
Lecture Notes in Applied Mathematics and Mechanics   1

The History of 
Theoretical, Material 
and Computational 
Mechanics - 
Mathematics Meets
Mechanics and 
Engineering

Erwin Stein Editor



Lecture Notes in Applied Mathematics
and Mechanics

Volume 1

Series Editors

Alexander Mielke, Humboldt-Universität zu Berlin, Berlin, Germany
e-mail: mielke@wias-berlin.de

Bob Svendsen, RWTH Aachen University, Aachen, Germany
e-mail: bob.svendsen@rwth-aachen.de

For further volumes:

http://www.springer.com/series/11915



About this Series

The Lecture Notes in Applied Mathematics and Mechanics LAMM are intended
for an interdisciplinary readership in the fields of applied mathematics and mechan-
ics. This series is published under the auspices of the International Association of
Applied Mathematics and Mechanics (IAAMM; German GAMM).

Topics of interest include for example focus areas of the IAAMM such as: foun-
dations of mechanics, thermodynamics, material theory and modeling, multibody
dynamics, structural mechanics, solid mechanics, biomechanics, damage, fracture,
multiscale modeling and homogenization, fluid mechanics, gas dynamics, laminar
flows and transition, turbulence and reactive flows, interface flows, acoustics, waves,
applied analysis, mathematical modeling, calculus of variations, variational princi-
ples applied operator theory, evolutionary equations, applied stochastics, systems
with uncertainty, dynamical systems, control theory, optimization, applied and nu-
merical linear algebra, analysis and numerics of ordinary and partial differential
equations.

Each contribution to the series is intended to be accessible to researchers in math-
ematics and mechanics and is written in English. The aim of the series is to provide
introductory texts for modern developments in applied mathematics and mechan-
ics contributing to cross-fertilization. The Lecture Notes are aimed at researchers
as well as advanced masters and PhD students in both mechanics and mathematics.
Contributions to the series are self-contained and focused on a few central themes.
The goal of each contribution is the communication of modern ideas and principles
rather than on completeness or detailed proofs. Like lecture notes from a course,
a well-chosen example is preferable to an abstract framework that cannot be com-
prehended without deeper involvement. The typical length of each contribution is
between 100 and 300 pages. If the lecture notes represent the proceedings of a sum-
mer school with several contributors, a unified, consistent presentation and style
are required (e.g., common notation). In exceptional cases, doctoral theses may be
accepted, if they fulfill the above-mentioned criteria.

Potential contributors should contact the appropriate editor with a title, table of
contents, and a sample chapter. Full manuscripts accepted by the editors will then
be peer-reviewed.



Erwin Stein
Editor

The History of Theoretical,
Material and Computational
Mechanics - Mathematics
Meets Mechanics
and Engineering

ABC



Editor
Erwin Stein
Institute of Mechanics and Computational

Mechanics (IBNM)
Gottfried Wilhelm Leibniz Universität

Hannover
Hannover
Germany

ISSN 2197-6724 ISSN 2197-6732 (electronic)
ISBN 978-3-642-39904-6 ISBN 978-3-642-39905-3 (eBook)
DOI 10.1007/978-3-642-39905-3
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013949170

c© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Foreword

In 2008 Professor Stein, the editor of this volume, applied for setting up a new
section in the yearly GAMM conference related to the history of mechanics.
This suggestion was approved by the Board of GAMM and the first session
on history of mechanics started in 2010.

Lectures and contributions that were presented in these sessions are the
backbone of this first volume of LAMM. There is no better way to start the
series of GAMM lecture notes to reflect the history of the research field.

The contributions in this volume discuss different aspects of mechanics.
They are related to solid and fluid mechanics in general and to specific prob-
lems in these areas including the development of numerical solution tech-
niques. Thus this first addition of LAMM provides an overview on the field
of mechanics and describes the wide area of applications within GAMM.

Finally I like to thank the editor, Professor Erwin Stein, for his continuous
effort and his hard work to make this volume possible.

Hannover, May 2013 Peter Wriggers
Vice-President of GAMM



Preface

This collection of 23 articles is the output of lectures in special sessions on
“The History of Theoretical, Material and Computational Mechanics”within
the yearly conferences of the GAMM in the years 2010 in Karlsruhe, Germany,
2011 in Graz, Austria, and in 2012 in Darmstadt, Germany; GAMM is the
“Association for Applied Mathematics and Mechanics”, founded in 1922 by
Ludwig Prandtl and Richard von Mises.

Guiding topics for the yearly sections were proposed and leading scientists
invited as keynote-lecturers. This is reflected in the four parts of this book. In
their sequence and in the total concept the published articles provide a certain
completeness and logical consistency within the selected topics of theoretical,
material, applied and computational mechanics.

I am indebted to the co-chairmen of the sections, Professor Oskar Mahren-
holtz in 2010 and 2011, and Professor Lothar Gaul in 2013. It should be
mentioned that each of the three sections had two sessions, each with about
150 attendees which shows the great interest of the conference participants.

The success of the new historical sections motivated the other authors and
me to publish them in a book, also stimulated by Professor Peter Wriggers,
President of GAMM in the period from 2008 to 2010. I also thank him for
writing a foreword.

The rich history of theoretical, material, applied and computational me-
chanics of solids, structures and fluids should be of vivid interest for the
community of mechanicians working in science and technology as well as
of applied mathematicians. This is important for the self-conception of stu-
dents and practitioners in order to know and realize on which shoulders we
stand and how long it often took to arrive at simple-looking formulas for de-
scribing dominant effects in loading and deformation processes of engineering
structures and in fluid flow processes, and moreover to derive rather general
mathematical models – despite the ambitions and efforts of eminent scientists
over decades and even centuries.

Following, the four parts of the book are briefly commented.



VIII Preface

In Part I, the origins and developments of conservation principles in me-
chanics and related variational methods are treated together with challenging
applications from the 17th to the 20th century.

Part II treats general as well as more specific aspects of material theories
of deforming solid continua and porous soils, e.g. the foundation of classical
theories of elastoplastic deformations, the development of theories and analy-
sis for contact with friction and plastic deformations, as well as the formation
and progress of fracture in brittle and ductile solid materials.

Part III presents important theoretical and engineering developments in-
fluid mechanics, beginning with remarkable inventions in the old Egypt, the
dominating role of the Navier-Stokes PDEs for fluid flows and their complex
solutions for a wide field of parameters as well as the invention of pumps and
turbines in the 19th and 20th century.

And finally, Part IV gives a survey on the development of direct variational
(numerical) methods – the Finite Element Method – in the 20th century with
many extensions and generalizations, requiring a strong coupling of engineer-
ing, mathematical and computer science aspects. These three articles are re-
stricted to static and dynamic elastic continua, according to page limitations
of the book.

One may ask whether the well-written historical essays on a period of
about 3 1/2 centuries of research in mechanics can highlight overriding insight
to the motivation, the connections, the progress and the setbacks of so many
eminent scientists in the past. Additionally, it has to be regarded that a
master plan for the contents of the book could only be realized roughly,
viewing the open calls for contributions to the related historical sections of
GAMM conferences.

Nevertheless, the structure and the contents of the book are above all
characterized by the invited lectures (chapters) of well-known scientists in
their fields.

However, in order to know the real genesis of the scientific truth, we would
have to ask all those splendid researchers behind the huge work about their
motivations and goals, which – of course – is not possible.

Instead, we reflected essential individual achievements as parts and driving
forces of the integral subject “Mechanics” with their important and distinct
positions in the whole framework of this discipline. Thus, each chapter can
be widely understood independently from the others.

It is my pleasant duty to deeply thank all authors for elaborating their
articles on a high standard and publishing them in this book. The friendly
collaboration over nearly a year provided the nice feeling of partnership.

We are thankful to Wiley Publishing Company for admitting republica-
tions of five over-worked and extended articles published in the “GAMM-
Mitteilungen”, Vol. 34 (2011) (Issue 2) and an article published in “ZAMM”,
Vol. 92 (2012), pp. 683–708. Further, I thank the editors of the Polish “Jour-
nal of Computer Assisted Methods in Engineering Science” for permitting



Preface IX

publication of the abbreviated and revised article Vol. 19 (2012) No. 1, pp.
7–91.

The authors and the editor appreciate the publication of the book as Vol-
ume 1 of the new series “Lecture Notes in Applied Mathematics and Me-
chanics (LNAMM)”. We thank Dr. Thomas Ditzinger, Springer-Verlag, for
his advice and helpful collaboration.

Hannover, May 2013 Erwin Stein, Editor



Contents

Part I: Mechanical Conservation Principles, Variational
Calculus and Engineering Applications from the
17th to the 20th Century

The Origins of Mechanical Conservation Principles
and Variational Calculus in the 17th Century . . . . . . . . . . . . . . . . 3
Erwin Stein

Principles of Least Action and of Least Constraint . . . . . . . . . . . 23
Ekkehard Ramm
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The Origins of Mechanical Conservation
Principles and Variational Calculus in the 17th

Century

Erwin Stein

Abstract. The 17th century is considered as the cradle of modern natural sciences
and technology as well as the begin of the age of enlightenment with the inven-
tion of analytical geometry by Descartes (1637), infinitesimal calculus by Newton
(1668) and Leibniz (1674), and based on the rational mechanics by Newton (1687),
initiated by Galilei (1638). In 1696, Johann Bernoulli posed the so-called brachis-
tochrone problem in Acta Eruditorum, asking for solutions within a year’s time.
Seven solutions were submitted and published in 1697, the most famous one by
his brother Jacob Bernoulli, anticipating Euler’s idea of discrete equidistant support
points and triangular test functions between three neighboured points, followed by
the infinitesimal limit. Johann Bernoulli himself presented two intelligent solutions
by joining geometrical and mechanical observations. Leibniz submitted a geomet-
rical integration method for the differential equation of the cycloid and, what is
important for this article, a short draft of a discrete or “direct variational” numerical
approximation method, also using triangular test functions between neighboured
support points with finite distances. This can be considered as a precursor of the
finite element method. In connection with the brachistochrone, more general tau-
tochrony problems were investigated, e.g. by Huygens and Newton. In conclusion
many important developments of energy methods in mechanics using variational
methods were already invented in the 17th century.

1 The 17th Century as the Cradle of Modern Natural Science
and Mathematics

The late scholastic philosophy of the 16th century in central Europe, dominated
by the catholic theology and based on the thinking of Aristoteles and Augustinus,

Erwin Stein
Institute of Mechanics and Computational Mechanics, Leibniz Universität Hannover,
Appelstr. 9A, 30167 Hannover, Germany
e-mail: stein@ibnm.uni-hannover.de

E. Stein (ed.), The History of Theoretical, Material and Computational Mechanics, 3
Lecture Notes in Applied Mathematics and Mechanics 1,
DOI: 10.1007/978-3-642-39905-3_1, c© Springer-Verlag Berlin Heidelberg 2014



4 E. Stein

imposed severe restrictions on the progress of natural science and the human in-
ventive genius for creating new useful technical tools. The Italian Renaissance of
the 15th and 16th century already brought a fundamental change of human identity,
orientation and self-assured thinking with the claim that man – not the Gods or God
– had invented and still were inventing helpful artifacts.

Inspired by the ancient Greek culture, especially based on the New-Platonism,
an autonomous thinking and creative abilities became attractive, and a new typus
of gifted craftsmen and artistic engineers created revolutionary experiments of liv-
ing and inanimate nature, inspired by this insight they made spectacular technical
inventions, among them Brunelleschi, the architect and engineer of the Duomo of
Florence, and Leonardo da Vinci, whose fascinating technical inventions were far
ahead of his time. The first technical patents were conferred to inventors in Florence
in the 16th century.

In central Europe Gutenberg, Paracelsus and especially Copernicus prepared the
new age of natural science and technology. In 1620, Bacon, who has been called the
father of empiricism, published his Novum Organum, [1], (addressing Aristoteles’
Organum) in which he established inductive methodologies for scientific inquiring.
He fought against prejudices and preconceived ideas.

And then, Descartes established the new mechanistic philosophy of rationalism
and doubt with the dualism of the two different substances: matter (body) and mind.
Later he asserted that these substances are not separated but build a single identity,
Descartes (1637), [2]. Descartes marks the beginning of the philosophy of enlight-
enment, highlighted by his statement “cogito ergo sum”.

Spinoza, a lense grinder, was active in the Dutch Jewish Community and devel-
oped his so-called pantheistic philosophy from a deep critical study of the Chris-
tian Bible, Spinoza (1670), [3]. He provided an alternative to materialism, atheism
and deism, claiming the identity of spirit and nature, so to say a religion of nature,
Spinoza (1677), [4]. Spinoza was heavily attacked by the Catholic Church; all his
publications were indexed, and being called a spinocist at that time was comparable
to an atheist with the consequence of persecution.

Leibniz was a multi-ingenious scholar in all branches of science at his time and
highly interested in new technical inventions, and applications for practical use in
his holistic and universal thinking and the postulates “theoria cum praxi” and “com-
mune bonum”, based on systematic collections of former scientific cognition and
new findings in a universal frame, combined with new technical inventions and the
improved production of goods in new manufactures. And he also contributed essen-
tially to the new rational philosophy, guided by his postulates “nihil sine ratione”,
“nihil fit sine causa sufficiente’’, and “the continuity principle”. He was highly mo-
tivated to smooth down and to settle controversial political and religious convictions
and ideas in order to achieve piece in the European states and to unify the Christian
churches as a “pacidius” (a peacemaker), as he conceived himself. In his quasi-
axiomatic monadology, Leibniz (1714), [5], with 90 short paragraphs, his theology
different from Descartes is framed by the conviction that God as the highest monade
created the universe as the best of all thinkable ones in conjunction with optimal
natural laws. Thus, the creation and the development of the universe relies on
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rationality and mathematical logic. He was sure that reasoning of natural science in-
evitably leads to metaphysics: nihil est in intellektu quod non fuerat in sensu, excipe:
nisi ipse intellectu, Leibniz (1686), [6]. Thus, the discrepancy of body and soul can
be overcome in this metaphysical draft of the universe. He created a new paradigm
from Christian salvation history to apprenticeship of wisdom, thus overcoming the
Christian stigmas of the Original Sin and the Last Judgement.

There is no doubt that Isaac Newton outshines all physicists in the 17th and the
following two centuries by the creation of new natural science in his famous prin-
cipia (1687) [7]. In the introduction, he claims: the old (Greek) developed the me-
chanica practica but I created the mechanica rationalis (rational mechanics) which
was the origin and the bible for the 18th and 19th century. C. Truesdell wrote a re-
markable appraisal on the ingenious work of Newton in [8].

About four years after Newton, in 1674, Leibniz independently invented the in-
finitesimal calculus in Paris, published in 1684, [9], and gave a much deeper under-
standing of the infinitesimal limit for integration, using already the later Riemannian
sums from the 19th century, Leibniz (1676), [10], unpublished until the 20th century.

Moreover he falsificated Descartes’s findings for the “true measure of the living
force”, who assumed erroneously that the product of mass and velocity of a moved
body (which is not a scalar) ought to be a conservation quantity, and he discovered
the kinetic energy 1/2m ·v2, Leibniz (1686), [11], first without the factor 1/2, as the
wanted conservation quantity of a straight on moved body with mass m and velocity
v in quasi-static state.

With his important continuity principle he investigated short times before and
after the impact of two bodies and thus found the error in Descartes’ assumptions
for his impact laws, see Szabo (1987), [12], also applying Galilei’s finding of the
velocity v =

√
2gh of a falling or frictionless down gliding body due to gravity,

according to the potential property of the kinetic energy of this mass.
Leibniz had the teleological vision that the physical laws of nature fulfil extremal

principles for certain (scalar) conservation quantities, according to his postulate of
ours as the best of all possible worlds.

The very first conservation principle in mechanics, the principle of minimum po-
tential energy was established by Torricelli, secretary to Galilei, about 1630. He
postulated that the gravity centre of an assembly of masses with arbitrary connec-
tions and boundary conditions finds its stable static equilibrium in a configuration
for which the gravity centre takes the deepest possible position, published only in
1919, [13].

The birth of variational calculus can be dated with Jacob Bernoulli’s ingenious
solution of the brachistochrone problem in 1697, [14], first stated and approximately
solved by Galilei in his Discorsi from 1638, [15], then again posed by Jacob’s
younger brother Johann Bernoulli in Acta Eruditorum in 1696, and 7 solutions were
published in this journal by Leibniz in 1697, [14], [16]. Therein Jacob Bernoulli
anticipated Eulers’ idea of reducing the variational problem of an extremum of a
functional of the requested extremal function first into a finite number of equidistant
discrete problems of infinitesimal calculus for functions, Euler (1744), [17], also
using triangular test functions (with value 1 at the considered discrete point and 0 at
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the neighbouring points) and then performing the transition to infinitely many time
steps. Six other solutions of this problem were submitted, among them by Leib-
niz which will be treated later in this article; but Leibniz did not recognize that the
variational calculus was a new important branch of infinitesimal calculus which he
liked to dominate in Europe, and he did not contribute further to this new important
branch of mathematics.

A second article on the brachistochrone problem was published by Johann
Bernoulli with his own solution also in 1697, [16].

2 Snell’s Law of Light Refraction and Fermat’s Principle of
Least Time for the Optical Path Length

Snellius published in 1621 the law of light refraction which was better reasoned
later by Huygens with the principle that every point of a wave is the source of a new
wave. This law reads

sinα1 =
c1Δ t
AB

; sinα2 =
c2Δ t
AB

, (1a) (1)

yielding

sinα1

sinα2
=

c1

c2
= n ;

sinα1

c1
=

sin α2

c2
= const, (1b) (2)

n the refraction coefficient.
Fermat established the principle of the light path in minimal time using Cartesian

coordinates: T = s1/c1 + s2/c2 = n1/s1 + n2/s2,

T = n1
[
(x− x1)

2 + y2
1

]1/2
+ n2
[
(x2 − x)2 + y2

2

]1/2
. The stationarity condition writ-

ten with the derivative in the later formulation by Newton and Leibniz reads
dt/dx(P1,P2;x) = 0 → n1(x− x1)/s1 − n2(x2 − x)/s2 = 0 or

a) b)

Fig. 1 a) Refraction of light at the transition from a less dense medium (air) to a denser
medium (water) with the velocities c1 and c2; b) The common cycloid as the light path at
least time in a medium with linearly varying density
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sinα1/c1 = sinα2/c2. (2)

In case of linearly varying density from a more to a less dense medium, Fig. 1b,
the light path fulfills the optimality (stationarity) condition

TAB =

∫
ds/c(y)

√
y = min; dt = ds/c(y), yelding sinα(y)/c(y) = const (3)

which describes a common cycloid.
Fermat’s principle had significant influence on the finding of conservation prin-

ciples for physical problems in the 17th and 18th century. It will be shown in Sect. 3
that the famous problem of a guided frictionless down-gliding mass due to gravity
in shortest time, first posed by Galilei, [15], also has the solution of the common
cycloid.

3 The Mechanical Properties of the Catenary Curve

In the 17th century Galilei, Huygens, Leibniz as well as the brothers Bernoulli were
searching for the catenary or funicular curve. In 1690 Jacob Bernoulli called for the
“solution problematio funicularis” in Acta Eruditorum.

Leibniz discovered the symmetric exponential function as the catenary function

y =
a
2

(
ex/a + e−x/a

)
= acosh(x/a); y(x = 0) = a (4)

with the equal normal and curvature radius

n(y) = R(y) = y2/a. (5)

He also gave a representation of the exponential function by the sum of the cate-
nary curve and its derivative.

Furthermore, Leibniz found the catenary curve by a counter clock wise rolling
of a parabola on the horizontal axis, Fig. 2a, with the positions Y,Y ′,Y ′′,Y ′′′, . . . ,
where the normals are points of the catenary curve. And finally, Leibniz constructed
the logarithmus function from the catenary function, Fig. 2b.

The first term of the power expansion of the catenary function with respect to the
parameter f/�, Fig. 2a, yields the quadratic parabola y = f x(�− x)/4�2. This is the
first approximation of the cosh(x/a)-function for small f/�. In this case the vertical
line load is constant along the x-axis, whereas the line load of the catenary function
caused by dead weight obviously grows from the middle point to the edges.

Another important property of the catenary curve is related to the principle of
minimum potential energy of arbitrary connected masses, as outlined in section 1.
One gets the function of the hanging catenary curve by postulating the deepest pos-
sible position of the gravity centre, and one can show that it has minimal length.
Furthermore, the rotational surface of this catenary curve, the catenoid, has minimal
surface and is a solution of the Plateau problem.
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a) b)

Fig. 2 a) Construction of the funicular function by a rolling parabola; b) construction of the
natural logarithmus function from the catenary function

The first scientific application of catenary curves in civil engineering was realised
for the restoration of the dome of the St. Peter’s Cathedral in Rome which had
meridional cracks. Pope Benedikt XIV commissioned the Venecian monks Le Seur,
Boscovich and Poleni for a restoration proposal which was submitted in 1742 as
the “Parere di tre mathematici”, [18], see also Szabo (1987), [19]. They had the
ingenious idea to model the dome experimentally by mirroring it with chains and
hangings weights (imaging the real dead loads) with respect to the horizontal plane.
The meridian of the catenoid surface represents the pure membrane state of internal
forces, and the distances of this meridian with respect to the meridian curve of the
dome represent the lever arms of the meridian forces, yielding the bending moments
in the dome which caused the cracks. Therefore, the restoration was realized by two
iron stiffening rings at positions with the largest lever arms.

4 The So-Called Brachistochrone Problem of a Mass Gliding
Down Frictionless in Shortest Time

4.1 Galileo Galilei’s First Formulation and Approximated
Solution

Galilei was the first to pose this famous problem of optimization and variational
calculus in his “Discorsi” in 1638, [15]. Not only the position and the value of
a function with extremal property is requested but the whole function under the
condition of an extremum of an integral of this function and its derivatives within a
given domain.



Origins of Mechanical Principles 9

a) b)

Fig. 3 a) Construction of a polygon point B for a down gliding mass assuming the quarter of
a circle as the optimal curve; b) comparative polygons with the quarter of the circle as the
approximative optimal solution

Galilei got the experimental results for the gliding times:
t(BC) > t(BDC) > t(BDEC) > t(BDEFC) > t(BDEFGC), with the quarter of a
circle as the hull.

About 60 years later the problem was solved analytically with different challeng-
ing methods by Johann Bernoulli et al., subsections 4.6 – 4.9, yielding the common
cycloid as the solution of the problem.

4.2 Tautochrony or Isochrony Property of the Cycloid

Another access to the extremal properties of the cycloid was provided by Huygens
and Newton with the so-called tautochrony or isochrony property, Huygens (1673),
[20], as shown in Fig. 4.

With equal gliding times TABo and TC′Bo for arbitrary starting points A and C′ a
remarkable property of the cycloid was found. This property is related to Fig. 4b
and was also used by Huygens in his famous physical cycloid pendulum, yielding a
constant frequency for arbitrary amplitudes, realized by two cycloids on both sides
of the pendulum, at which the thread of the pendulum tangentially touches the cy-
cloids, thus reducing the free length of the thread.

a) b)

Fig. 4 a) The tautochrony property of the cycloid for a down-gliding mass due to gravity:
the times TABo and TC′Bo are equal; b) The evolute of the cycloid is a congruent cycloid
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Fig. 5 Proof of the tautochrony of the cycloid using equal area segments

The proof can be found in [20]; it uses the equality of two area segments, Fig. 5,

AADE = AABH due to tanα = HB/GH = AF/FE. (6)

4.3 Analysis of the Common Cycloid

For better understanding of the following sections it is helpful to treat first the anal-
ysis of the cycloid in a condensed format, Fig. 5 and 6.

The first calculation of the area and the arc length were published by Cavalieri
(1629).

Parametric representation:
coordinates normal and curvature radius 1st derivative

x = r(α − sinα)
y = r(1− cosα)

;
SK = n
SM = ρ = 2n

;
dy
dx

= cot
α
2

(7)

Ordinary differential equation of the cycloid, Leibniz (1686):

dy(x)
dx

=

√
x

c− x
; c = 2r ; n = 2r sin

α
2

; ρ = 2n = 4r sin
α
2

; OS
�

= 4r (8)

Area of the cycloid, Pascal (1659):

2 ·A OSR =

x=2πr∫
x=0

y dx =

x=2π∫
0

yẋ dt = r2

2π∫
0

(1− cost)2 dt = 3πr2 (9)

Scaled gliding time:

TOS =
1√
2g

=

αS∫
αO=0

(
sin2 α + 1− 2cosα + cos2 α

r(1− cosα)sin2 α

) 1
2

r sin α dα =

√
r
g

π (10)
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Fig. 6 Cycloid as the rolling or wheel curve on a plane

4.4 Today’s Variational Formulation of the Brachistochrone
Problem

Due to the singularity at y = 0 for t = 0, the representation x = f (y) is adequate.
The stationarity condition for the wanted extremal function reads, Fig. 7,

TAB =

tB∫
tA=0

dt(y) = min, (11)

with the velocity, Galilei (1638),

v(y) =
√

2gy. (12)

Fig. 7 The brachistochrone problem
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With the relations

v(y) =
ds(y)

dt
; dt =

ds(y)
v(y)

; ds(y) =
√

1+(x′(y))2dy (13)

the extremal principle for the non-linear implicit time functional reads

TAB =

tB∫
tA=0

√
1+(x′(y))2
√

2gy
dy → min . (14)

Its 1st variation has to be zero according to the stationarity condition

δT =
1√
2g

y1∫
y0

x′√
y(1+(x′)2)

δx′dy
!
= 0 (15)

and yields the ODE of the cycloid. The 2nd variation, the Hesse matrix (analytical
tangent), is the basis for a finite element method by using, e.g., linear trial and test
functions for the vertical convective coordinate η = y/h.

δ 2T =
1√
2g

y1∫
y0

δ x̄′
[

1√
y(1+(x′)2)

− (x′)2√
y(1+(x′)2)3

]
δx′dy (16)

The positive definit Hesse matrix assigns a minimum of the functional TAB.
It should be remarked that a change of the independent variable, i.e. y = f̃ (x)

instead of x = f (y), leads to a variational problem with a more complicated differ-
ential equation because of the singularity at the origin.

After these pre-informations from the point of view of the variational calculus of
today we turn back to the first solutions in the late 17th century.

4.5 Solutions of the Brachistochrone Problem After the Call of
Johann Bernoulli in Acta Eruditorum in 1696

Johann Bernoulli introduced the denotation “brachistochrone” (Greek, means curve
of shortest time) for Galilei’s problem and called for solutions in one years time in
Acta Eruditorum 1696. A total of seven solutions was submitted and published in
May 1697 in Acta Eruditorum, [14]; Johann and Jacob Bernoulli had conceived that
after the development of infinitesimal calculus this problem required a new branch
of analysis. The following 7 solutions were published in [14] and [16], see also Funk
(1970), [21], Stein, Wiechmann (2003), [22]:

• by Jacob Bernoulli: the mathematically most important one with the first devel-
opment of variational calculus;

• two by Johann Bernoulli himself: using ingenious geometrical and analytical
insight;
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• two by Leibniz: the concept for an approximated discrete solution and a geomet-
ric integration of the ODE of the cycloid;

• by Newton anonymously, without proof, provided only in 1724;
• by L’Hôpital and Tschirnhaus: analytical ansatz with incomplete proof.

4.6 Jacob Bernoulli’s Ingenious Derivation of the ODE for the
Cycloid through a Variational Problem

In anticipation of Euler’s idea of piecewise discrete triangular test functions for the
derivation of the 1st variation of a functional from 1743, Jacob Bernoulli introduced
the same idea for the first time in 1796/97. Starting from the known condition for a
minimum or maximum value of a function y= f (x) at a certain point, i.e. dy/dx= 0,
he first follows this idea for the extremum of the functional TAB =

∫
F[y,y′]dx = min

by dividing the time domain, parametrized by the coordinates yA = 0 and yB = 2r,
into a set of equidistant support points yi − h, yi, yi + h and choosing triangular test
functions for the wanted extremal function, Fig. 8.

Fig. 8 Jacob Bernoulli’s original figures for the variational derivation of the cycloid, pub-
lished in Acta Eruditorum, May 1697

The obvious discrete stationarity condition for the extremal time consists in the
equality of gliding times for the searched extremal curve and the neighboured test
curve for all intervals as

tCG + tGD
!
= tCL + tLD, (17)

yielding the differential equation of the cycloid for the limit case h → 0 as

ds
dx

∼ k
√

y
;

dx
dy

= tanα =

√
y

k2 − y
; k2 = 2r, (18)

where r is the radius of the rolling wheel.

In Euler’s derivation of the differential equation for the extremal function of
an isoparametric variational problem from 1744, [17], he used the same discrete
method with equidistant support points for the minimum problem
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Z∫
x=A

F [y(x), y′(x), x]dx = min , (19)

with the required extremal function y = f (x). Euler got the following wellknown
ODE for the general problem

Fy −
d
dx

Fy′ = 0 or Fx −
d
dy

Fy′ = 0 for x = f (y), (20)

whereas Jacob Bernoulli directly derived the differential equation of the cycloid as
the extremal function of the brachistochrone problem.

4.7 Johann Bernoulli’s Two Solutions

Johann Bernoulli presented two very tricky solutions, combining geometrical and
analytical experience and deep knowledge of function theory. They are both treated
in [14], see also [20], [21]. The first solution is got for the substitute problem of the
lightway in shortest time through a medium with linearly changing density, Fig. 1b
and equ. (3). From the related stationarity condition

sinϕi(xi)

vi(xi)
= const.; i = 1,2, . . . ,(n+ 1), (21)

where α (in equ. (3)) is replaced by ϕ and v is the velocity, two coordinate substitu-
tions yield directly the coordinates of the cycloid, equ. (7), in implicit form.

The second solution treats the brachistochrone problem, postulating the station-
arity condition as follows: the gliding time for a path increment of the stationary
solution must be equal to an infinitesimally varied path increment, Fig. 9, which in
principle is the same condition as Jacob Bernoulli’s criterion.

The stationarity condition reads

Δ t ′ −Δ t =
1√
2g

(
Δs(y+Δy)√

y+Δy
− Δs(y)

√
y

)
!
= 0

=
1√
2g

(
(ρ +Δρ)Δϕ√

y+Δy
− ρΔϕ

√
y

)
; Δy = Δρ · sinϕ ,

(22)

with
(ρ +Δρ)Δϕ√

y+Δy
=

ρ +Δρ
√

y

(
1− 1

2
Δy
y

+ . . .

)
Δϕ (23)

Δ t ′ −Δ t =
1√
2gy

(
1− ρ · sinϕ

2y

)
︸ ︷︷ ︸

!
=0

ΔρΔϕ !
= 0. (24)
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Fig. 9 Johann Bernoulli’s 2nd solution of the brachistochrone problem, postulating equal
incremental time steps for the stationary solution and a neighboured test function

This yields

ρ !
=

2y
sinϕ

and n =
y

sinϕ
=

ρ
2

with ϕ =
α
2
, (25)

which is a special property of the cycloid. Thus the wanted solution was determined.

4.8 Leibniz’ Draft of a Discrete Approximation Called
“Tachystoptota”

Leibniz contributed two very different solutions to the brachistochrone problem in
[14]. The first one is a discrete geometrical integration of the ODE of the cycloid by
means of the so-called “quadratrix”, [10], based on his transmutation theorem.

The second one treated here in more detail is a short draft of a direct numerical
method which is of considerable interest as a predecessor of a finite element method,
Fig. 10.

Leibniz did not present an algorithm for the discrete problem in Fig. 10b, al-
though he was asked for this by Johann Bernoulli in a letter.

Using only two equidistant “finite elements”, Fig. 11, the discrete solution is
shown by the author in the sequal.

From the continuous minimum problem

TAB =

B∫
A

dt =

yB∫
yA

ds(y)
v(y)

=

yB∫
yA

√
1+(x′(y))2
√

2gy
dy = min

x(y)
(26)

the discrete approximation with one discrete unknown x1(y1) reads
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a) b)

Fig. 10 a) Discrete stationarity condition: the gliding times tAB and tADB must be equal,
similar to Jacob Bernoullis derivation with discrete supports b) Leibniz’ draft of a discrete
variational method with equidistant support points E,C,C′ and triangular (local) test and trial
functions between these points

Fig. 11 Discrete variational algorithm for the brachystochrone problem with one unknown
nodal position x1, i.e. two equidistant “elements” with length h

TAB =
AD
vAD

+
DB
vDB

=
s1

v(h)
+

s2

v(2h)
=

√
h2 + x2
√

2gh
+

√
h2(l − x)2
√

2g ·2h
= min

xh(y)
. (27)

The discrete stationarity condition, not given by Leibniz, is

∂TAB

∂x
!
= 0 � x√

h2 + x2
· 1√

2gh
− l − x√

h2 +(l− x)2
· 1√

2g2h
!
= 0 (28)

� sin ϕ1

v1
− sinϕ2

v2

!
= 0, (29)

i.e. the same condition as for the optical path length in least time.
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This condition, equ. (28), yields the 4th order polynomial

f (x) = x4 − 2lx3 + x2(l2 + h2)+ 2h2lx− h2l2 !
= 0 (30)

or with

ξ :=
x
l

;

(
h
l

)2

=
1
4
� f (ξ ) = ξ 4 − 2ξ 3 +

5
4

ξ 2 +
1
8

ξ − 1
4

!
= 0. (31)

The linear approximation is x1,lin = 0,5l, and the exact solution results in

x → x1 = 0,69l (32)

as the first approximation with only two elements.

4.9 Discrete Variational Formulations by Schellbach

In 1851, Schellbach presented 12 discrete solutions of variational problems in the
sense of Leibniz’ draft for the brachistochrone problem with various boundary con-
ditions and for related problems in analytical form, also using equidistant support
points, Schallbach (1851), [23], Fig.12.

In this paper, entitled “Probleme der Variationsrechnung”, Schellbach points out
in the introduction: “The reasons for Bernoulli’s, Euler’s, and Lagrange’s methods
[for the variational calculus] cannot be clearly understood yet”, and: “the variational
calculus is the most abstract and most sublime area of all mathematics”.

This gives the information that variational calculus and moreover discrete varia-
tional calculus was not yet well-known in the mathematical community in the mid-
dle of the 19th century.

Fig. 12.1 & 12.2 Figures from K. H. Schellbach’s discrete formulation and variational set-
ting of the brachystochrone problem with coupled algebraic equations at equidistant points
A, A1, A2, . . . ,A′ in analytical form
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In this paper the following discrete problems are treated:

1. Minimum area of a polygon with fixed ends, given length, and extensions
(Fig. 12.1)

2. Minimum area of a rotational surface with given meridian arc length and bound-
ary conditions, with extended versions ((Fig. 12.1)

3. Brachistochrone problem with generalized boundary conditions in B and B
(Fig. 12.2)

4. Brachistochrone problem in a resisting medium (Fig. 12.2)
5. Problem similar to 3. & 4., but with the condition of largest or smallest final

velocity in B’ (Fig. 12.2)
6. to 12. Further problems of this type

The numerical calculation of Schellbach’s equations yields systems of non-linear
algebraic equations for the treated problems. This can be conceived as a first special
analytical version of the finite element method.

4.10 Finite Element Method for the Brachistochrone Problem in
Today’s Fashion

The variational problem of the brachistochrone reads, using the adequate coordinate
representation y = f (x), y the vertical coordinate in order to avoid a singularity at
the starting point A (Fig. 13)

T =
1√
2g

y1∫
y0

√
1+(x′)2

y
dy → min . (33)

Fig. 13 Finite element analysis of the brachistochrone problem
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The first variation (the stationarity condition) of the time functional follows as

δT =
1√
2g

y1∫
y0

x′√
y(1+(x′)2)

δx′dy
!
= 0; x′ =

dx(y)
dy

(34)

and the second variation (Hesse matrix, analytical tangent) reads

δ 2T =
1√
2g

y1∫
y0

δ x̄′
[

1√
y(1+(x′)2)

− (x′)2√
y(1+(x′)2)3

]
δx′dy. (35)

The discretization with linear finite elements for the dimensionless vertical co-
ordinate η = y/�e as parametrized time variable realizes the original ideas of Jacob
Bernoulli and Leibniz, Fig. 14.

Fig. 14 Linear finite element test and trial shape functions for the discretization of the
brachistochrone curve

The linear finite element Ansatz for the horizontal time-dependent coordinate
x(η), η = f (t), reads, Fig. 14,

xh =
2

∑
I=1

NI(η)xI ∀ Ωe ⊂ Ω (36)

with the shape functions


