈ (0,1) and y < z.
(2) A t-norm T is said to be strict if it is continuous and strictly monotone.

For example, the t-norm T Δ is strictly monotone, but the minimum TM and
Łukasiewicz t-norm TL are not strictly monotone.

Proposition 1.1.5 [100] A t-norm T is strictly monotone if and only if

T (x, y) = T (x, z), x > 0 =⇒ y = z.

If T is a t-norm, then x
(n)
T for all x ∈ [0,1] and n ≥ 0 is defined by 1 if n = 0 and

T (x
(n−1)
T , x) if n ≥ 1.

Definition 1.1.6 A t-norm T is said to be Archimedean if, for all (x, y) ∈ (0,1)2,
there exists an integer n ≥ 1 such that

x
(n)
T < y.

Proposition 1.1.7 [100] A t-norm T is Archimedean if and only if, for all x ∈ (0,1),

lim
n→∞x

(n)
T = 0.

Proposition 1.1.8 [100] If t-norm T is Archimedean, then, for all x ∈ (0,1), we
have

T (x, x) < x.

For example, the product Tp , Łukasiewicz t-norm TL and the weakest t-norm
TD are all Archimedean, but the minimum TM is not an Archimedean t-norm.

A t-norm T is said to be of Hadžić-type (denoted by T ∈ H) if the family {x(n)
T }

is equicontinuous at x = 1, that is, for any ε ∈ (0,1), there exists δ ∈ (0,1) such that

x > 1 − δ =⇒ x
(n)
T > 1 − ε (1.1.2)

for all n ≥ 1.



4 1 Preliminaries

The t-norm TM is a trivial example of Hadžić type, but TP is not of Hadžić type.

Proposition 1.1.9 [100] If a continuous t-norm T is Archimedean, then it can not
be a t-norm of Hadžić-type.

Other important t-norms are as follows (see [102]):
(1) The Sugeno–Weber family {T SW

λ }λ∈[−1,∞] is defined by T SW
−1 = TD , T SW∞ =

TP and

T SW
λ (x, y) = max

{
0,

x + y − 1 + λxy

1 + λ

}

if λ ∈ (−1,∞).
(2) The Domby family {T D

λ }λ∈[0,∞] is defined by TD , if λ = 0, TM if λ = ∞ and

T D
λ (x, y) = 1

1 + (( 1−x
x

)λ + (
1−y
y

)λ)1/λ

if λ ∈ (0,∞).
(3) The Aczel–Alsina family {T AA

λ }λ∈[0,∞] is defined by TD , if λ = 0, TM if
λ = ∞ and

T AA
λ (x, y) = e−(| logx|λ+| logy|λ)1/λ

if λ ∈ (0,∞).
A t-norm T can be extended (by associativity) in a unique way to an n-array

operation taking, for any (x1, . . . , xn) ∈ [0,1]n, the value T (x1, . . . , xn) defined by

T0
i=1xi = 1, Tn

i=1xi = T
(
Tn−1

i=1 xi, xn

)= T (x1, . . . , xn).

The t-norm T can also be extended to a countable operation taking, for any
sequence {xn} in [0,1], the value

T∞
i=1xi = lim

n→∞ Tn
i=1xi . (1.1.3)

The limit on the right side of (1.1.3) exists since the sequence {Tn
i=1xi} is non-

increasing and bounded from below.

Proposition 1.1.10 [102] (1) For T ≥ TL the following implication holds:

lim
n→∞ T∞

i=1xn+i = 1 ⇐⇒
∞∑

n=1

(1 − xn) < ∞.

(2) If T is of Hadžić-type, then we have

lim
n→∞ T∞

i=1xn+i = 1

for any sequence {xn}n≥1 in [0,1] such that limn→∞ xn = 1.
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(3) If T ∈ {T AA
λ }λ∈(0,∞) ∪ {T D

λ }λ∈(0,∞), then we have

lim
n→∞ T∞

i=1xn+i = 1 ⇐⇒
∞∑

n=1

(1 − xn)
α < ∞.

(4) If T ∈ {T SW
λ }λ∈[−1,∞), then we have

lim
n→∞ T∞

i=1xn+i = 1 ⇐⇒
∞∑

n=1

(1 − xn) < ∞.

Definition 1.1.11 Let T and T ′ be two continuous t-norms. Then we say that T ′
dominates T (denoted by T ′ � T ) if, for all x1, x2, y1, y2 ∈ [0,1],

T
[
T ′(x1, x2), T

′(y1, y2)
]≤ T ′[T (x1, y1), T (x2, y2)

]
.

1.2 Triangular Norms on Lattices

Now, we extend definitions and results on the t-norm to lattices.
Let L = (L,≥L) be a complete lattice, that is, a partially ordered set in which

every nonempty subset admits supremum, infimum and 0L = infL, 1L = supL.

Definition 1.2.1 [49] A t-norm on L is a mapping T : L × L → L satisfying the
following conditions:

(1) T (x,1L) = x for all x ∈ L (boundary condition);
(2) T (x, y) = T (y, x) for all x, y ∈ L (commutativity);
(3) T (x,T (y, z)) = T (T (x, y), z) for all x, y, z ∈ L (associativity);
(4) x ≤L x′ and y ≤L y′ implies that T (x, y) ≤L T (x′, y′) for all x, x′, y, y′ ∈ L

(monotonicity).

Let {xn} be a sequence in L convergent to x ∈ L (equipped order topology). The
t-norm T is said to be a continuous t-norm if

lim
n→∞T (xn, y) = T (x, y)

for each y ∈ L.
Now, we put T = T whenever L = [0,1].

Definition 1.2.2 [49] A continuous t-norm T on L = [0,1]2 is said to be continu-
ous t-representable if there exist a continuous t-norm ∗ and a continuous t-conorm
� on [0,1] such that, for all x = (x1, x2), y = (y1, y2) ∈ L,

T (x, y) = (x1 ∗ y1, x2 � y2).
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For example, the following t-norms

T (a, b) = (a1b1,min{a2 + b2,1})

and

M(a, b) = (min{a1, b1},max{a2, b2}
)

for all a = (a1, a2), b = (b1, b2) ∈ [0,1]2 are continuous t-representable.
Define the mapping T∧ : L2 → L by:

T∧(x, y) =
{

x, if y ≥L x,

y, if x ≥L y.

A negation on L is a decreasing mapping N : L → L satisfying N (0L) = 1L
and N (1L) = 0L. If N (N (x)) = x for all x ∈ L, then N is called an involutive
negation. In the following, L is endowed with a (fixed) negation N .

1.3 Distribution Functions

Let Δ+ denote the space of all distribution functions, that is, the space of all map-
pings F : R ∪ {−∞,+∞} → [0,1] such that F is left-continuous, non-decreasing
on R, F(0) = 0 and F(+∞) = 1. D+ is a subset of Δ+ consisting of all functions
F ∈ Δ+ for which l−F(+∞) = 1, where l−f (x) denotes the left limit of the func-
tion f at the point x, that is, l−f (x) = limt→x− f (t). The space Δ+ is partially
ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and only if
F(t) ≤ G(t) for all t ∈ R. The maximal element for Δ+ in this order is the distribu-
tion function ε0 given by

ε0(t) =
{

0, if t ≤ 0,

1, if t > 0.

Example 1.3.1 The function G(t) defined by

G(t) =
{

0, if t ≤ 0,

1 − e−t , if t > 0,

is a distribution function. Since limt→∞ G(t) = 1, G ∈ D+. Note that G(t + s) ≥
Tp(G(t),G(s)) for each t, s > 0.

Example 1.3.2 The function F(t) defined by

F(t) =

⎧
⎪⎨

⎪⎩

0, if t ≤ 0,

t, if 0 ≤ t ≤ 1,

1, if 1 ≤ t,
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is a distribution function. Since limt→∞ F(t) = 1, F ∈ D+. Note that F(t + s) ≥
TM(F(t),F (s)) for all t, s > 0.

Example 1.3.3 [9] The function Gp(t) defined by

Gp(t) =

⎧
⎪⎨

⎪⎩

0, if t ≤ 0,

exp(−|p|1/2), if 0 < t < +∞,

1, if t = +∞,

is a distribution function. Since limt→∞ Gp(t) 	= 1, G ∈ Δ+ \D+. Note that Gp(t +
s) ≥ TM(Gp(t),Gp(s)) for all t, s > 0.

Definition 1.3.4 A non-measure distribution function is a function ν : R → [0,1]
which is right continuous on R, non-increasing and inft∈R ν(t) = 0, supt∈R ν(t) = 1.

We denote by B the family of all non-measure distribution functions and by G a
special element of B defined by

G(t) =
{

1, if t ≤ 0,

0, if t > 0.

If X is a nonempty set, then ν : X → B is called a probabilistic non-measure on
X and ν(x) is denoted by νx .

Let L = (L,≥L) be a complete lattice, that is, a partially ordered set in which
every nonempty subset admits supremum, infimum and 0L = infL, 1L = supL.
The space of latticetic random distribution functions, denoted by Δ+

L , is defined as
the set of all mappings F :R∪ {−∞,+∞} → L such that F is left-continuous and
non-decreasing on R, F(0) = 0L and F(+∞) = 1L.

D+
L ⊆ Δ+

L is defined as D+
L = {F ∈ Δ+

L : l−F(+∞) = 1L}, where l−f (x) de-
notes the left limit of the function f at the point x. The space Δ+

L is partially or-
dered by the usual point-wise ordering of functions, that is, F ≥ G if and only if
F(t) ≥L G(t) for all t ∈ R. The maximal element for Δ+

L in this order is the distri-
bution function given by

ε0(t) =
{

0L, if t ≤ 0,

1L, if t > 0.

1.4 Fuzzy Sets

In this section, we consider the definition of fuzzy sets and present some examples.
For more details, see [264]. The first publication in fuzzy set theory by Zadeh [261]
showed a generalization of the classical notation of a set. A classical (crisp) set is
normally defined as a collection of elements or objects x ∈ X which can be finite,
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countable or uncountable. Each single element can either belong to or not belong to
a set A, A ⊆ X. In the former case, the statement “x belong to A” is true, whereas,
in the latter case, this statement is false.

Such a classical set can be described in different ways. One way is defined the
member element by using the characteristic function, in which 1 indicates mem-
bership and 0 non-membership. For a fuzzy set, the characteristic function allows
various degrees of membership for the elements of a given set.

Definition 1.4.1 If W is a collection of objects denoted generically by w, then a
fuzzy set A in W is a set of ordered pairs:

A = {(w,λA(w)
) : w ∈ W

}
,

where λA(w) is called the membership function or grade of membership of w in A

which maps W to the membership space M .

Note that, when M contains only the two points 0 and 1, A is non-fuzzy and
λA(w) is identical to the characteristic function of a non-fuzzy set. The range of the
membership function is [0,1] or a complete lattice.

Example 1.4.2 Consider the following fuzzy set A which is real numbers consider-
ably larger than 10:

A = {(w,λA(w)
) : w ∈ W

}
,

where

λA(w) =
{

0, if w < 10,
1

1+(w−10)−2 , if w ≥ 10.

Example 1.4.3 Consider the following fuzzy set A which is real numbers close to
10:

A = {(w,λA(w)
) : w ∈ W

}
,

where

λA(w) = 1

1 + (w − 10)2
.

Note that, in this book, in short, we apply membership functions instead fuzzy
sets.

Definition 1.4.4 [96] Let L = (L,≤L) be a complete lattice and U be a nonempty
set called the universe. An L-fuzzy set in U is defined as a mapping A : U → L. For
each u ∈ U , A(u) represents the degree (in L) to which u is an element of A.
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Lemma 1.4.5 [49] Consider the set L∗ and the operation ≤L∗ defined by

L∗ = {(x1, x2) : (x1, x2) ∈ [0,1]2, x1 + x2 ≤ 1
}
,

(x1, x2) ≤L∗ (y1, y2) ⇐⇒ x1 ≤ y1, x2 ≥ y2

for all (x1, x2), (y1, y2) ∈ L∗. Then (L∗,≤L∗) is a complete lattice.

Definition 1.4.6 [16] An intuitionistic fuzzy set Aζ,η in the universe U is an ob-
ject Aζ,η = {(u, ζA(u), ηA(u)) : u ∈ U}, where ζA(u) ∈ [0,1] and ηA(u) ∈ [0,1]
for all u ∈ U are called the membership degree and the non-membership degree,
respectively, of u in Aζ,η and, furthermore, satisfy ζA(u) + ηA(u) ≤ 1.

Example 1.4.7 Consider the following intuitionistic fuzzy set Aζ,η which is real
numbers considerably larger than 10 for the first place and real numbers close to 10
in the second place:

Aζ,η = {(w,ζA(w),ηA(w)
) : w ∈ W

}
,

where

(
ζA(w), ηA(w)

)=
{

(0, 1
1+(w−10)2 ), if w < 10,

( 1
1+(w−10)−2 , 1

1+(w−10)2 ), if w ≥ 10.

As we said in the above, forward, we will use Aζ,η(w) = (ζA(w), ηA(w)) in the
next chapters.



Chapter 2
Generalized Spaces

In this chapter, we present some generalized spaces and their properties for the main
results in this chapter.

2.1 Random Normed Spaces

Random (probabilistic) normed spaces were introduced by Šerstnev in 1962 [242]
by means of a definition that was closely modelled on the theory of (classical)
normed spaces, and used to study the problem of best approximation in statistics. In
the sequel, we shall adopt usual terminology, notation and conventions of the theory
of random normed spaces, as in [9, 10, 148, 241].

Definition 2.1.1 A Menger probabilistic metric space (or random metric spaces) is
a triple (X,F , T ), where X is a nonempty set, T is a continuous t-norm and F is a
mapping from X × X into D+ such that, if Fx,y denotes the value of F at a point
(x, y) ∈ X × X, the following conditions hold: for all x, y, z in X,

(PM1) Fx,y(t) = ε0(t) for all t > 0 if and only if x = y;
(PM2) Fx,y(t) = Fy,x(t);
(PM3) Fx,z(t + s) ≥ T (Fx,y(t),Fy,z(s)) for all x, y, z ∈ X and t, s ≥ 0.

Definition 2.1.2 [242] A random normed space (briefly, a RN-space) or a Šerstnev
(Sherstnev) probabilistic normed space (briefly, a Šerstnev PN-space) is a triple
(X,μ,T ), where X is a vector space, T is a continuous t-norm and μ is a mapping
from X into D+ such that the following conditions hold:

(RN1) μx(t) = ε0(t) for all t > 0 if and only if x = 0 (0 is the null vector in X);
(RN2) μαx(t) = μx(

t
|α| ) for all x ∈ X and α 	= 0;

(RN3) μx+y(t + s) ≥ T (μx(t),μy(s)) for all x, y ∈ X and t, s ≥ 0, where μx de-
notes the value of μ at a point x ∈ X.
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