## THIRD EDITION

# THE HISTORY OF MATHEMATICS

#### A BRIEF COURSE



## ⊣ROGER L.COOKE⊢



# THE HISTORY OF MATHEMATICS

## THE HISTORY OF MATHEMATICS A BRIEF COURSE

THIRD EDITION

Roger L. Cooke Department of Mathematics and Statistics University of Vermont Burlington, VT



Copyright © 2013 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

#### Library of Congress Cataloging-in-Publication Data:

Cooke, Roger, 1942The history of mathematics : a brief course / Roger L. Cooke. – 3rd ed. p. cm.
Includes bibliographical references and index.
ISBN 978-1-118-21756-6 (cloth)
Mathematics-History. I. Title.
QA21.C649 2013
510'.9-dc23

2012020963

Printed in the United States of America

 $10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1$ 

#### CONTENTS

| PR | PREFACE xxiii |                                                      |       |
|----|---------------|------------------------------------------------------|-------|
|    | Chan          | ges from the Second Edition                          | xxiii |
|    |               | entary Texts on the History of Mathematics           | xxiv  |
|    |               |                                                      |       |
| PA | RT I.         | WHAT IS MATHEMATICS?                                 |       |
|    |               | ents of Part I                                       | 1     |
|    |               |                                                      |       |
| 1. | Math          | ematics and its History                              | 3     |
|    | 1.1.          | Two Ways to Look at the History of Mathematics       | 3     |
|    |               | 1.1.1. History, but not Heritage                     | 4     |
|    |               | 1.1.2. Our Mathematical Heritage                     | 4     |
|    | 1.2.          | The Origin of Mathematics                            | 5     |
|    |               | 1.2.1. Number                                        | 5     |
|    |               | 1.2.2. Space                                         | 5     |
|    |               | 1.2.3. Are Mathematical Ideas Innate?                | 7     |
|    |               | 1.2.4. Symbolic Notation                             | 7     |
|    |               | 1.2.5. Logical Relations                             | 7     |
|    |               | 1.2.6. The Components of Mathematics                 | 8     |
|    | 1.3.          | The Philosophy of Mathematics                        | 8     |
|    |               | 1.3.1. Mathematical Analysis of a Real-World Problem | 9     |
|    | 1.4.          | Our Approach to the History of Mathematics           | 11    |
|    | Quest         | ions for Reflection                                  | 12    |
|    |               |                                                      |       |
| 2. | Proto         | -mathematics                                         | 14    |
|    | 2.1.          | Number                                               | 14    |
|    |               | 2.1.1. Animals' Use of Numbers                       | 14    |
|    |               | 2.1.2. Young Children's Use of Numbers               | 15    |
|    |               | 2.1.3. Archaeological Evidence of Counting           | 15    |

| 2.2. | Shape  |                                | 16 |
|------|--------|--------------------------------|----|
|      | 2.2.1. | Perception of Shape by Animals | 16 |
|      | 2.2.2. | Children's Concepts of Space   | 16 |
|      | 2.2.3. | Geometry in Arts and Crafts    | 17 |
| 2.3. | Symbo  | ls                             | 18 |

2.3. Symbols

|    | 2.4.  | Mathematical Reasoning                               | 20       |
|----|-------|------------------------------------------------------|----------|
|    |       | 2.4.1. Animal Reasoning                              | 20       |
|    |       | 2.4.2. Visual Reasoning                              | 21       |
|    | Prob  | lems and Questions                                   | 22       |
|    |       | Mathematical Problems                                | 22       |
|    |       | Questions for Reflection                             | 24       |
| PA | RT II | . THE MIDDLE EAST, 2000–1500 BCE                     |          |
|    | Cont  | ents of Part II                                      | 25       |
| 3. | Over  | view of Mesopotamian Mathematics                     | 27       |
|    | 3.1.  | A Sketch of Two Millennia of Mesopotamian History    | 27       |
|    | 3.2.  | Mathematical Cuneiform Tablets                       | 29       |
|    | 3.3.  | Systems of Measuring and Counting                    | 30       |
|    |       | 3.3.1. Counting                                      | 31       |
|    | 3.4.  | The Mesopotamian Numbering System                    | 31       |
|    |       | 3.4.1. Place-Value Systems                           | 32       |
|    |       | 3.4.2. The Sexagesimal Place-Value System            | 33       |
|    |       | 3.4.3. Converting a Decimal Number to Sexagesimal    | 33       |
|    |       | 3.4.4. Irrational Square Roots                       | 36       |
|    | Probl | lems and Questions                                   | 36       |
|    |       | Mathematical Problems                                | 36       |
|    |       | Historical Questions<br>Questions for Reflection     | 36<br>37 |
|    |       | Questions for Reflection                             | 57       |
| 4. | Com   | putations in Ancient Mesopotamia                     | 38       |
|    | 4.1.  | Arithmetic                                           | 38       |
|    |       | 4.1.1. Square Roots                                  | 39       |
|    | 4.2.  | Algebra                                              | 40       |
|    |       | 4.2.1. Linear and Quadratic Problems                 | 41       |
|    |       | 4.2.2. Higher-Degree Problems                        | 43       |
|    | Prob  | lems and Questions                                   | 44       |
|    |       | Mathematical Problems                                | 44       |
|    |       | Historical Questions                                 | 44       |
|    |       | Questions for Reflection                             | 44       |
| 5. | Geor  | netry in Mesopotamia                                 | 46       |
|    | 5.1.  | The Pythagorean Theorem                              | 46       |
|    | 5.2.  | Plane Figures                                        | 48       |
|    |       | 5.2.1. Mesopotamian Astronomy                        | 48       |
|    | 5.3.  | Volumes                                              | 49       |
|    | 5.4.  | Plimpton 322                                         | 49       |
|    |       | 5.4.1. The Purpose of Plimpton 322: Some Conjectures | 53       |

|    | Probl       | ems and Questions                                 | 54       |
|----|-------------|---------------------------------------------------|----------|
|    |             | Mathematical Problems                             | 54       |
|    |             | Historical Questions                              | 55       |
|    |             | Questions for Reflection                          | 55       |
| 6. | Egyp        | tian Numerals and Arithmetic                      | 56       |
|    | 6.1.        | Sources                                           | 56       |
|    |             | 6.1.1. Mathematics in Hieroglyphics and Hieratic  | 57       |
|    | 6.2.        | The Rhind Papyrus                                 | 58       |
|    | 6.3.        | Egyptian Arithmetic                               | 58       |
|    | 6.4.        | Computation                                       | 59       |
|    |             | 6.4.1. Multiplication and Division                | 61       |
|    | <b>D</b> 11 | 6.4.2. "Parts"                                    | 62       |
|    | Probl       | ems and Questions<br>Mathematical Problems        | 65<br>65 |
|    |             | Historical Questions                              | 65       |
|    |             | Questions for Reflection                          | 65       |
|    |             |                                                   |          |
| 7. | Algeb       | ora and Geometry in Ancient Egypt                 | 66       |
|    | 7.1.        | Algebra Problems in the Rhind Papyrus             | 66       |
|    |             | 7.1.1. Applied Problems: The <i>Pesu</i>          | 67       |
|    | 7.2.        | Geometry                                          | 68       |
|    | 7.3.        | Areas                                             | 69       |
|    |             | 7.3.1. Rectangles, Triangles, and Trapezoids      | 69<br>60 |
|    |             | 7.3.2. Slopes<br>7.3.3. Circles                   | 69<br>70 |
|    |             | 7.3.4. The Pythagorean Theorem                    | 70       |
|    |             | 7.3.5. Spheres or Cylinders?                      | 72       |
|    |             | 7.3.6. Volumes                                    | 73       |
|    | Probl       | ems and Questions                                 | 76       |
|    |             | Mathematical Problems                             | 76       |
|    |             | Historical Questions                              | 76       |
|    |             | Questions for Reflection                          | 76       |
| D۸ | RT III      | I. GREEK MATHEMATICS FROM 500 BCE TO 500 CE       |          |
| IA |             | ents of Part III                                  | 77       |
| 8. | An O        | verview of Ancient Greek Mathematics              | 79       |
|    | 8.1.        | Sources                                           | 80       |
|    |             | 8.1.1. Loss and Recovery                          | 81       |
|    | 8.2.        | General Features of Greek Mathematics             | 82       |
|    |             | 8.2.1. Pythagoras                                 | 83       |
|    |             | 8.2.2. Mathematical Aspects of Plato's Philosophy | 85       |

| 8.3. | Works   | and Authors        | 87 |
|------|---------|--------------------|----|
|      | 8.3.1.  | Euclid             | 87 |
|      | 8.3.2.  | Archimedes         | 87 |
|      | 8.3.3.  | Apollonius         | 88 |
|      | 8.3.4.  | Zenodorus          | 88 |
|      | 8.3.5.  | Heron              | 88 |
|      | 8.3.6.  | Ptolemy            | 89 |
|      | 8.3.7.  | Diophantus         | 89 |
|      | 8.3.8.  | Pappus             | 89 |
|      | 8.3.9.  | Theon and Hypatia  | 89 |
| Ques | tions   |                    | 90 |
|      | Histori | ical Questions     | 90 |
|      | Questi  | ons for Reflection | 90 |

## 9. Greek Number Theory919.1 The Euclidean Algorithm92

| <i>J</i> .1. | THE LE   |                                    | )2  |
|--------------|----------|------------------------------------|-----|
| 9.2.         | The Ar   | rithmetica of Nicomachus           | 93  |
|              | 9.2.1.   | Factors vs. Parts. Perfect Numbers | 94  |
|              | 9.2.2.   | Figurate Numbers                   | 95  |
| 9.3.         | Euclid   | 's Number Theory                   | 97  |
| 9.4.         | The Ar   | rithmetica of Diophantus           | 97  |
|              | 9.4.1.   | Algebraic Symbolism                | 98  |
|              | 9.4.2.   | Contents of the Arithmetica        | 99  |
|              | 9.4.3.   | Fermat's Last Theorem              | 100 |
| Probl        | lems and | Questions                          | 101 |
|              | Mather   | matical Problems                   | 101 |
|              | Histori  | ical Questions                     | 102 |
|              | Questi   | ons for Reflection                 | 102 |
|              |          |                                    |     |

#### 10. Fifth-Century Greek Geometry

103

| 10.1. "Pythagorean" Geometry                         | 103 |
|------------------------------------------------------|-----|
| 10.1.1. Transformation and Application of Areas      | 103 |
| 10.2. Challenge No. 1: Unsolved Problems             | 106 |
| 10.3. Challenge No. 2: The Paradoxes of Zeno of Elea | 107 |
| 10.4. Challenge No. 3: Irrational Numbers and        |     |
| Incommensurable Lines                                | 108 |
| 10.4.1. The Arithmetical Origin of Irrationals       | 110 |
| 10.4.2. The Geometric Origin of Irrationals          | 110 |
| 10.4.3. Consequences of the Discovery                | 111 |
| Problems and Questions                               | 113 |
| Mathematical Problems                                | 113 |
| Historical Questions                                 | 113 |
| Questions for Reflection                             | 114 |
|                                                      |     |

| 11. Athe  | nian Mathematics I: The Classical Problems   | 115 |
|-----------|----------------------------------------------|-----|
| 11.1.     | Squaring the Circle                          | 116 |
| 11.2.     | Doubling the Cube                            | 117 |
| 11.3.     | Trisecting the Angle                         | 122 |
|           | 11.3.1. A Mechanical Solution: The Conchoid  | 125 |
| Probl     | ems and Questions                            | 126 |
|           | Mathematical Problems                        | 126 |
|           | Historical Questions                         | 126 |
|           | Questions for Reflection                     | 127 |
| 12. Athe  | nian Mathematics II: Plato and Aristotle     | 128 |
| 12.1.     | The Influence of Plato                       | 128 |
| 12.2.     | Eudoxan Geometry                             | 130 |
|           | 12.2.1. The Eudoxan Definition of Proportion | 130 |
|           | 12.2.2. The Method of Exhaustion             | 131 |
|           | 12.2.3. Ratios in Greek Geometry             | 133 |
| 12.3.     | Aristotle                                    | 134 |
| Probl     | ems and Questions                            | 138 |
|           | Mathematical Problems                        | 138 |
|           | Historical Questions                         | 138 |
|           | Questions for Reflection                     | 139 |
| 13. Eucli | d of Alexandria                              | 140 |
| 13.1.     | The <i>Elements</i>                          | 140 |
|           | 13.1.1. Book 1                               | 141 |
|           | 13.1.2. Book 2                               | 141 |
|           | 13.1.3. Books 3 and 4                        | 143 |
|           | 13.1.4. Books 5 and 6                        | 143 |
|           | 13.1.5. Books 7–9                            | 143 |
|           | 13.1.6. Book 10                              | 144 |
|           | 13.1.7. Books 11–13                          | 144 |
| 13.2.     | The Data                                     | 144 |
|           | ems and Questions                            | 145 |
|           | Mathematical Problems                        | 145 |
|           | Historical Questions                         | 147 |
|           | Questions for Reflection                     | 147 |
| 14. Arch  | imedes of Syracuse                           | 148 |
| 14.1.     | The Works of Archimedes                      | 149 |
| 14.2.     | The Surface of a Sphere                      | 150 |
| 14.3.     | _                                            | 153 |
|           | 14.3.1. The <i>Method</i>                    | 154 |

| 14.4     | . Quadrature of the Parabola                      | 155 |
|----------|---------------------------------------------------|-----|
|          | 14.4.1. The Mechanical Quadrature                 | 155 |
|          | 14.4.2. The Rigorous Quadrature                   | 156 |
| Prob     | blems and Questions                               | 158 |
|          | Mathematical Problems                             | 158 |
|          | Historical Questions                              | 158 |
|          | Questions for Reflection                          | 159 |
| 15. Apo  | llonius of Perga                                  | 160 |
| 15.1     | . History of the <i>Conics</i>                    | 161 |
| 15.2     | . Contents of the <i>Conics</i>                   | 162 |
|          | 15.2.1. Properties of the Conic Sections          | 165 |
| 15.3     | . Foci and the Three- and Four-Line Locus         | 165 |
| Prob     | elems and Questions                               | 166 |
|          | Mathematical Problems                             | 166 |
|          | Historical Questions                              | 168 |
|          | Questions for Reflection                          | 168 |
| 16. Hell | enistic and Roman Geometry                        | 169 |
| 16.1     | . Zenodorus                                       | 169 |
| 16.2     | . The Parallel Postulate                          | 171 |
| 16.3     | . Heron                                           | 172 |
| 16.4     | . Roman Civil Engineering                         | 174 |
|          | blems and Questions                               | 176 |
| 1100     | Mathematical Problems                             | 176 |
|          | Historical Questions                              | 176 |
|          | Questions for Reflection                          | 176 |
| 17. Ptol | emy's Geography and Astronomy                     | 177 |
| 17.1     | . Geography                                       | 177 |
| 17.2     | . Astronomy                                       | 180 |
|          | 17.2.1. Epicycles and Eccentrics                  | 181 |
|          | 17.2.2. The Motion of the Sun                     | 182 |
| 17.3     | . The Almagest                                    | 184 |
|          | 17.3.1. Trigonometry                              | 184 |
|          | 17.3.2. Ptolemy's Table of Chords                 | 184 |
| Prob     | plems and Questions                               | 187 |
|          | Mathematical Problems                             | 187 |
|          | Historical Questions                              | 188 |
|          | Questions for Reflection                          | 188 |
| 18. Pap  | pus and the Later Commentators                    | 190 |
| 18.1     | . The Collection of Pappus                        | 190 |
|          | 18.1.1. Generalization of the Pythagorean Theorem | 191 |

225

225

225

225

| 18.1.2. The Isoperimetric Problem                     | 191 |
|-------------------------------------------------------|-----|
| 18.1.3. Analysis, Locus Problems, and Pappus' Theorem | 191 |
| 18.2. The Later Commentators: Theon and Hypatia       | 196 |
| 18.2.1. Theon of Alexandria                           | 196 |
| 18.2.2. Hypatia of Alexandria                         | 197 |
| Problems and Questions                                | 198 |
| Mathematical Problems                                 | 198 |
| Historical Questions                                  | 199 |
| Questions for Reflection                              | 199 |
|                                                       |     |
| ART IV. INDIA, CHINA, AND JAPAN 500 BCE-1700 CE       |     |
| Contents of Part IV                                   | 201 |
| 9. Overview of Mathematics in India                   | 203 |
| 19.1. The Sulva Sutras                                | 205 |
| 19.2. Buddhist and Jain Mathematics                   | 206 |
| 19.3. The Bakshali Manuscript                         | 206 |
|                                                       | 200 |

#### P

Problems and Questions

Mathematical Problems

Questions for Reflection

Historical Questions

| PAKI IV. I   | NDIA, CHINA, AND JAPAN 500 BCE-1700 CE            |     |
|--------------|---------------------------------------------------|-----|
| Contents     | of Part IV                                        | 201 |
| 19. Overview | v of Mathematics in India                         | 203 |
| 19.1. Th     | e Sulva Sutras                                    | 205 |
| 19.2. Bu     | uddhist and Jain Mathematics                      | 206 |
| 19.3. Th     | e Bakshali Manuscript                             | 206 |
| 19.4. Th     | e Siddhantas                                      | 206 |
| 19.5. Hi     | ndu–Arabic Numerals                               | 206 |
| 19.6. Ar     | yabhata I                                         | 207 |
| 19.7. Br     | ahmagupta                                         | 208 |
| 19.8. Bh     | •                                                 | 209 |
| 19.9. Mi     | uslim India                                       | 210 |
| 19.10. Inc   | dian Mathematics in the Colonial Period and After | 210 |
| 19           | .10.1. Srinivasa Ramanujan                        | 210 |
| Questions    | 3                                                 | 211 |
| Hi           | storical Questions                                | 211 |
| Qu           | uestions for Reflection                           | 211 |
| 20. From the | e Vedas to Aryabhata I                            | 213 |
| 20.1. Pro    | oblems from the Sulva Sutras                      | 213 |
| 20           | .1.1. Arithmetic                                  | 213 |
| 20           | .1.2. Geometry                                    | 214 |
| 20           | .1.3. Square Roots                                | 216 |
| 20           | .1.4. Jain Mathematics: The Infinite              | 217 |
| 20           | .1.5. Jain Mathematics: Combinatorics             | 217 |
| 20           | .1.6. The Bakshali Manuscript                     | 218 |
| 20.2. Ar     | yabhata I: Geometry and Trigonometry              | 219 |
|              | .2.1. Trigonometry                                | 220 |
| 20           | .2.2. The Kuttaka                                 | 224 |

| 21. Brah  | magupta, the <i>Kuttaka</i> , and Bhaskara II               | 227 |
|-----------|-------------------------------------------------------------|-----|
| 21.1.     | Brahmagupta's Plane and Solid Geometry                      | 227 |
| 21.2.     | Brahmagupta's Number Theory and Algebra                     | 228 |
|           | 21.2.1. Pythagorean Triples                                 | 229 |
|           | 21.2.2. Pell's Equation                                     | 229 |
| 21.3.     | The Kuttaka                                                 | 230 |
| 21.4.     | Algebra in the Works of Bhaskara II                         | 233 |
|           | 21.4.1. The Vija Ganita (Algebra)                           | 233 |
|           | 21.4.2. Combinatorics                                       | 233 |
| 21.5.     | Geometry in the Works of Bhaskara II                        | 235 |
| Prob      | lems and Questions                                          | 237 |
|           | Mathematical Problems                                       | 237 |
|           | Historical Questions                                        | 238 |
|           | Questions for Reflection                                    | 238 |
| 22. Early | y Classics of Chinese Mathematics                           | 239 |
| 22.1.     | Works and Authors                                           | 240 |
|           | 22.1.1. The Zhou Bi Suan Jing                               | 241 |
|           | 22.1.2. The Jiu Zhang Suan Shu                              | 242 |
|           | 22.1.3. The Sun Zi Suan Jing                                | 242 |
|           | 22.1.4. Liu Hui. The Hai Dao Suan Jing                      | 242 |
|           | 22.1.5. Zu Chongzhi and Zu Geng                             | 243 |
|           | 22.1.6. Yang Hui                                            | 243 |
|           | 22.1.7. Cheng Dawei                                         | 243 |
| 22.2.     | China's Encounter with Western Mathematics                  | 243 |
| 22.3.     | The Chinese Number System                                   | 244 |
|           | 22.3.1. Fractions and Roots                                 | 245 |
| 22.4.     | Algebra                                                     | 246 |
| 22.5.     | Contents of the Jiu Zhang Suan Shu                          | 247 |
| 22.6.     | Early Chinese Geometry                                      | 249 |
|           | 22.6.1. The Zhou Bi Suan Jing                               | 249 |
|           | 22.6.2. The Jiu Zhang Suan Shu                              | 251 |
|           | 22.6.3. The Sun Zi Suan Jing                                | 253 |
| Prob      | lems and Questions                                          | 253 |
|           | Mathematical Problems                                       | 253 |
|           | Historical Questions                                        | 253 |
|           | Questions for Reflection                                    | 253 |
| 23. Late  | r Chinese Algebra and Geometry                              | 255 |
| 23.1.     | Algebra                                                     | 255 |
|           | 23.1.1. Systems of Linear Equations                         | 256 |
|           | 23.1.2. Quadratic Equations                                 | 256 |
|           | 23.1.3. Cubic Equations                                     | 257 |
|           | 23.1.4. A Digression on the Numerical Solution of Equations | 258 |

| 23.2.  | Later Chinese Geometry                              | 262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | 23.2.1. Liu Hui                                     | 262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | 23.2.2. Zu Chongzhi                                 | 264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Proble | ems and Questions                                   | 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | Mathematical Problems                               | 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | Historical Questions                                | 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | Questions for Reflection                            | 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Tradi  | tional Japanese Mathematics                         | 267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 24.1.  | Chinese Influence and Calculating Devices           | 267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 24.2.  | Japanese Mathematicians and Their Works             | 268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | 24.2.1. Yoshida Koyu                                | 269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | 24.2.2. Seki Kōwa and Takebe Kenkō                  | 269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | 24.2.3. The Modern Era in Japan                     | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 24.3.  | Japanese Geometry and Algebra                       | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | 24.3.1. Determinants                                | 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | 24.3.2. The Challenge Problems                      | 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | 24.3.3. Beginnings of the Calculus in Japan         | 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 24.4.  | Sangaku                                             | 277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | 24.4.1. Analysis                                    | 279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Proble | ems and Questions                                   | 279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | Mathematical Problems                               | 279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | Historical Questions                                | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | Questions for Reflection                            | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | Proble<br>Tradi<br>24.1.<br>24.2.<br>24.3.<br>24.4. | <ul> <li>23.2.2. Zu Chongzhi</li> <li>Problems and Questions<br/>Mathematical Problems<br/>Historical Questions<br/>Questions for Reflection</li> <li>Traditional Japanese Mathematics</li> <li>24.1. Chinese Influence and Calculating Devices</li> <li>24.2. Japanese Mathematicians and Their Works<br/>24.2.1. Yoshida Koyu<br/>24.2.2. Seki Kōwa and Takebe Kenkō<br/>24.2.3. The Modern Era in Japan</li> <li>24.3. Japanese Geometry and Algebra<br/>24.3.1. Determinants<br/>24.3.2. The Challenge Problems<br/>24.3.3. Beginnings of the Calculus in Japan</li> <li>24.4. Sangaku<br/>24.4.1. Analysis</li> <li>Problems and Questions<br/>Mathematical Problems<br/>Historical Questions</li> </ul> |

CONTENTS **XIII** 

#### PART V. ISLAMIC MATHEMATICS, 800-1500

Contents of Part V 281

| 25. Overview of Islamic Mathematics |                                            |     |  |
|-------------------------------------|--------------------------------------------|-----|--|
| 25.1.                               | A Brief Sketch of the Islamic Civilization | 283 |  |
|                                     | 25.1.1. The Umayyads                       | 283 |  |
|                                     | 25.1.2. The Abbasids                       | 284 |  |
|                                     | 25.1.3. The Turkish and Mongol Conquests   | 284 |  |
|                                     | 25.1.4. The Islamic Influence on Science   | 284 |  |
| 25.2.                               | Islamic Science in General                 | 285 |  |
|                                     | 25.2.1. Hindu and Hellenistic Influences   | 285 |  |
| 25.3.                               | Some Muslim Mathematicians and Their Works | 287 |  |
|                                     | 25.3.1. Muhammad ibn Musa al-Khwarizmi     | 287 |  |
|                                     | 25.3.2. Thabit ibn-Qurra                   | 287 |  |
|                                     | 25.3.3. Abu Kamil                          | 288 |  |
|                                     | 25.3.4. Al-Battani                         | 288 |  |
|                                     | 25.3.5. Abu'l Wafa                         | 288 |  |
|                                     | 25.3.6. Ibn al-Haytham                     | 288 |  |
|                                     | 25.3.7. Al-Biruni                          | 289 |  |

| 25.3.8. Omar Khayyam     | 289 |
|--------------------------|-----|
| 25.3.9. Sharaf al-Tusi   | 289 |
| 25.3.10. Nasir al-Tusi   | 289 |
| Questions                | 290 |
| Historical Questions     | 290 |
| Questions for Reflection | 290 |
|                          |     |

#### 26. Islamic Number Theory and Algebra

| 26.1. Number Theory 2           | 292 |
|---------------------------------|-----|
| 26.2. Algebra 2                 | 294 |
| 26.2.1. Al-Khwarizmi 2          | 295 |
| 26.2.2. Abu Kamil 2             | 297 |
| 26.2.3. Omar Khayyam 2          | 297 |
| 26.2.4. Sharaf al-Din al-Tusi 2 | 299 |
| Problems and Questions 3        | 300 |
| Mathematical Problems 3         | 300 |
| Historical Questions 3          | 301 |
| Questions for Reflection 3      | 301 |

292

302

#### 27. Islamic Geometry

| 27.1.  | The Parallel Postulate   | 302 |
|--------|--------------------------|-----|
| 27.2.  | Thabit ibn-Qurra         | 302 |
| 27.3.  | Al-Biruni: Trigonometry  | 304 |
| 27.4.  | Al-Kuhi                  | 305 |
| 27.5.  | Al-Haytham and Ibn-Sahl  | 305 |
| 27.6.  | Omar Khayyam             | 307 |
| 27.7.  | Nasir al-Din al-Tusi     | 308 |
| Proble | ems and Questions        | 309 |
|        | Mathematical Problems    | 309 |
|        | Historical Questions     | 309 |
|        | Questions for Reflection | 310 |

#### PART VI. EUROPEAN MATHEMATICS, 500-1900

| Contents of Part VI                          | 311 |
|----------------------------------------------|-----|
| 28. Medieval and Early Modern Europe         | 313 |
| 28.1. From the Fall of Rome to the Year 1200 | 313 |
| 28.1.1. Boethius and the Quadrivium          | 313 |
| 28.1.2. Arithmetic and Geometry              | 314 |
| 28.1.3. Music and Astronomy                  | 315 |
| 28.1.4. The Carolingian Empire               | 315 |

|       | 28.1.5. Gerbert                 | 315 |
|-------|---------------------------------|-----|
|       | 28.1.6. Early Medieval Geometry | 317 |
|       | 28.1.7. The Translators         | 318 |
| 28.2. | The High Middle Ages            | 318 |
|       | 28.2.1. Leonardo of Pisa        | 319 |
|       | 28.2.2. Jordanus Nemorarius     | 319 |
|       | 28.2.3. Nicole d'Oresme         | 319 |
|       | 28.2.4. Regiomontanus           | 320 |
|       | 28.2.5. Nicolas Chuquet         | 320 |
|       | 28.2.6. Luca Pacioli            | 320 |
|       | 28.2.7. Leon Battista Alberti   | 321 |
| 28.3. | The Early Modern Period         | 321 |
|       | 28.3.1. Scipione del Ferro      | 321 |
|       | 28.3.2. Niccolò Tartaglia       | 321 |
|       | 28.3.3. Girolamo Cardano        | 321 |
|       | 28.3.4. Ludovico Ferrari        | 322 |
|       | 28.3.5. Rafael Bombelli         | 322 |
| 28.4. | Northern European Advances      | 322 |
|       | 28.4.1. François Viète          | 322 |
|       | 28.4.2. John Napier             | 322 |
| Quest | tions                           | 323 |
| -     | Historical Questions            | 323 |
|       | Questions for Reflection        | 323 |
|       |                                 |     |

#### 29. European Mathematics: 1200–1500

324

| 29.1.  | Leonardo of Pisa (Fibonacci)             | 324 |
|--------|------------------------------------------|-----|
|        | 29.1.1. The Liber abaci                  | 324 |
|        | 29.1.2. The Fibonacci Sequence           | 325 |
|        | 29.1.3. The Liber quadratorum            | 326 |
|        | 29.1.4. The <i>Flos</i>                  | 327 |
| 29.2.  | Hindu–Arabic Numerals                    | 328 |
| 29.3.  | Jordanus Nemorarius                      | 329 |
| 29.4.  | Nicole d'Oresme                          | 330 |
| 29.5.  | Trigonometry: Regiomontanus and Pitiscus | 331 |
|        | 29.5.1. Regiomontanus                    | 331 |
|        | 29.5.2. Pitiscus                         | 332 |
| 29.6.  | A Mathematical Skill: Prosthaphæresis    | 333 |
| 29.7.  | Algebra: Pacioli and Chuquet             | 335 |
|        | 29.7.1. Luca Pacioli                     | 335 |
|        | 29.7.2. Chuquet                          | 335 |
| Proble | ems and Questions                        | 336 |
|        | Mathematical Problems                    | 336 |
|        | Historical Questions                     | 337 |
|        | Questions for Reflection                 | 337 |
|        |                                          |     |

| 30. | Sixtee | enth-Century Algebra                                                                  | 338        |
|-----|--------|---------------------------------------------------------------------------------------|------------|
|     | 30.1.  | Solution of Cubic and Quartic Equations                                               | 338        |
|     |        | 30.1.1. Ludovico Ferrari                                                              | 339        |
|     | 30.2.  | Consolidation                                                                         | 340        |
|     |        | 30.2.1. François Viète                                                                | 341        |
|     | 30.3.  | Logarithms                                                                            | 343        |
|     |        | 30.3.1. Arithmetical Implementation of the Geometric Model                            | 344        |
|     | 30.4.  | Hardware: Slide Rules and Calculating Machines                                        | 345        |
|     |        | 30.4.1. The Slide Rule                                                                | 345        |
|     |        | 30.4.2. Calculating Machines                                                          | 345        |
|     | Proble | ems and Questions                                                                     | 346        |
|     |        | Mathematical Problems                                                                 | 346        |
|     |        | Historical Questions                                                                  | 346        |
|     |        | Questions for Reflection                                                              | 346        |
| 31. | Rena   | issance Art and Geometry                                                              | 348        |
|     | 31.1.  | The Greek Foundations                                                                 | 348        |
|     | 31.2.  | The Renaissance Artists and Geometers                                                 | 349        |
|     | 31.3.  | Projective Properties                                                                 | 350        |
|     |        | 31.3.1. Girard Desargues                                                              | 352        |
|     |        | 31.3.2. Blaise Pascal                                                                 | 355        |
|     | Proble | ems and Questions                                                                     | 356        |
|     |        | Mathematical Problems                                                                 | 356        |
|     |        | Historical Questions                                                                  | 357        |
|     |        | Questions for Reflection                                                              | 357        |
| 32. | The (  | Calculus Before Newton and Leibniz                                                    | 358        |
|     | 32.1.  | Analytic Geometry                                                                     | 358        |
|     |        | 32.1.1. Pierre de Fermat                                                              | 359        |
|     |        | 32.1.2. René Descartes                                                                | 359        |
|     | 32.2.  | Components of the Calculus                                                            | 363        |
|     |        | 32.2.1. Tangent and Maximum Problems                                                  | 363        |
|     |        | 32.2.2. Lengths, Areas, and Volumes                                                   | 365        |
|     |        | 32.2.3. Bonaventura Cavalieri                                                         | 365        |
|     |        | 32.2.4. Gilles Personne de Roberval                                                   | 366        |
|     |        | 32.2.5. Rectangular Approximations and the Method of Exhaustion 32.2.6. Blaise Pascal | 367<br>368 |
|     |        | 32.2.7. The Relation Between Tangents and Areas                                       | 308        |
|     |        | 32.2.8. Infinite Series and Products                                                  | 370        |
|     |        | 32.2.9. The Binomial Series                                                           | 371        |
|     | Proble | ems and Questions                                                                     | 371        |
|     | 11000  | Mathematical Problems                                                                 | 371        |
|     |        | Historical Questions                                                                  | 372        |
|     |        | Questions for Reflection                                                              | 372        |

| 33. | Newt   | on and Leibniz                                                                                                                                                   | 373                             |
|-----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|     | 33.1.  | Isaac Newton<br>33.1.1. Newton's First Version of the Calculus<br>33.1.2. Fluxions and Fluents<br>33.1.3. Later Exposition of the Calculus<br>33.1.4. Objections | 373<br>373<br>374<br>374<br>375 |
|     | 33.2.  | Gottfried Wilhelm von Leibniz<br>33.2.1. Leibniz' Presentation of the Calculus<br>33.2.2. Later Reflections on the Calculus                                      | 375<br>376<br>378               |
|     | 33.3.  | The Disciples of Newton and Leibniz                                                                                                                              | 379                             |
|     | 33.4.  | Philosophical Issues<br>33.4.1. The Debate on the Continent                                                                                                      | 379<br>380                      |
|     | 33.5.  | The Priority Dispute                                                                                                                                             | 381                             |
|     | 33.6.  | Early Textbooks on Calculus 33.6.1. The State of the Calculus Around 1700                                                                                        | 382<br>382                      |
|     | Proble | ems and Questions                                                                                                                                                | 383                             |
|     |        | Mathematical Problems                                                                                                                                            | 383                             |
|     |        | Historical Questions                                                                                                                                             | 384                             |
|     |        | Questions for Reflection                                                                                                                                         | 384                             |
| 34. | Conse  | olidation of the Calculus                                                                                                                                        | 386                             |
|     | 34.1.  | Ordinary Differential Equations<br>34.1.1. A Digression on Time                                                                                                  | 387<br>389                      |
|     | 34.2.  | Partial Differential Equations                                                                                                                                   | 390                             |
|     | 34.3.  | Calculus of Variations                                                                                                                                           | 391                             |
|     |        | 34.3.1. Euler                                                                                                                                                    | 393                             |
|     |        | 34.3.2. Lagrange                                                                                                                                                 | 394                             |
|     |        | 34.3.3. Second-Variation Tests for Maxima and Minima                                                                                                             | 394                             |
|     |        | 34.3.4. Jacobi: Sufficiency Criteria                                                                                                                             | 395                             |
|     |        | 34.3.5. Weierstrass and his School                                                                                                                               | 395                             |
|     | 34.4.  | Foundations of the Calculus                                                                                                                                      | 397                             |
|     |        | 34.4.1. Lagrange's Algebraic Analysis                                                                                                                            | 398<br>398                      |
|     | D. 11  | 34.4.2. Cauchy's Calculus                                                                                                                                        |                                 |
|     | Proble | ems and Questions<br>Mathematical Problems                                                                                                                       | 399<br>399                      |
|     |        | Historical Questions                                                                                                                                             | 399<br>400                      |
|     |        | Questions for Reflection                                                                                                                                         | 400                             |
|     |        | X and the removality                                                                                                                                             | 100                             |

#### PART VII. SPECIAL TOPICS

| ΓA  | NI VI | I. SPECIAL IOPICS                                            |            |
|-----|-------|--------------------------------------------------------------|------------|
|     | Conte | nts of Part VII                                              | 404        |
| 35. | Wom   | en Mathematicians                                            | 405        |
|     | 35.1. | Sof'ya Kovalevskaya<br>35.1.1. Resistance from Conservatives | 406<br>408 |

|     | 35.2. | Grace Chisholm Young                                                        | 408        |
|-----|-------|-----------------------------------------------------------------------------|------------|
|     | 35.3. | Emmy Noether                                                                | 411        |
|     | Quest | ions                                                                        | 414        |
|     |       | Historical Questions                                                        | 414        |
|     |       | Questions for Reflection                                                    | 415        |
| 36. | Prob  | ability                                                                     | 417        |
|     | 36.1. | Cardano                                                                     | 418        |
|     | 36.2. | Fermat and Pascal                                                           | 419        |
|     | 36.3. | Huygens                                                                     | 420        |
|     | 36.4. | Leibniz                                                                     | 420        |
|     | 36.5. | The Ars Conjectandi of James Bernoulli<br>36.5.1. The Law of Large Numbers  | 421<br>422 |
|     | 36.6. | De Moivre                                                                   | 423        |
|     | 36.7. | The Petersburg Paradox                                                      | 424        |
|     |       | Laplace                                                                     | 425        |
|     |       | Legendre                                                                    | 426        |
|     |       | . Gauss                                                                     | 426        |
|     |       | . Philosophical Issues                                                      | 427        |
|     |       | . Large Numbers and Limit Theorems                                          | 428        |
|     |       | ems and Questions                                                           | 429        |
|     | 11001 | Mathematical Problems                                                       | 429        |
|     |       | Historical Questions                                                        | 430        |
|     |       | Questions for Reflection                                                    | 431        |
| 37. | Algeb | ora from 1600 to 1850                                                       | 433        |
|     | 37.1. | Theory of Equations                                                         | 433        |
|     |       | 37.1.1. Albert Girard                                                       | 434        |
|     |       | 37.1.2. Tschirnhaus Transformations                                         | 434        |
|     |       | 37.1.3. Newton, Leibniz, and the Bernoullis                                 | 436        |
|     | 37.2. | Euler, D'Alembert, and Lagrange                                             | 437        |
|     |       | 37.2.1. Euler                                                               | 437        |
|     |       | 37.2.2. D'Alembert<br>37.2.3. Lagrange                                      | 438<br>438 |
|     | 37.3. |                                                                             | 438        |
|     | 57.5. | The Fundamental Theorem of Algebra and Solution by Radicals 37.3.1. Ruffini | 439        |
|     |       | 37.3.2. Cauchy                                                              | 441        |
|     |       | 37.3.3. Abel                                                                | 442        |
|     |       | 37.3.4. Galois                                                              | 443        |
|     | Probl | ems and Questions                                                           | 445        |
|     |       | Mathematical Problems                                                       | 445        |
|     |       | Historical Questions                                                        | 446        |
|     |       | Questions for Reflection                                                    | 446        |

Questions for Reflection

| 38. Proje | ctive and Algebraic Geometry and Topology  | 448 |
|-----------|--------------------------------------------|-----|
| 38.1.     | Projective Geometry                        | 448 |
|           | 38.1.1. Newton's Degree-Preserving Mapping | 448 |
|           | 38.1.2. Brianchon                          | 449 |
|           | 38.1.3. Monge and his School               | 450 |
|           | 38.1.4. Steiner                            | 451 |
|           | 38.1.5. Möbius                             | 452 |
| 38.2.     | Algebraic Geometry                         | 453 |
|           | 38.2.1. Plücker                            | 454 |
|           | 38.2.2. Cayley                             | 455 |
| 38.3.     | Topology                                   | 456 |
|           | 38.3.1. Combinatorial Topology             | 456 |
|           | 38.3.2. Riemann                            | 457 |
|           | 38.3.3. Möbius                             | 458 |
|           | 38.3.4. Poincaré's Analysis situs          | 459 |
|           | 38.3.5. Point-Set Topology                 | 461 |
| Proble    | ems and Questions                          | 462 |
|           | Mathematical Problems                      | 462 |
|           | Historical Questions                       | 463 |
|           | Questions for Reflection                   | 463 |

#### **39.** Differential Geometry

464

|                        | 39.1. | Plane Curves                                   | 464 |
|------------------------|-------|------------------------------------------------|-----|
|                        |       | 39.1.1. Huygens                                | 464 |
|                        |       | 39.1.2. Newton                                 | 466 |
|                        |       | 39.1.3. Leibniz                                | 467 |
|                        | 39.2. | The Eighteenth Century: Surfaces               | 468 |
|                        |       | 39.2.1. Euler                                  | 468 |
|                        |       | 39.2.2. Lagrange                               | 469 |
|                        | 39.3. | Space Curves: The French Geometers             | 469 |
|                        | 39.4. | Gauss: Geodesics and Developable Surfaces      | 469 |
|                        |       | 39.4.1. Further Work by Gauss                  | 472 |
|                        | 39.5. | The French and British Geometers               | 473 |
|                        | 39.6. | Grassmann and Riemann: Manifolds               | 473 |
|                        |       | 39.6.1. Grassmann                              | 474 |
|                        |       | 39.6.2. Riemann                                | 474 |
|                        | 39.7. | Differential Geometry and Physics              | 476 |
|                        | 39.8. | The Italian Geometers                          | 477 |
|                        |       | 39.8.1. Ricci's Absolute Differential Calculus | 478 |
| Problems and Questions |       | ems and Questions                              | 479 |
|                        |       | Mathematical Problems                          | 479 |
|                        |       | Historical Questions                           | 479 |
|                        |       | Questions for Reflection                       | 479 |
|                        |       |                                                |     |

| 40. | Non-  | Euclidean Geometry                                                | 481        |
|-----|-------|-------------------------------------------------------------------|------------|
|     | 40.1. | Saccheri                                                          | 482        |
|     | 40.2. | Lambert and Legendre                                              | 484        |
|     | 40.3. | Gauss                                                             | 485        |
|     | 40.4. | The First Treatises                                               | 486        |
|     | 40.5. | Lobachevskii's Geometry                                           | 487        |
|     | 40.6. | János Bólyai                                                      | 489        |
|     | 40.7. | The Reception of Non-Euclidean Geometry                           | 489        |
|     |       | Foundations of Geometry                                           | 491        |
|     | Probl | ems and Questions                                                 | 492        |
|     |       | Mathematical Problems                                             | 492        |
|     |       | Historical Questions                                              | 493        |
|     |       | Questions for Reflection                                          | 493        |
| 41. | Comj  | plex Analysis                                                     | 495        |
|     | 41.1. | Imaginary and Complex Numbers                                     | 495        |
|     |       | 41.1.1. Wallis                                                    | 497        |
|     |       | 41.1.2. Wessel                                                    | 498        |
|     |       | 41.1.3. Argand                                                    | 499        |
|     | 41.2. | Analytic Function Theory                                          | 500        |
|     |       | 41.2.1. Algebraic Integrals<br>41.2.2. Legendre, Jacobi, and Abel | 500<br>502 |
|     |       | 41.2.3. Theta Functions                                           | 502<br>504 |
|     |       | 41.2.4. Cauchy                                                    | 504        |
|     |       | 41.2.5. Riemann                                                   | 506        |
|     |       | 41.2.6. Weierstrass                                               | 507        |
|     | 41.3. | Comparison of the Three Approaches                                | 508        |
|     | Probl | ems and Questions                                                 | 508        |
|     |       | Mathematical Problems                                             | 508        |
|     |       | Historical Questions                                              | 509        |
|     |       | Questions for Reflection                                          | 509        |
| 42. | Real  | Numbers, Series, and Integrals                                    | 511        |
|     | 42.1. | Fourier Series, Functions, and Integrals                          | 512        |
|     |       | 42.1.1. The Definition of a Function                              | 513        |
|     | 42.2. |                                                                   | 514        |
|     |       | 42.2.1. Sturm–Liouville Problems                                  | 515        |
|     |       | Fourier Integrals                                                 | 516        |
|     |       | General Trigonometric Series                                      | 518        |
|     | Probl | ems and Questions                                                 | 519        |
|     |       | Mathematical Problems                                             | 519        |
|     |       | Historical Questions                                              | 519        |
|     |       | Questions for Reflection                                          | 519        |

532

542

| 43. Foun | dations of Real Analysis                        | 521 |
|----------|-------------------------------------------------|-----|
| 43.1.    | What is a Real Number?                          | 521 |
|          | 43.1.1. The Arithmetization of the Real Numbers | 523 |
| 43.2.    | Completeness of the Real Numbers                | 525 |
| 43.3.    | Uniform Convergence and Continuity              | 525 |
| 43.4.    | General Integrals and Discontinuous Functions   | 526 |
| 43.5.    | The Abstract and the Concrete                   | 527 |
|          | 43.5.1. Absolute Continuity                     | 528 |
|          | 43.5.2. Taming the Abstract                     | 528 |
| 43.6.    | Discontinuity as a Positive Property            | 529 |
| Probl    | ems and Questions                               | 530 |
|          | Mathematical Problems                           | 530 |
|          | Historical Questions                            | 531 |
|          | Questions for Reflection                        | 531 |
|          |                                                 |     |

#### 44. Set Theory

| 44.1.                  | Technical Background                  | 532 |
|------------------------|---------------------------------------|-----|
| 44.2.                  | Cantor's Work on Trigonometric Series | 533 |
|                        | 44.2.1. Ordinal Numbers               | 533 |
|                        | 44.2.2. Cardinal Numbers              | 534 |
| 44.3.                  | The Reception of Set Theory           | 536 |
|                        | 44.3.1. Cantor and Kronecker          | 537 |
| 44.4.                  | Existence and the Axiom of Choice     | 537 |
| Problems and Questions |                                       | 540 |
|                        | Mathematical Problems                 | 540 |
|                        | Historical Questions                  | 541 |
|                        | Questions for Reflection              | 541 |
|                        |                                       |     |

#### 45. Logic

| 45.1. | From Algebra to Logic                  | 542 |
|-------|----------------------------------------|-----|
| 45.2. | Symbolic Calculus                      | 545 |
| 45.3. | Boole's Mathematical Analysis of Logic | 546 |
|       | 45.3.1. Logic and Classes              | 546 |
| 45.4. | Boole's Laws of Thought                | 547 |
| 45.5. | Jevons                                 | 548 |
| 45.6. | Philosophies of Mathematics            | 548 |
|       | 45.6.1. Paradoxes                      | 549 |
|       | 45.6.2. Formalism                      | 550 |
|       | 45.6.3. Intuitionism                   | 551 |
|       | 45.6.4. Mathematical Practice          | 553 |
|       |                                        |     |

#### XXII CONTENTS

| 45.7. Doubts About Formalized Mathematics: Gödel's Theorems | 554 |
|-------------------------------------------------------------|-----|
| Problems and Questions                                      | 555 |
| Mathematical Problems                                       | 555 |
| Historical Questions                                        | 555 |
| Questions for Reflection                                    | 556 |
| Literature                                                  | 559 |
| Name Index                                                  |     |
| Subject Index                                               |     |

Like its immediate predecessor, this third edition of *The History of Mathematics: A Brief Course* must begin with a few words of explanation to users of the earlier editions. The present volume, although it retains most of the material from the second edition, has been reorganized once again. In the first edition each chapter was devoted to a single culture or period within a single culture and subdivided by mathematical topics. In the second edition, after a general survey of mathematics and mathematical practice in Part 1, the primary division was by subject matter: numbers, geometry, algebra, analysis, mathematical inference. After long consideration, I found this organization less desirable than a chronological ordering. As I said in the preface to the second edition,

For reasons that mathematics can illustrate very well, writing the history of mathematics is a nearly impossible task. To get a proper orientation for any particular event in mathematical history, it is necessary to take account of three independent "coordinates": the time, the mathematical subject, and the culture. To thread a narrative that is to be read linearly through this three-dimensional array of events is like drawing one of Peano's space-filling curves. Some points on the curve are infinitely distant from one another, and the curve must pass through some points many times. From the point of view of a reader whose time is valuable, these features constitute a glaring defect. The problem is an old one, well expressed eighty years ago by Felix Klein, in Chapter 6 of his *Lectures on the Development of Mathematics in the Nineteenth Century*:

I have now mentioned a large number of more or less famous names, all closely connected with Riemann. They can become more than a mere list only if we look into the literature associated with the names, or rather, with those who bear the names. One must learn how to grasp the main lines of the many connections in our science out of the enormous available mass of printed matter without getting lost in the time-consuming discussion of every detail, but also without falling into superficiality and dilettantism.

I have decided that in the lexicographic ordering of the three-dimensional coordinate system mentioned above, culture is the first coordinate, chronology the second, and mathematical content the third. That is the principle on which the first six parts of the present edition are organized. In the seventh and final part, which covers the period from 1800 on, the first coordinate becomes irrelevant, as mathematics acquires a worldwide scope. Because so much new mathematics was being invented, it also becomes impossible to give any coherent description of its whole over even a single decade, and so the chronological ordering has to become the second coordinate, as mathematical content becomes the first.

#### **Changes from the Second Edition**

Besides the general reorganization of material mentioned above, I have also had a feeling that in the previous edition I succumbed in too many places to the mathematician's impulse

#### **XXIV** PREFACE

to go into mathematical detail at the expense of the history of the subject and to discuss some questions of historical minutiae that are best omitted in a first course. I have therefore condensed the book somewhat. The main difference with earlier editions is that I have tried to adapt the text better to the needs of instructors. To that end, I have made the chapters more nearly uniform in length, usually ten to twelve pages each, putting into each chapter an amount of material that I consider reasonable for a typical 50-minute class. In addition, I have scrutinized the problems to be sure that they are reasonable as homework problems. They are of three types: (1) those that develop a mathematical technique, such as the Chinese method of solving polynomial equations numerically, the *kuttaka*, computation by the Egyptian method, *prosthaphæresis*, and the like; (2) those that ask the student to recall a specific set of historic facts (these generally have brief answers of a sentence or two and should be answerable directly from the narrative); and (3) those that ask the student to speculate and synthesize the history into a plausible narrative, including possible motives for certain investigations undertaken by mathematicians. In survey chapters at the beginning of some parts, only the last two types occur.

The book is divided into seven parts. The first six, comprising the first 34 chapters, contain as systematic a discussion as I can manage of the general history of mathematics up to the nineteenth century. Because it is aimed at a general audience, I have given extra attention to topics that continue to be in the school curriculum, while at the same time trying to discuss each topic within the context of its own time. At the end of each chapter are a few questions to provide a basis for classroom discussions. More such questions can be found in the accompanying teacher's manual. I believe that these 34 chapters, totaling about 400 pages, constitute a one-semester course and that any extra class meetings (I assume 42 such meetings) will be devoted to quizzes, midterms, and perhaps one or two of the specialized chapters in Part VII.

The seventh and last part of the book consists of more narrowly focused discussions. Except for Chapter 35, which discusses a small portion of the history of women in mathematics, these are updates, arranged by subject matter and carrying the history of the topics they treat into the twentieth century. Since this material involves modern mathematics, it is technically much more difficult than the first six parts of the book, and the mathematical homework problems reflect this greater difficulty, making much higher demands on the reader's mathematical preparation. Instructors will of course use their own judgment as to the mathematical level of their students. In some of these chapters, I have exceeded the self-imposed limit of 12 pages that I tried to adhere to in the first six parts of the book, assuming that instructors who wish to discuss one of these chapters will be willing to devote more than one class meeting to it.

#### **Elementary Texts on the History of Mathematics**

A textbook on the history of mathematics aimed at a first course in the subject, whose audience consists of teachers, mathematicians, and interested students from other specialties, cannot be as complete or as focused as an encyclopedia of the subject. Connections with other areas of science deserve attention quite as much as historical issues of transmission and innovation. In addition, there are many mathematical skills that the reader cannot be presumed to have, and these need to be explained as simply as possible, even when the explanation does not faithfully reproduce the historical text in which the subject arose. Thus, I have hybridized and simplified certain mathematical techniques in order to provide a usable model of what was actually done while stripping away complications that make the original texts obscure. This much sacrifice of historical accuracy is necessary, I believe, in order to get to the point within the confines of a single semester. At the same time, I think the exposition of these and other topics gives a reasonable approximation to the essence of the original texts.

This concept of a reasonable approximation to the original presents a problem that requires some judgment to solve: How "authentic" should we be when discussing works written long ago and far away, using concepts that have either disappeared or evolved into something very different? Historians have worked out ways of giving some idea of what original documents looked like. We can simply write numbers, for example, in our own notation. But when those numbers are part of a system with operational connections, it is necessary to invent something that is isomorphic to the original system, so that, for example, numbers written in sexagesimal notation still have a sexagesimal appearance, and computations done in the Egyptian manner are not simply run through a calculator and the output used. This problem is particularly acute in Euclidean geometry, which makes no reference to any units of length, area, or volume. The "Euclidean" geometry that is taught to students in high school nowadays freely introduces such units and makes use of algebraic notation to give formulas for the areas and volumes of circles, spheres, cones, and the like. This modernization conceals the essence of Euclid's method, especially his theory of proportion. He did not speak of the area of a circle, for example, only of the ratio of one circle to another, proving that it was the same as the ratio of the squares having their diameters as sides (Book 12, Proposition 2). How much of that authentic Euclidean geometry, which I call *metric-free*, should the student be subjected to? Without it, many of the most important theorems proved by Euclid, Archimedes, and Apollonius look very different from their original forms. On the other hand, it is cumbersome to expound, and one is constantly tempted to capitulate and "modernize" the discussion. I have made the decision in this book to draw the line at conic sections, using symbolic notation to describe them, though I do so with a very bad conscience. But I would never dream of presenting, in an introductory text, the actual definition of the latus rectum given by Apollonius. I try to hold the use of symbolic algebra to a minimum, but compromises are necessary in the real world.

When it comes to algebra, symbolic notation is a very late arrival. Algorithms for solving cubic and quartic equations preceded it, and those algorithms are very cumbersome to explain without symbols. Once again, I surrender to necessity and try to present the essence of the method without getting bogged down in the technical details of the original works. There is a further difficulty that most students have learned algebra by rote and can carry out certain operations, but have no insight into the essence of the problems they have been taught to solve. They may know what American students call the FOIL method of solving quadratic equations with integer coefficients, and some of them may even remember the quadratic formula, but I have yet to encounter a student who has grasped the simple fact that solving a quadratic equation is a way of finding two numbers if one knows their sum and product. Nor have I found a student who has the more general insight that classical algebra is the search for ways of rendering explicit numbers that are determined only implicitly, even though this insight is crucial for recognizing algebra when it occurs in early treatises, where there is no symbolic notation.

Besides the enormous amount of mathematics that the human race has created, so enormous that no one can be really expert except over a tiny region of it, the historian has the additional handicap of trying to fit that mathematics into the context of a wide range of cultures, most of which will not be his or her area of expertise. I feel these limitations with

#### **XXVI** PREFACE

particular keenness when it comes to languages. Despite a lifetime spent trying to acquire new languages in what spare time I have had, I really feel comfortable (outside of English, of course) only when working in Russian, French, German, Latin, and ancient Greek. (I have acquired only a modest ability to read a bit of Japanese, which I constantly seek to expand.) Of course, having a language from each of the Romance, Germanic, and Slavic groups makes it feasible to attempt reading texts in perhaps two dozen languages, but one needs to be on guard and never rely on one's own translations in such cases. I am most sharply aware of my total dependence on translations of works written in Chinese, Sanskrit, and Arabic. Even though I report what others have said about certain features of these languages for the reader's information, let it be noted here and now that anything I say about any of these languages is pure hearsay.

Just to reiterate: One can really glimpse only a small portion of the history of mathematics in an introductory course. Some idea of how much is being omitted can be seen by a glance at the website at the University of St Andrews.

#### http://www-history.mcs.st-and.ac.uk/

That site provides biographies of thousands of mathematicians. Under the letter G alone there are 125 names, fewer than 40 of which appear in this book. While many of the "small fry" have made important contributions to mathematics, they do not loom large enough to appear on a map the size and scale of the present work. Thus, it needs to be kept in mind that the picture is being painted in very broad brush strokes, and many important details are simply not being shown. Every omission is regrettable, but omissions are necessary if the book is to be kept within 600 pages.

And, finally, a word about the cover. When I was asked what kind of design I wished, I thought of a collage of images encompassing the whole history of the subject: formulas and figures. In the end, I decided to keep it simple and let one part stand for the whole. The part I chose was the conic sections, because of the length and breadth of their influence on the history of the subject. Arising originally as tools to solve the problems of trisecting the angle and doubling the cube, they were the subject of one of the profoundest treatises of ancient times, that of Apollonius. Later, they turned out to be the key to solving cubic and quartic equations in the work of Omar Khayyam, and they became a laboratory for the pioneers of analytic geometry and calculus to use in illustrating their theories. Still later, they were a central topic in the study of projective geometry, and remained so in algebraic geometry far into the nineteenth century. It is no accident that non-Euclidean geometries are classified as elliptic, and hyperbolic. The structure revealed by this trichotomy of cases for the intersection of a plane with a cone has been enormous. If any one part deserves to stand for the whole, it is the conic sections.

### WHAT IS MATHEMATICS?

This first part of our history is concerned with the "front end" of mathematics (to use an image from computer algebra)-its relation to the physical world and human society. It contains some general considerations about mathematics, what it consists of, and how it may have arisen. This material is intended as an orientation for the main part of the book, where we discuss how mathematics has developed in various cultures around the world. Because of the large number of cultures that exist, a considerable paring down of the available material is necessary. We are forced to choose a few sample cultures to represent the whole, and we choose those that have the best-recorded mathematical history. The general topics studied in this part involve philosophical and social questions, which are themselves specialized subjects of study, to which a large amount of scholarly literature has been devoted. Our approach here is the naive commonsense approach of an author who is not a specialist in either philosophy or sociology. Since present-day governments have to formulate *policies* relating to mathematics and science, it is important that such questions not be left to specialists. The rest of us, as citizens of a republic, should read as much as time permits of what the specialists have to say and make up our own minds when it comes time to judge the effects of a policy.

#### **Contents of Part I**

- 1. Chapter 1 (Mathematics and Its History) considers the general nature of mathematics and gives an example of the way it can help to understand the physical world. We also outline a series of questions to be kept in mind as the rest of the book is studied, questions to help the reader flesh out the bare bones in the historical documents.
- 2. Chapter 2 (Proto-mathematics) studies the mathematical reasoning invented by people in the course of solving the immediate and relatively simple practical problems of administering a government or managing a construction site. In this area we are dependent on archaeologists and anthropologists for the historical information available.

The History of Mathematics: A Brief Course, Third Edition. Roger L. Cooke.

<sup>© 2013</sup> John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.