Edited by
José Miguel Vela, Rafael Maldonado, Michel Hamon

In vivo Models for Drug Discovery

Volume 62
Series Editors:
R. Mannhold, H. Kubinyi, G. Folkers

Methods and Principles in Medicinal Chemistry
Edited by
José M. Vela, Rafael Maldonado, and
Michel Hamon

In Vivo Models for Drug Discovery
Methods and Principles in Medicinal Chemistry

Edited by R. Mannhold, H. Kubinyi, G. Folikers
Editorial Board
H. Buschmann, H. Timmerman, H. van de Waterbeemd, T. Wieland

Previous Volumes of this Series:

Liras, Spiros / Bell, Andrew S. (Eds.)
Phosphodiesterases and Their Inhibitors
2014
ISBN: 978-3-527-33219-9
Vol. 61

Dömling, Alexander (Ed.)
Protein-Protein Interactions in Drug Discovery
2013
ISBN: 978-3-527-33107-9
Vol. 56

Hanessian, Stephen (Ed.)
Natural Products in Medicinal Chemistry
2014
ISBN: 978-3-527-33218-2
Vol. 60

Kalgutkar, Amit S. / Dalvie, Deepak / Obach, R. Scott / Smith, Dennis A.
Reactive Drug Metabolites
2012
ISBN: 978-3-527-33085-0
Vol. 55

Lackey, Karen / Roth, Bruce (Eds.)
Medicinal Chemistry Approaches to Personalized Medicine
2013
ISBN: 978-3-527-33394-3
Vol. 59

Brown, Nathan (Ed.)
Bioisosteres in Medicinal Chemistry
2012
ISBN: 978-3-527-33015-7
Vol. 54

Brown, Nathan (Ed.)
Scaffold Hopping in Medicinal Chemistry
2013
ISBN: 978-3-527-33364-6
Vol. 58

Gohlke, Holger (Ed.)
Protein-Ligand Interactions
2012
ISBN: 978-3-527-32966-3
Vol. 53

Hoffmann, Rémy / Gohier, Arnaud / Pospisil, Pavel (Eds.)
Data Mining in Drug Discovery
2013
ISBN: 978-3-527-32984-7
Vol. 57

Kappe, C. Oliver / Stadler, Alexander / Dallinger, Doris
Microwaves in Organic and Medicinal Chemistry
Second, Completely Revised and Enlarged Edition
2012
ISBN: 978-3-527-33185-7
Vol. 52
Edited by José M. Vela, Rafael Maldonado, and Michel Hamon

In Vivo Models for Drug Discovery
Contents

List of Contributors XIX
Preface XXIX
A Personal Foreword XXXI

Part I Transversal Issues Concerning Animal Models in Drug Discovery 1

1 The 3Ns of Preclinical Animal Models in Biomedical Research 3
José Miguel Vela, Rafael Maldonado, and Michel Hamon
1.1 First N: The Need for Use of Animal Models 3
1.2 Second N: The Need for Better Animal Models 5
1.2.1 Unbiased Design 8
1.2.2 Comprehensive Reporting 8
1.2.3 Selection of the Animal Model Based on Its Validity Attributes 9
1.2.4 Appropriate Time and Dosing 11
1.2.5 Use of Biomarkers 12
1.2.6 Use of Various Animal Models 13
1.2.7 Quantitative, Multiple, and Cross-Predictive Measurements 14
1.2.8 Pharmacokinetic–Pharmacodynamic Integration 15
1.2.9 Predefinition and Adherence to the Desired Product Profile 16
1.2.10 Comparison with Gold Standard References 18
1.2.11 Reverse Translation/Backtranslation (Bedside-to-Bench Approach) 18
1.3 Third N: The Need for 3Rs Guiding Principles 19
References 22

2 Alternative Models in Drug Discovery and Development Part I: In Silico and In Vitro Models 27
Luz Romero and José Miguel Vela
2.1 Introduction 27
2.2 In Silico Models 34
2.2.1 Quantitative Structure–Activity Relationship 34
2.2.2 Biokinetic Modeling 37
2.2.3 Disease- and Patient-Specific In Silico Models 42
2.3 In Vitro Models 43
2.3.1 Primary Cells, Cell Lines, Immortalized Cell Lines, and Stem Cells 44
2.3.2 Advanced In Vitro Models for the Prediction of Drug Toxicity 46
2.3.3 In Vitro Tumor Models 47
References 50

3 Alternative Models in Drug Discovery and Development Part II: In Vivo Nonmammalian and Exploratory/Experimental Human Models 59
 Luz Romero and José Miguel Vela
3.1 Introduction 59
3.2 In Vivo Nonmammalian Models 59
 3.2.1 Zebrafish 61
 3.2.2 D. melanogaster 66
 3.2.3 C. elegans 71
3.3 In Vivo Exploratory and Experimental Human Models 74
 3.3.1 Phase 0 (Exploratory Human Models): Microdosing Studies 76
 3.3.2 Phase IB/IIA (Proof-of-Concept) Studies: Experimental Human Models 81
References 84

4 Ethical Issues and Regulations and Guidelines Concerning Animal Research 91
 David Sabaté
4.1 Introduction 91
4.2 Current Use of Animals in Biomedical and Pharmaceutical Research 92
4.3 Ethical Concerns and Positions on Animal Research 93
4.4 General Principles for the Ethical Use of Animals in Research 95
 4.4.1 The 3Rs Principles (Replacement, Reduction, and Refinement) 95
 4.4.2 The Principle of Justification 96
 4.4.3 The Principle of Responsibility 97
4.5 Regulatory Framework for Use of Animals in Research 98
 4.5.1 European Union 98
 4.5.2 The United States 100
 4.5.3 Canada 100
 4.5.4 Japan 100
 4.5.5 Australia 101
 4.5.6 India 101
 4.5.7 China 101
 4.5.8 Brazil 102
 4.5.9 Countries without a Specific Legal Framework 102
Acknowledgment 102
References 102
5 Regulatory Issues: Safety and Toxicology Assessment 107
Antonio Guzmán
5.1 Introduction 107
5.1.1 Animal Testing 107
5.1.2 Regulatory Context 109
5.1.3 Clinical Context 109
5.2 Animal Species in Toxicology Studies 110
5.2.1 Rodents 111
5.2.2 Nonrodents 112
5.2.3 Nonconventional Animal Models 114
5.3 Toxicology Studies 114
5.3.1 General Principles 114
5.3.2 General and Repeated Dose Toxicity Studies 116
5.3.3 Safety Pharmacology 118
5.3.4 Genotoxicity 119
5.3.5 Development and Reproductive Toxicity Studies 122
5.3.6 Carcinogenicity Studies 124
5.4 Translation to Clinics: Limitations and Difficulties 126
References 127

6 Generation and Use of Transgenic Mice in Drug Discovery 131
Guillaume Pavlovic, Véronique Brault, Tania Sorg, and Yann Hérault
6.1 Introduction 131
6.2 Improved Mouse Genetic Engineering 133
6.2.1 Recent Technical Developments 133
6.2.2 The Advent of New Mouse Mutant Resource: One Stop Shop 133
6.3 Functional Evaluation and Uses of Mouse Models 136
6.3.1 Standardization and Harmonization 136
6.3.2 Genetic Background and Environmental Influences 137
6.3.3 Challenges Ahead 137
6.3.4 Target Identification and Translation to Humans 138
6.3.5 Use of GEMMs in Pharmaceutical Industry and Risk Assessment 139
6.4 Translation to Clinics: Limitations and Difficulties 140
6.5 Perspectives 142
Acknowledgments 143
References 143

7 In Vivo Brain Imaging in Animal Models: A Focus on PET and MRI 149
Fabien Chauveau, Mathieu Verdurand, and Luc Zimmer
7.1 Introduction: Role of Animal in In Vivo Imaging 149
7.1.1 In Vivo Imaging as a Translational Approach for Basic Research 149
7.1.2 In Vivo Imaging in Animal Models in the Pharmaceutical Industry 150
7.1.3 In Vivo Imaging in Animal Models and the 3R Principles 150
7.2 The Choice of the Right Imaging Modality for Brain Imaging 151
7.3 Small Animal Magnetic Resonance Imaging 152
7.3.1 Principles 152
7.3.2 Magnetic Resonance Spectroscopy 152
7.3.3 Magnetic Resonance Imaging 153
7.4 Positron Emission Tomography 155
7.4.1 Basic Principles and Instrumentation 155
7.4.2 PET and Neuronal Metabolism 155
7.4.3 PET and Brain Receptors and Transporters 156
7.4.4 PET and Receptor Occupancy 158
7.4.5 PET and Neurotransmitter Release 159
7.5 Clinical Translation: Limitations and Difficulties 159
7.5.1 Anesthesia 160
7.5.2 Spatial Resolution and Sensitivity 160
7.5.3 The Mass Effect of Injected Tracers 161
7.5.4 Multimodal PET–MRI for Better Clinical Translation 162
References 163

Part II Animal Models in Specific Disease Areas of Drug Discovery 167

8 Substance Abuse and Dependence 169
Elena Martín-García, Patricia Robledo, Javier Gutiérrez-Cuesta, and Rafael Maldonado
8.1 Introduction 169
8.2 Difficulties to Model Addiction in Animals 170
8.3 Tolerance, Sensitization, and Physical Withdrawal 172
8.3.1 Tolerance 172
8.3.2 Sensitization 173
8.3.3 Physical Manifestations of Withdrawal 174
8.3.4 Affective Manifestations of Withdrawal 175
8.4 Reward and Reinforcement 177
8.4.1 Drug Discrimination 177
8.4.2 Conditioned Place Preference 178
8.4.3 Intracranial Self-Stimulation 180
8.4.4 Self-Administration 182
8.5 Translation to Clinics: Limitations and Difficulties 184
References 186

9 Mood and Anxiety Disorders 193
Guy Griebel and Sandra Beeské
9.1 Introduction 193
9.2 Animal Models of Anxiety Disorders 194
9.2.1 Preclinical Measures of Anxiety 194
9.2.2 Preclinical Anxiety Models and Endophenotypes 195
9.3 Animal Models of Mood Disorders 197
10 **Schizophrenia**
Ronan Depoortere and Paul Moser

10.1 Introduction
10.2 Models Amenable to Use in Screening
10.2.1 Models Based on the Use of Pharmacological Agents
10.2.1.1 Dopaminergic Agonists
10.2.1.2 NMDA/Glutamate Receptor Antagonists
10.2.1.3 Other Pharmacological Agents Used to Induce Behavioural Changes
10.2.1.4 5-HT$_2A$ Receptor Agonists
10.2.1.5 Cannabinoid Receptor Agonists
10.2.1.6 Muscarinic Receptor Antagonists
10.2.1.7 Glycine B Receptor Antagonists
10.2.2 Models Not Based on the Use of Pharmacological Agents
10.2.2.1 Conditioned Avoidance Response
10.2.2.2 Potentiation of PPI of the Startle Reflex
10.2.3 Models More Time Consuming and/or Difficult to Implement
10.2.3.1 Models Aimed at Reproducing More Complex Symptoms of Schizophrenia
10.2.3.2 Models Aimed at Reproducing the Chronic Nature of Schizophrenia
10.2.3.3 Models Based on Genetic Manipulations
10.2.4 Models for Side Effects
10.2.4.1 Models for Motor Side Effects
10.2.4.2 Hyperprolactinemia
10.2.4.3 Sedation and Motor Incoordination
10.2.4.4 Models for Cognitive Side Effects
10.2.4.5 Metabolic Disorders Models
10.2.4.6 Models for Cardiovascular Effects
10.3 Translation to the Clinic: Limitations and Difficulties
10.3.1 Use of “Standard Subjects”
10.3.2 From Here to . . . ?
References

11 **Migraine and Other Headaches**
Inger Jansen-Olesen, Sarah Louise T. Christensen, and Jes Olesen

11.1 Introduction
11.2 Vascular Models
11.2.1 In Vitro 232
11.2.2 In Vivo 233
11.3 Neurogenic Inflammation 234
11.4 Nociceptive Activation of the Trigeminovascular System 234
11.4.1 Electrophysiological Recordings on Primary Dural Afferents in Trigeminal Ganglion 237
11.4.2 Electrophysiological Recordings in Trigeminal Nucleus Caudalis 239
11.4.3 Histological Markers after Nociceptive Stimulation of the Trigeminovascular System 239
11.5 Cortical Spreading Depression 240
11.6 Human Experimental Migraine Provoking Models 241
11.7 Animal Experimental Migraine Provoking Models 242
11.8 Transgenic Models 246
11.9 Behavioral Models 246
11.9.1 Allodynia or Hyperalgesia 247
11.9.2 Face Grooming 248
11.9.3 Photophobia 248
11.9.4 Various Behaviors 249
11.10 Translation to Clinics: Limitations and Difficulties 249
References 250

12 Nociceptive, Visceral, and Cancer Pain 261
Christophe Mallet, Denis Ardid, and David Balayssac
12.1 Introduction 261
12.2 Acute Pain Tests 261
12.2.1 Introduction 261
12.2.2 Electrical Stimulus 263
12.2.3 Thermal Stimulus 264
12.2.4 Mechanical Stimulus 264
12.2.5 Chemical Stimulus 265
12.3 Visceral Pain Models 265
12.3.1 Introduction 265
12.3.2 Pain Achievement Test 266
12.3.3 Animal Models 267
12.3.4 Pathophysiology and Pharmacology 269
12.4 Cancer Pain Models 270
12.4.1 Introduction 270
12.4.2 Pain Assessment in Animal Models of Cancer Pain 270
12.4.3 Animal Models 271
12.4.4 Pathophysiology and Pharmacology 272
12.4.5 Conclusions 272
12.5 Translation to Clinics: Difficulties and Limitations 273
12.5.1 Acute Pain Tests 273
12.5.2 Visceral Pain Models 274
13 Inflammatory, Musculoskeletal/Joint (OA and RA), and Postoperative Pain 283

Laurent Diop and Yassine Darbaky

13.1 Introduction: Evaluation of Pain in Animal Models 283
13.2 Inflammatory Pain 287
13.2.1 Formalin Test 287
13.2.2 Carrageenan-Induced Hyperalgesia 287
13.2.3 Complete Freund’s Adjuvant-Induced Hyperalgesia 288
13.2.4 Capsaicin-Induced Hyperalgesia 288
13.3 Musculoskeletal/Joint Osteoarthritis (OA) and Rheumatoid Arthritis (RA) Pain 289
13.3.1 Osteoarthritis Pain Models 289
13.3.2 Rheumatoid Arthritis Pain Models 293
13.4 Postoperative Pain 297
13.4.1 Incisional 298
13.4.2 Laparotomy 299
13.4.3 Ovariohysterectomy 299
13.4.4 Other Models of Postoperative Pain 299
13.5 Translation to Clinics: Limitations and Difficulties 300
References 302

14 Neuropathic Pain 305

Said M’Dahoma, Sylvie Bourgoin, and Michel Hamon

14.1 Introduction 305
14.2 Main Types of Neuropathic Pain in Humans 306
14.2.1 Neuropathic Pain Caused by Peripheral Nerve Lesions 306
14.2.1.1 Diabetes-Induced Neuropathic Pain 306
14.2.1.2 Human Immunodeficiency Virus-Related Pain 306
14.2.1.3 Postherpetic Neuralgia 307
14.2.1.4 Neuropathic Pain Caused by Anticancer Drugs 307
14.2.2 Neuropathic Pain Caused by Central Lesions 307
14.2.2.1 Spinal Cord Injury 307
14.2.2.2 The Various Types of Pain in SCI Patients 308
14.3 Modelization of Chronic Pain in Rodents 309
14.3.1 Models of Peripheral Nerve Injury 309
14.3.1.1 Nerve Section 309
14.3.1.2 Nerve Ligation, Compression, and Other Lesion Procedures 310
14.3.1.3 Drug- and Virus-Induced Neuropathic Pain 314
14.3.2 Models of Spinal Cord Injury 318
14.3.2.1 Spinal Cord Contusion 318
14.3.2.2 Clip Compression Injury 319
14.3.2.3 Spinal Cord Transection 319
14.3.2.4 Spinal Cord Ischemia 319
14.3.3 Neuropathic-Like Pain Evoked by Chemicals Administered at the Spinal Level 320
14.3.3.1 Intrathecal Administration of ATP 320
14.3.3.2 Intrathecal Administration of BDNF 320
14.3.3.3 Excitotoxic Injury to the Spinal Cord 321
14.4 Translation to Clinics: Limitations and Difficulties 321
References 324

15 Obesity and Metabolic Syndrome 333
Sunil K. Panchal, Maharshi Bhaswant, and Lindsay Brown
15.1 Introduction 333
15.2 Why Metabolic Syndrome? 333
15.3 Classical Animal Models of Obesity and Metabolic Syndrome 335
15.3.1 Genetic Models of Obesity and Diabetes 336
15.3.2 Artificially Induced Metabolic Syndrome in Animals 337
15.3.2.1 Monosodium Glutamate-Induced Obesity 338
15.3.2.2 Intrauterine Growth-Restricted Rats 338
15.4 Human Experimental Models 344
15.5 Translation to Clinics: Difficulties and Limitations 344
References 344

16 Cognitive Disorders: Impairment, Aging, and Dementia 349
Nick P. van Goethem, Roy Lardenoije, Konstantinos Kompotis, Bart P.F. Rutten, Jos Prickaerts, and Harry W.M. Steinbusch
16.1 Introduction 349
16.2 Pharmacological Models 349
16.2.1 Inhibition of Energy/Glucose Metabolism 350
16.2.2 Cholinergic Interventions 350
16.2.3 Glutamatergic Antagonists 352
16.2.4 Serotonergic Intervention 353
16.3 Aging and Transgenic Models 353
16.3.1 Normal Aging 354
16.3.2 Alzheimer’s Disease 355
16.3.3 Parkinson’s Disease 358
16.3.4 Huntington’s Disease 358
16.3.5 Frontotemporal Dementia 359
16.3.6 Down Syndrome 360
16.4 Translation to Clinics: Limitations and Difficulties 360
References 362

17 Stroke and Traumatic Brain Injury 367
Dominique Lerouet, Valérie C. Besson, and Michel Plotkine
17.1 Introduction 367
17.2 Stroke Models 368
17.2.1 Global Stroke Models 368
17.2.2 Focal Stroke Models 369
17.2.2.1 Extravascular Models 369
17.2.2.2 Photothrombosis Model 370
17.2.2.3 Intraluminal Occlusion Model 370
17.2.2.4 Thromboembolic Models 370
17.3 Traumatic Brain Injury Models 371
17.3.1 TBI Models with Craniotomy 372
17.3.1.1 Weight-Drop Model 372
17.3.1.2 Lateral Fluid Percussion Model 372
17.3.1.3 Controlled Cortical Impact Model 372
17.3.2 TBI Models without Craniotomy 372
17.3.2.1 Weight-Drop Model 373
17.3.2.2 Impact/Acceleration Model 373
17.3.2.3 Acceleration/Deceleration Model 373
17.3.3 Blast Injury Models 373
17.3.4 Repetitive TBI Models 374
17.4 Outcome Assessment 375
17.5 Translation to Clinics: Limitations and Difficulties 377
17.5.1 The Actual Target: From the Neuron to the Neurogliovascular Unit 377
17.5.2 From Bench to Bedside to Bench: Recommendations for Improving the Translational Research 378
References 379

18 Movement Disorders: Parkinson's Disease 387
Houman Homayoun and Christopher G. Goetz
18.1 Introduction 387
18.1.1 Parkinson's Disease 387
18.2 Drug- and Toxin-Based Models of PD 389
18.2.1 Reserpine 389
18.2.2 Haloperidol 390
18.2.3 6-OHDA 390
18.2.4 MPTP 393
18.2.5 Rotenone 396
18.2.6 Paraquat and Other Environmental Toxins 398
18.3 Genetic and Functional Models of PD 398
18.3.1 Rodent Genetic Models 399
18.3.1.1 Adult-Onset Rodent Gene-Based Models 401
18.3.2 Rodent Function-Based Models 403
18.3.3 Nonrodent Genetic Models of PD 404
18.4 Translation to Clinics: Limitations and Difficulties 405
References 409
19 Epilepsy: Animal Models to Reproduce Human Etiopathology 415
Isabelle Guillemain, Christophe Heinrich, and Antoine Depaulis

19.1 Introduction 415
19.2 What Animal Species to Use to Model Epilepsy? 416
19.3 Which Type of Models Provide the Most Reliable Information on the Pathophysiology of Epilepsies? 417
19.4 Modeling Four Prototypic Forms of Epilepsy 418
19.4.1 Idiopathic Generalized Epilepsies with Convulsive Seizures 418
19.4.2 Idiopathic Generalized Epilepsies with Absence Seizures 419
19.4.3 Focal Epilepsies Associated with Cortical Dysplasia 420
19.4.4 Modeling Focal Epilepsies Associated with Hippocampal Sclerosis 422
19.5 Translation to Clinics: Limitations and Difficulties 423
References 425

20 Lung Diseases 431
Laurent Boyer, Armand Mekontso-Dessap, Jorge Boczkowski, and Serge Adnot

20.1 Introduction 431
20.2 Animal Models of Lung Emphysema or Chronic Obstructive Pulmonary Disease 432
20.2.1 Cigarette Smoke-Induced COPD 432
20.2.2 COPD Induced by Tracheal Elastase Instillation 433
20.2.3 Genetically Modified Models of COPD 434
20.2.4 Conclusions 434
20.3 Animal Models of Pulmonary Hypertension 434
20.3.1 Relevance of Experimental Animal Models of PH to Human PH 435
20.3.2 The Monocrotaline Model of Pulmonary Hypertension 436
20.3.3 Fawn-Hooded Rats 437
20.3.4 Hypoxic PH 437
20.3.5 SU5416 Treatment Combined with Hypoxia in Mice 438
20.3.6 PH Related to COPD or Smoke Exposure 439
20.4 Animal Models of Fibrotic Lung Diseases 439
20.4.1 Bleomycin-Induced Pulmonary Fibrosis 439
20.4.2 Other Models 440
20.5 Animal Models of Acute Respiratory Distress Syndrome 440
20.6 Translation to Clinics: Limitations and Difficulties 445
References 446

21 Heart Failure 449
Jin Bo Su and Alain Berdeaux

21.1 Introduction 449
21.2 Hypertension-Related Heart Failure 450
21.3 Pressure and Volume Overload-Induced Heart Failure 452
21.3.1 Pressure Overload-Induced Heart Failure 452
21.3.2 Volume Overload-Induced Heart Failure 454
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.3.3</td>
<td>Double Pressure and Volume Overload-Induced Heart Failure</td>
<td>454</td>
</tr>
<tr>
<td>21.4</td>
<td>Toxic Molecule-Induced Heart Failure</td>
<td>455</td>
</tr>
<tr>
<td>21.4.1</td>
<td>Adriamycin-Induced Heart Failure in Rats</td>
<td>455</td>
</tr>
<tr>
<td>21.4.2</td>
<td>Monocrotaline-Induced Right Ventricular Heart Failure</td>
<td>455</td>
</tr>
<tr>
<td>21.5</td>
<td>Heart Failure Models Related to Myocardial Ischemia and/or Myocardial Infarction</td>
<td>456</td>
</tr>
<tr>
<td>21.5.1</td>
<td>Myocardial Ischemia and/or Myocardial Infarction</td>
<td>456</td>
</tr>
<tr>
<td>21.5.2</td>
<td>Coronary Microembolization-Induced Heart Failure</td>
<td>457</td>
</tr>
<tr>
<td>21.6</td>
<td>Pacing-Induced Heart Failure</td>
<td>458</td>
</tr>
<tr>
<td>21.7</td>
<td>Gene Mutation-Induced Cardiomyopathies</td>
<td>460</td>
</tr>
<tr>
<td>21.7.1</td>
<td>Cardiomyopathic Hamsters</td>
<td>460</td>
</tr>
<tr>
<td>21.7.2</td>
<td>Golden Retriever Muscular Dystrophy Dogs</td>
<td>460</td>
</tr>
<tr>
<td>21.7.3</td>
<td>Genetic Modification-Induced Cardiomyopathies in Mice</td>
<td>461</td>
</tr>
<tr>
<td>21.8</td>
<td>Translation to Clinics: Limitations and Difficulties</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>462</td>
</tr>
</tbody>
</table>

22
Endocrine Disorders
Thomas Cuny, Anne Barlier, and Alain Enjalbert

22.1 Introduction
22.2 Animal Models in Autoimmune Endocrine Diseases
22.2.1 Animal Models of Autoimmune Thyroiditis
22.2.2 Animal Models for Addison’s Disease
22.2.3 Animal Models for Other Endocrine Autoimmune Diseases
22.3 Animal Models in Endocrine Tumors
22.3.1 Multiple Endocrine Neoplasia Syndromes
22.3.2 Adrenal Tumorigenesis
22.3.3 Thyroid Tumorigenesis
22.3.4 Pituitary Tumorigenesis
22.4 Animal Models in Endocrine Physiology: Organogenesis, Reproduction, and Metabolism
22.4.1 Pituitary Development Disorders: Lessons from Animal Models
22.4.2 Animal Models and Reproductive Function
22.4.3 Animal Models Used in Calcium Homeostasis Studies
22.5 Translation to Clinics: Limitations and Difficulties
References

23
Gastrointestinal Disorders: A Patho-biotechnology Approach to Probiotic Therapy
Roy D. Sleator

23.1 Introduction
23.2 Delivery: Improving Probiotic Resistance to Process-Induced Stresses and Storage Conditions
23.3 Survival: Improving Probiotic–Host Colonization
24 Renal Disorders 505

Dominique Guerrot, Christos Chatziantoniou, and Jean-Claude Dussaule

24.1 Introduction 505
24.2 Animal Models 506
24.2.1 The RenTg Model of CKD 507
24.2.1.1 Benefits of the RenTg Model 509
24.2.2 Unilateral Ureteral Obstruction 510
24.2.2.1 Technical Aspects 510
24.2.2.2 Pathology and Pathophysiology 511
24.2.2.3 Clinical Relevance and Limits 511
24.2.3 Renal Ischemia–Reperfusion 511
24.2.3.1 Technical Aspects 512
24.2.3.2 Pathology and Pathophysiology 512
24.2.3.3 Clinical Relevance and Limits 513
24.2.4 Experimental Alloimmune Glomerulonephritis 513
24.2.4.1 Technical Aspects 513
24.2.4.2 Pathology and Pathophysiology 514
24.2.4.3 Clinical Relevance and Limits 514
24.2.5 Angiotensin II-Mediated Hypertensive Nephropathy 514
24.2.5.1 Technical Aspects 515
24.2.5.2 Pathology and Pathophysiology 515
24.2.5.3 Clinical Relevance and Limits 516
24.2.6 L-NAME-Mediated Hypertensive Nephropathy 516
24.2.6.1 Technical Aspects 516
24.2.6.2 Pathology and Pathophysiology 516
24.2.6.3 Clinical Relevance and Limits 517
24.3 Translation to Clinics: Limitations and Difficulties 518
References 518

25 Genitourinary Disorders: Lower Urinary Tract and Sexual Functions 523

Pierre Clément, Delphine Behr-Roussel, and François Giuliano

25.1 Introduction 523
25.2 Lower Urinary Tract Function 523
25.2.1 Physiology of Micturition 524
25.2.2 Investigation of Lower Urinary Tract Function 524
25.2.2.1 Cystometry Evaluation 524
25.2.2.2 Evaluation of Urethral Function 525
25.2.2.3 Bladder Afferent Recording 526
25.2.3 Pathophysiological Models 527
List of Contributors

Serge Adnot
Université Paris-Est Créteil (UPEC)
Faculté de Médecine
Hôpital Henri Mondor
51 Avenue du Maréchal de Lattre de Tassigny
94010 Créteil Cedex
France

and

INSERM U1107
63001 Clermont-Ferrand
Faculté de médecine
Place Henri Dunant
France

Denis Ardid
Clermont Université (Université d’Auvergne)
NEURO-DOL
Faculté de médecine
Place Henri Dunant
63000 Clermont-Ferrand
France

and

CHU Clermont-Ferrand
Toxicology department
63003 Clermont-Ferrand
France

Anne Barlier
AP-HM, Conception
Laboratory of Molecular Biology
147 Bd Baille
13855 Marseille Cedex
France

and

Aix-Marseille University
Faculté de Médecine Nord
Laboratoire CRN2M, UMR 7286
CNRS
51 Bd Pierre Dramard
13344 Marseille Cedex 15
France

David Balayssac
Clermont Université (Université d’Auvergne)
NEURO-DOL
63000 Clermont-Ferrand
France
List of Contributors

Sandra Beeské
Sanofi
Exploratory Unit
1 avenue Pierre Brossolette
91385 Chilly-Mazarin
France

Delphine Behr-Roussel
Pelvipharm Laboratories
2, avenue de la source de la Bièvre
78390 Montigny le Bretonneux
France

and

University of Versailles-St Quentin en Yvelines
School of Health Sciences
SIRIUS/EA4501
2, avenue de la source de la Bièvre
78390 Montigny le Bretonneux
France

Alain Berdeaux
Université Paris-Est Créteil (UPEC)
Faculté de Médecine
Laboratoire de Pharmacologie
INSERM U955 (équipe 3 IMRB)
Rue du Général Sarrail, 8
94010 Créteil Cedex
France

Valérie C. Besson
Université Paris Descartes
Faculté de Pharmacie
Laboratoire de Pharmacologie
EA 4475 “Pharmacologie de la Circulation Cérébrale”
4, avenue de l’Observatoire
75006 Paris Cedex 06
France

Maharshi Bhaswant
Victoria University
College of Health & Biomedicine
St Albans, Melbourne 3021
Australia

Jorge Boczowski
Université Paris-Est Créteil (UPEC)
Faculté de Médecine
Hôpital Henri Mondor
51 Avenue du Maréchal de Lattre de Tassigny
94010 Créteil Cedex
France

Sylvie Bourgoin
Université Pierre et Marie Curie
Faculty of Medicine
Neuropsychopharmacology Unit
INSERM U894 – CPN
site Pitié-Salpêtrière
91, boulevard de l’Hôpital
75634 Paris Cedex 13
France

Laurent Boyer
Université Paris-Est Créteil (UPEC)
Faculté de Médecine
Hôpital Henri Mondor
51 Avenue du Maréchal de Lattre de Tassigny
94010 Créteil Cedex
France

Véronique Brault
Université de Strasbourg
Institut Clinique de la Souris
ICS-MCI, PHENOMIN, GIE CERBM
CNRS, INSERM
1 rue Laurent Fries
67404 Illkirch
France
Université de Strasbourg
Institut de Génétique Biologie Moléculaire et Cellulaire
IGBMC, GIE CERBM
CNRS, INSERM
UMR7104, UMR964
1 rue Laurent Fries
67404 Illkirch
France

Lindsay Brown
University of Southern Queensland
School of Health
Nursing and Midwifery
Toowoomba, Queensland 4350
Australia

Christos Chatziantoniou
Inserm UMR S 1155
Sorbonne Universités
UPMC Univ Paris 06
4 rue de la Chine
75020 Paris
France

and

Université Pierre et Marie Curie
Paris
France

Fabien Chauveau
Université Lyon 1
Lyon Neuroscience Research Center
CNRS, INSERM
59 Bd Pinel
69003 Lyon
France

and

CERMEP-Imagerie du Vivant
Lyon
France

Sarah Louise T. Christensen
University of Copenhagen
Faculty of Health Sciences
Glostrup Hospital
Department of Neurology and
Glostrup Research Institute
Danish Headache Center
Nordre Ringvej 57
2600 Glostrup
Denmark

Pierre Clément
Pelvipharm Laboratories
2, avenue de la source de la Bièvre
78390 Montigny le Bretonneux
France

and

University of Versailles-St Quentin en Yvelines
School of Health Sciences
SIRIUS/EA4501
2, avenue de la source de la Bièvre
78390 Montigny le Bretonneux
France

Thomas Cuny
University Hospital of Nancy-Brabois
Department of Endocrinology and
Medical Gynaecology
Rue du Morvan
54511 Vandoeuvre-Les-Nancy Cedex
France
List of Contributors

and

Aix-Marseille University
Faculté de Médecine Nord
Laboratoire CRN2M, UMR 7286
CNRS
51 Bd Pierre Dramard
13344 Marseille Cedex 15
France

Yassine Darbaky
ANS Biotech
Faculté de Médecine et de
Pharmacologie
28, place Henri Dunant
63000 Clermont-Ferrand
France

Antoine Depaulis
INSERM U836
Dynamics of Epileptic Synchronous
Networks
38042 Grenoble Cedex 9
France

and

Université Joseph Fourier
Grenoble Institut des Neurosciences
38042 Grenoble Cedex 9
France

Ronan Deportère
Centre de Recherche Pierre-Fabre
Neuropsychopharmacology Unit
17 avenue Jean Moulin
81106 Castres
France

Laurent Diop
ANS Biotech
Faculté de Médecine et de
Pharmacologie
28, place Henri Dunant
63000 Clermont-Ferrand
France

Jean-Claude Dussaule
Inserm UMR S 1155
Sorbonne Universités
UPMC Univ Paris 06
4 rue de la Chine
75020 Paris
France

and

Saint-Antoine Hospital
HUEP, AP-HP
Department of Physiology
184 rue du faubourg Saint-Antoine,
75012 Paris
France

Alain Enjalbert
AP-HM, Conception
Laboratory of Molecular Biology
147 Bd Baille
13855 Marseille Cedex
France

and

Aix-Marseille University
Faculté de Médecine Nord
Laboratoire CRN2M, UMR 7286
CNRS
51 Bd Pierre Dramard
13344 Marseille Cedex 15
France

François Giuliano
Pelvipharm Laboratories
2, avenue de la source de la Bièvre
78390 Montigny le Bretonneux
France
List of Contributors

Christopher G. Goetz
Rush University Medical Center
Department of Neurology
1725 West Harrison Street
Chicago, IL 60612
USA

Guy Griebel
Sanofi
Exploratory Unit
1 avenue Pierre Brossolette
91385 Chilly-Mazarin
France

Dominique Guerrot
INSERM Unit 1096
Rouen University Medical School
22 Boulevard Gambetta
76183 Rouen
France

Isabelle Guillemain
INSERM U836
Dynamics of Epileptic Synchronous Networks
38042 Grenoble Cedex 9
France

Javier Gutiérrez-Cuesta
Universitat Pompeu Fabra
Laboratori de Neurofarmacologia
Parc de Recerca Biomedica de Barcelona (PRBB)
Dr. Aiguader 88
08003 Barcelona
Spain

Antonio Guzmán
Esteve
Department of Toxicology
Drug Discovery & Preclinical Development
Parc Cientific Barcelona
Baldiri Reixac 4–8
08028 Barcelona
Spain
List of Contributors

Michel Hamon
Université Pierre et Marie Curie
Faculty of Medicine
Neuropsychopharmacology Unit
INSERM U894 – CPN
site Pitié-Salpêtrière
91, boulevard de l’Hôpital
75634 Paris Cedex 13
France

Christophe Heinrich
INSERM U836
Dynamics of Epileptic Synchronous Networks
38042 Grenoble Cedex 9
France

and

Université Joseph Fourier
Grenoble Institut des Neurosciences
38042 Grenoble Cedex 9
France

Yann Hérault
Université de Strasbourg
Institut Clinique de la Souris
ICS-MCI, PHENOMIN, GIE CERBM
CNRS, INSERM
1 rue Laurent Fries
67404 Illkirch
France

and

Université de Strasbourg
Institut de Génétique Biologique Moléculaire et Cellulaire
IGBMC, GIE CERBM
CNRS, INSERM
UMR7104, UMR964
1 rue Laurent Fries
67404 Illkirch
France

Houman Homayoun
University of Pittsburgh Medical Center
Department of Neurology
3471 Fifth Ave, suite 810
Pittsburgh, PA 15213
USA

Inger Jansen-Olesen
University of Copenhagen
Faculty of Health Sciences
Glostrup Hospital
Department of Neurology and Glostrup Research Institute
Danish Headache Center
Nordre Ringvej 57
2600 Glostrup
Denmark

Konstantinos Kompotis
Maastricht University
School for Mental Health and Neuroscience
Department of Neuroscience
Universiteitsweg 50
6229 ER Maastricht
The Netherlands

and

Transgenèse et Archivage d’Animaux Modèles
TAAM UPS44, CNRS, PHENOMIN
3B rue de la Férollerie
45071 Orléans Cedex 2
France
Roy Lardenoije
Maastricht University
School for Mental Health and Neurosciences
Department of Neuroscience
Universiteitspark 150
6229 ER Maastricht
The Netherlands

Dominique Lerouet
Université Paris Descartes
Faculté de Pharmacie
Laboratoire de Pharmacologie
EA 4475 “Pharmacologie de la Circulation Cérébrale”
4, avenue de l’Observatoire
75006 Paris Cedex 06
France

Rafael Maldonado
Universitat Pompeu Fabra
Department of Experimental & Health Sciences
Laboratory of Neuropharmacology (NeuroPhar)
Barcelona Biomedical Research Park (PRBB)
Dr. Aiguader 88
08003 Barcelona
Spain

Christophe Mallet
Clermont Université (Université d’Auvergne)
NEURO-DOL
Faculté de médecine
Place Henri Dunant
63000 Clermont-Ferrand
France

Elena Martín-García
Universitat Pompeu Fabra
Laboratori de Neurofarmacologia
Parc de Recerca Biomedica de Barcelona (PRBB)
Dr. Aiguader 88
08003 Barcelona
Spain

Said M’Dahoma
Université Pierre et Marie Curie
Faculty of Medicine
Neuropsychopharmacology Unit
INSERM U894 – CPN
site Pitié-Salpêtrière
91, boulevard de l’Hôpital
75634 Paris Cedex 13
France

Armand Mekontso-Dessap
Université Paris-Est Créteil (UPEC)
Hôpital Henri Mondor
Service de Réanimation Médicale
AP-HP
94010 Créteil Cedex
France

Paul Moser
Centre de Recherche Pierre-Fabre
Neuropsychopharmacology Unit
17 avenue Jean Moulin
81106 Castres
France

and

INSERM U1107
Faculté de médecine
Place Henri Dunant
63001 Clermont-Ferrand
France
List of Contributors

Jes Olesen
University of Copenhagen
Faculty of Health Sciences
Glostrup Hospital
Department of Neurology and
Glostrup Research Institute
Danish Headache Center
Nordre Ringvej 57
2600 Glostrup
Denmark

Sunil K. Panchal
University of Southern Queensland
Centre for Systems Biology
Toowoomba, Queensland 4350
Australia

Guillaume Pavlovic
Université de Strasbourg
Institut Clinique de la Souris
ICS-MCI, PHENOMIN, GIE CERBM
CNRS, INSERM
1 rue Laurent Fries
67404 Illkirch
France

Michel Plotkine
Université Paris Descartes
Faculté de Pharmacie
Laboratoire de Pharmacologie
EA 4475 “Pharmacologie de la
Circulation Cérébrale”
4, avenue de l’Observatoire
75006 Paris Cedex 06
France

Jos Prickaerts
Maastricht University
School for Mental Health and
Neuroscience
Department of Neuroscience
Universiteitssingel 50
6229 ER Maastricht
The Netherlands

Patricia Robledo
Universitat Pompeu Fabra
Laboratori de Neurofarmacologia
Parc de Recerca Biomedica de
Barcelona (PRBB)
Dr. Aiguader 88
08003 Barcelona
Spain

and

IMIM-Hospital del Mar Research
Institute
Human Pharmacology and Clinical
Neurosciences Research Group
Neurosciences Research Programme
PRBB
Calle Dr. Aiguader 88
08003 Barcelona
Spain

Luz Romero
Esteve
Drug Discovery & Preclinical
Development
Parc Científic Barcelona
Baldiri Reixac 4–8
08028 Barcelona
Spain
List of Contributors

Bart P.F. Rutten
Maastricht University
School for Mental Health and Neuroscience
Department of Neuroscience
Universiteitssingel 50
6229 ER Maastricht
The Netherlands

David Sabaté
Esteve
R&D Department Animal Health Division
Animal Ethics Committee
Avinguda Mare de Déu de Montserrat, 221
08041 Barcelona
Spain

Roy D. Sleator
Cork Institute of Technology
Department of Biological Sciences
Rossa Avenue
Bishopstown, Cork
Ireland

Tania Sorg
Université de Strasbourg
Institut Clinique de la Souris
ICS-MCI, PHENOMIN, GIE CERBM CNRS, INSERM
1 rue Laurent Fries
67404 Illkirch
France

Harry W.M. Steinbusch
Maastricht University
School for Mental Health and Neuroscience
Department of Neuroscience
Universiteitssingel 50
6229 ER Maastricht
The Netherlands

Jin Bo Su
Université Paris-Est Créteil (UPEC)
Faculté de Médecine
Laboratoire de Pharmacologie
INSERM U955 (équipe 3 IMRB)
Rue du Général Sarrail, 8
94010 Créteil Cedex
France

Nick P. van Goethem
Maastricht University
School for Mental Health and Neuroscience
Department of Neuroscience
Universiteitssingel 50
6229 ER Maastricht
The Netherlands

José Miguel Vela
Esteve
Drug Discovery & Preclinical Development
Parc Científic Barcelona
Baldiri Reixac 4–8
08028 Barcelona
Spain

Mathieu Verdurand
Université Lyon 1
Lyon Neuroscience Research Center
CNRS, INSERM
59 Bd Pinel, 69003 Lyon
France
List of Contributors

CERMEP-Imagerie du Vivant
Lyon
France

Luc Zimmer
Université Lyon 1
Lyon Neuroscience Research Center
CNRS, INSERM
59 Bd Pinel, 69003 Lyon
France

and

CERMEP-Imagerie du Vivant
59 Bd Pinel, 69003 Lyon
France

and

Hospices Civils de Lyon
Groupement Hospitalier Est
59 Bd Pinel, 69003 Lyon
France