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40.7. The Reception of Non-Euclidean Geometry 489

40.8. Foundations of Geometry 491

Problems and Questions 492
Mathematical Problems 492
Historical Questions 493
Questions for Reflection 493

41. Complex Analysis 495

41.1. Imaginary and Complex Numbers 495
41.1.1. Wallis 497
41.1.2. Wessel 498
41.1.3. Argand 499

41.2. Analytic Function Theory 500
41.2.1. Algebraic Integrals 500
41.2.2. Legendre, Jacobi, and Abel 502
41.2.3. Theta Functions 504
41.2.4. Cauchy 504
41.2.5. Riemann 506
41.2.6. Weierstrass 507

41.3. Comparison of the Three Approaches 508

Problems and Questions 508
Mathematical Problems 508
Historical Questions 509
Questions for Reflection 509

42. Real Numbers, Series, and Integrals 511

42.1. Fourier Series, Functions, and Integrals 512
42.1.1. The Definition of a Function 513

42.2. Fourier Series 514
42.2.1. Sturm–Liouville Problems 515

42.3. Fourier Integrals 516

42.4. General Trigonometric Series 518

Problems and Questions 519
Mathematical Problems 519
Historical Questions 519
Questions for Reflection 519



CONTENTS xxi

43. Foundations of Real Analysis 521

43.1. What is a Real Number? 521
43.1.1. The Arithmetization of the Real Numbers 523

43.2. Completeness of the Real Numbers 525

43.3. Uniform Convergence and Continuity 525

43.4. General Integrals and Discontinuous Functions 526

43.5. The Abstract and the Concrete 527
43.5.1. Absolute Continuity 528
43.5.2. Taming the Abstract 528

43.6. Discontinuity as a Positive Property 529

Problems and Questions 530
Mathematical Problems 530
Historical Questions 531
Questions for Reflection 531

44. Set Theory 532

44.1. Technical Background 532

44.2. Cantor’s Work on Trigonometric Series 533
44.2.1. Ordinal Numbers 533
44.2.2. Cardinal Numbers 534

44.3. The Reception of Set Theory 536
44.3.1. Cantor and Kronecker 537

44.4. Existence and the Axiom of Choice 537

Problems and Questions 540
Mathematical Problems 540
Historical Questions 541
Questions for Reflection 541

45. Logic 542

45.1. From Algebra to Logic 542

45.2. Symbolic Calculus 545

45.3. Boole’s Mathematical Analysis of Logic 546
45.3.1. Logic and Classes 546

45.4. Boole’s Laws of Thought 547

45.5. Jevons 548

45.6. Philosophies of Mathematics 548
45.6.1. Paradoxes 549
45.6.2. Formalism 550
45.6.3. Intuitionism 551
45.6.4. Mathematical Practice 553



xxii CONTENTS

45.7. Doubts About Formalized Mathematics: Gödel’s Theorems 554
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PREFACE

Like its immediate predecessor, this third edition of The History of Mathematics: A Brief
Course must begin with a few words of explanation to users of the earlier editions. The
present volume, although it retains most of the material from the second edition, has been
reorganized once again. In the first edition each chapter was devoted to a single culture or
period within a single culture and subdivided by mathematical topics. In the second edition,
after a general survey of mathematics and mathematical practice in Part 1, the primary
division was by subject matter: numbers, geometry, algebra, analysis, mathematical infer-
ence. After long consideration, I found this organization less desirable than a chronological
ordering. As I said in the preface to the second edition,

For reasons that mathematics can illustrate very well, writing the history of mathematics is a
nearly impossible task. To get a proper orientation for any particular event in mathematical
history, it is necessary to take account of three independent “coordinates”: the time, the math-
ematical subject, and the culture. To thread a narrative that is to be read linearly through this
three-dimensional array of events is like drawing one of Peano’s space-filling curves. Some
points on the curve are infinitely distant from one another, and the curve must pass through
some points many times. From the point of view of a reader whose time is valuable, these
features constitute a glaring defect. The problem is an old one, well expressed eighty years
ago by Felix Klein, in Chapter 6 of his Lectures on the Development of Mathematics in the
Nineteenth Century:

I have now mentioned a large number of more or less famous names, all closely connected
with Riemann. They can become more than a mere list only if we look into the literature
associated with the names, or rather, with those who bear the names. One must learn
how to grasp the main lines of the many connections in our science out of the enormous
available mass of printed matter without getting lost in the time-consuming discussion
of every detail, but also without falling into superficiality and dilettantism.

I have decided that in the lexicographic ordering of the three-dimensional coordinate
system mentioned above, culture is the first coordinate, chronology the second, and math-
ematical content the third. That is the principle on which the first six parts of the present
edition are organized. In the seventh and final part, which covers the period from 1800
on, the first coordinate becomes irrelevant, as mathematics acquires a worldwide scope.
Because so much new mathematics was being invented, it also becomes impossible to give
any coherent description of its whole over even a single decade, and so the chronological
ordering has to become the second coordinate, as mathematical content becomes the first.

Changes from the Second Edition

Besides the general reorganization of material mentioned above, I have also had a feeling
that in the previous edition I succumbed in too many places to the mathematician’s impulse
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to go into mathematical detail at the expense of the history of the subject and to discuss
some questions of historical minutiae that are best omitted in a first course. I have therefore
condensed the book somewhat. The main difference with earlier editions is that I have
tried to adapt the text better to the needs of instructors. To that end, I have made the
chapters more nearly uniform in length, usually ten to twelve pages each, putting into each
chapter an amount of material that I consider reasonable for a typical 50-minute class. In
addition, I have scrutinized the problems to be sure that they are reasonable as homework
problems. They are of three types: (1) those that develop a mathematical technique, such as
the Chinese method of solving polynomial equations numerically, the kuttaka, computation
by the Egyptian method, prosthaphæresis, and the like; (2) those that ask the student to
recall a specific set of historic facts (these generally have brief answers of a sentence or two
and should be answerable directly from the narrative); and (3) those that ask the student to
speculate and synthesize the history into a plausible narrative, including possible motives
for certain investigations undertaken by mathematicians. In survey chapters at the beginning
of some parts, only the last two types occur.

The book is divided into seven parts. The first six, comprising the first 34 chapters,
contain as systematic a discussion as I can manage of the general history of mathematics
up to the nineteenth century. Because it is aimed at a general audience, I have given extra
attention to topics that continue to be in the school curriculum, while at the same time trying
to discuss each topic within the context of its own time. At the end of each chapter are a few
questions to provide a basis for classroom discussions. More such questions can be found
in the accompanying teacher’s manual. I believe that these 34 chapters, totaling about 400
pages, constitute a one-semester course and that any extra class meetings (I assume 42 such
meetings) will be devoted to quizzes, midterms, and perhaps one or two of the specialized
chapters in Part VII.

The seventh and last part of the book consists of more narrowly focused discussions.
Except for Chapter 35, which discusses a small portion of the history of women in mathe-
matics, these are updates, arranged by subject matter and carrying the history of the topics
they treat into the twentieth century. Since this material involves modern mathematics, it
is technically much more difficult than the first six parts of the book, and the mathemat-
ical homework problems reflect this greater difficulty, making much higher demands on
the reader’s mathematical preparation. Instructors will of course use their own judgment
as to the mathematical level of their students. In some of these chapters, I have exceeded
the self-imposed limit of 12 pages that I tried to adhere to in the first six parts of the book,
assuming that instructors who wish to discuss one of these chapters will be willing to devote
more than one class meeting to it.

Elementary Texts on the History of Mathematics

A textbook on the history of mathematics aimed at a first course in the subject, whose audi-
ence consists of teachers, mathematicians, and interested students from other specialties,
cannot be as complete or as focused as an encyclopedia of the subject. Connections with
other areas of science deserve attention quite as much as historical issues of transmission
and innovation. In addition, there are many mathematical skills that the reader cannot be
presumed to have, and these need to be explained as simply as possible, even when the
explanation does not faithfully reproduce the historical text in which the subject arose.
Thus, I have hybridized and simplified certain mathematical techniques in order to provide
a usable model of what was actually done while stripping away complications that make
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the original texts obscure. This much sacrifice of historical accuracy is necessary, I believe,
in order to get to the point within the confines of a single semester. At the same time, I think
the exposition of these and other topics gives a reasonable approximation to the essence of
the original texts.

This concept of a reasonable approximation to the original presents a problem that
requires some judgment to solve: How “authentic” should we be when discussing works
written long ago and far away, using concepts that have either disappeared or evolved into
something very different? Historians have worked out ways of giving some idea of what
original documents looked like. We can simply write numbers, for example, in our own
notation. But when those numbers are part of a system with operational connections, it
is necessary to invent something that is isomorphic to the original system, so that, for
example, numbers written in sexagesimal notation still have a sexagesimal appearance, and
computations done in the Egyptian manner are not simply run through a calculator and
the output used. This problem is particularly acute in Euclidean geometry, which makes
no reference to any units of length, area, or volume. The “Euclidean” geometry that is
taught to students in high school nowadays freely introduces such units and makes use of
algebraic notation to give formulas for the areas and volumes of circles, spheres, cones,
and the like. This modernization conceals the essence of Euclid’s method, especially his
theory of proportion. He did not speak of the area of a circle, for example, only of the ratio
of one circle to another, proving that it was the same as the ratio of the squares having
their diameters as sides (Book 12, Proposition 2). How much of that authentic Euclidean
geometry, which I call metric-free, should the student be subjected to? Without it, many
of the most important theorems proved by Euclid, Archimedes, and Apollonius look very
different from their original forms. On the other hand, it is cumbersome to expound, and
one is constantly tempted to capitulate and “modernize” the discussion. I have made the
decision in this book to draw the line at conic sections, using symbolic notation to describe
them, though I do so with a very bad conscience. But I would never dream of presenting, in
an introductory text, the actual definition of the latus rectum given by Apollonius. I try to
hold the use of symbolic algebra to a minimum, but compromises are necessary in the real
world.

When it comes to algebra, symbolic notation is a very late arrival. Algorithms for solving
cubic and quartic equations preceded it, and those algorithms are very cumbersome to
explain without symbols. Once again, I surrender to necessity and try to present the essence
of the method without getting bogged down in the technical details of the original works.
There is a further difficulty that most students have learned algebra by rote and can carry
out certain operations, but have no insight into the essence of the problems they have been
taught to solve. They may know what American students call the FOIL method of solving
quadratic equations with integer coefficients, and some of them may even remember the
quadratic formula, but I have yet to encounter a student who has grasped the simple fact that
solving a quadratic equation is a way of finding two numbers if one knows their sum and
product. Nor have I found a student who has the more general insight that classical algebra
is the search for ways of rendering explicit numbers that are determined only implicitly,
even though this insight is crucial for recognizing algebra when it occurs in early treatises,
where there is no symbolic notation.

Besides the enormous amount of mathematics that the human race has created, so enor-
mous that no one can be really expert except over a tiny region of it, the historian has the
additional handicap of trying to fit that mathematics into the context of a wide range of
cultures, most of which will not be his or her area of expertise. I feel these limitations with
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particular keenness when it comes to languages. Despite a lifetime spent trying to acquire
new languages in what spare time I have had, I really feel comfortable (outside of English,
of course) only when working in Russian, French, German, Latin, and ancient Greek. (I
have acquired only a modest ability to read a bit of Japanese, which I constantly seek to
expand.) Of course, having a language from each of the Romance, Germanic, and Slavic
groups makes it feasible to attempt reading texts in perhaps two dozen languages, but one
needs to be on guard and never rely on one’s own translations in such cases. I am most
sharply aware of my total dependence on translations of works written in Chinese, Sanskrit,
and Arabic. Even though I report what others have said about certain features of these lan-
guages for the reader’s information, let it be noted here and now that anything I say about
any of these languages is pure hearsay.

Just to reiterate: One can really glimpse only a small portion of the history of mathematics
in an introductory course. Some idea of how much is being omitted can be seen by a glance
at the website at the University of St Andrews.

http://www-history.mcs.st-and.ac.uk/

That site provides biographies of thousands of mathematicians. Under the letter G alone
there are 125 names, fewer than 40 of which appear in this book. While many of the “small
fry” have made important contributions to mathematics, they do not loom large enough to
appear on a map the size and scale of the present work. Thus, it needs to be kept in mind
that the picture is being painted in very broad brush strokes, and many important details are
simply not being shown. Every omission is regrettable, but omissions are necessary if the
book is to be kept within 600 pages.

And, finally, a word about the cover. When I was asked what kind of design I wished,
I thought of a collage of images encompassing the whole history of the subject: formulas
and figures. In the end, I decided to keep it simple and let one part stand for the whole. The
part I chose was the conic sections, because of the length and breadth of their influence
on the history of the subject. Arising originally as tools to solve the problems of trisecting
the angle and doubling the cube, they were the subject of one of the profoundest treatises
of ancient times, that of Apollonius. Later, they turned out to be the key to solving cubic
and quartic equations in the work of Omar Khayyam, and they became a laboratory for the
pioneers of analytic geometry and calculus to use in illustrating their theories. Still later,
they were a central topic in the study of projective geometry, and remained so in algebraic
geometry far into the nineteenth century. It is no accident that non-Euclidean geometries are
classified as elliptic and hyperbolic, or that linear partial differential equations are classified
as elliptic, parabolic, and hyperbolic. The structure revealed by this trichotomy of cases for
the intersection of a plane with a cone has been enormous. If any one part deserves to stand
for the whole, it is the conic sections.



PART I

WHAT IS MATHEMATICS?

This first part of our history is concerned with the “front end” of mathematics (to use
an image from computer algebra)—its relation to the physical world and human soci-
ety. It contains some general considerations about mathematics, what it consists of, and
how it may have arisen. This material is intended as an orientation for the main part of
the book, where we discuss how mathematics has developed in various cultures around
the world. Because of the large number of cultures that exist, a considerable paring down
of the available material is necessary. We are forced to choose a few sample cultures to
represent the whole, and we choose those that have the best-recorded mathematical history.
The general topics studied in this part involve philosophical and social questions, which are
themselves specialized subjects of study, to which a large amount of scholarly literature has
been devoted. Our approach here is the naive commonsense approach of an author who is
not a specialist in either philosophy or sociology. Since present-day governments have to
formulate policies relating to mathematics and science, it is important that such questions
not be left to specialists. The rest of us, as citizens of a republic, should read as much as
time permits of what the specialists have to say and make up our own minds when it comes
time to judge the effects of a policy.

Contents of Part I

1. Chapter 1 (Mathematics and Its History) considers the general nature of mathematics
and gives an example of the way it can help to understand the physical world. We
also outline a series of questions to be kept in mind as the rest of the book is studied,
questions to help the reader flesh out the bare bones in the historical documents.

2. Chapter 2 (Proto-mathematics) studies the mathematical reasoning invented by peo-
ple in the course of solving the immediate and relatively simple practical problems
of administering a government or managing a construction site. In this area we
are dependent on archaeologists and anthropologists for the historical information
available.
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