Bio- and Bioinspired Nanomaterials

With a Foreword by João F. Mano
Edited by
Daniel Ruiz-Molina,
Fernando Novio, and
Claudio Roscini

Bio- and Bioinspired
Nanomaterials
Related Titles

Taubert, A., Mano, J.F., Rodríguez-Cabello, J.C. (eds.)

Biomaterials Surface Science
2013
Print ISBN: 978-3-527-33031-7

Pompe, W., Rödel, G., Weiss, H., Mertig, M.

Bio-Nanomaterials
Designing materials inspired by nature
2013
Print ISBN: 978-3-527-41015-6

Santin, M., Phillips, G.J. (eds.)

Biomimetic, Bioresponsive, and Bioactive Materials
An Introduction to Integrating Materials with Tissues
2012
Print ISBN: 978-0-470-05671-4

Mano, J.F. (ed.)

Biomimetic Approaches for Biomaterials Development
2012
Print ISBN: 978-3-527-32916-8

Li, J., He, Q., Yan, X.

Molecular Assembly of Biomimetic Systems
2011
Print ISBN: 978-3-527-32542-9

Poupon, E., Nay, B. (eds.)

Biomimetic Organic Synthesis
2011
Print ISBN: 978-3-527-32580-1

Basu, B., Katti, D., Kumar, A. (eds.)

Advanced Biomaterials
Fundamentals, Processing, and Applications
2010

Kumar, C.S. (ed.)

Biomimetic and Bioinspired Nanomaterials
2010
Print ISBN: 978-3-527-32167-4
Bio- and Bioinspired Nanomaterials
Contents

List of Contributors XIII
Foreword XXIII
Preface XXV

Part I Bionanomaterials 1

1 Synthesis of Colloidal Gold and Silver Nanoparticles and their Properties 3
 Christian Pfeiffer, Wolfgang J. Parak, and Jose Maria Montenegro
 1.1 Introduction 3
 1.2 Physical and Chemical Properties of Gold and Silver Nanoparticles 6
 1.2.1 Optical Properties of Gold and Silver Nanoparticles 7
 1.2.2 Electronic Properties of Gold and Silver Nanoparticles 8
 1.3 Synthesis of Gold and Silver Core Nanoparticles 9
 1.4 Transfer to Aqueous Media of Gold and Silver Nanoparticles from Organic Solvents 11
 1.5 Some Applications of Gold and Silver Nanoparticles 13
 Acknowledgments 16
 References 16

2 Ceramic Smart Drug Delivery Nanomaterials 23
 Alejandro Baeza and Maria Vallet-Regi
 2.1 Introduction 23
 2.2 Biodistribution, Toxicity, and Excretion of Nanoparticles 24
 2.3 Mesoporous Silica Nanoparticles 27
 2.4 Calcium Phosphate Nanoparticles 32
 2.5 Carbon Allotropes 33
 2.6 Iron Oxide Nanoparticles 37
 References 39
7.3.4 Other Types of Nanostructures 184
7.4 Plasmonic Photothermal Effect of GNS in Imaging 185
7.4.1 Photoacoustic Imaging 185
7.4.2 Photothermal Imaging 187
7.4.3 Photothermal Treatments or Manipulation 188
7.4.3.1 Hyperthermia 188
7.4.3.2 Photothermal Ablation 189
7.5 Concluding Remarks 192
Acknowledgment 193
List of Abbreviations 193
References 193

8 Nanomaterial-Based Bioimaging Probes 201
Christian Buchwalder, Katayoun Saatchi, and Urs O. Häfeli
8.1 Introduction 201
8.2 Nanoprobes 204
8.3 Imaging Probes 207
8.4 Targeting Strategies 211
8.4.1 Passive Targeting 212
8.4.2 Active Targeting 214
8.4.3 Limitations 216
8.5 Nanotheranostics 217
8.6 Design Considerations 219
8.7 Summary and Future Trends 223
References 223

9 Molecular Bases of Nanotoxicology 229
Angela Tino, Alfredo Ambrosone, Valentina Marchesano, and Claudia Tortiglione
9.1 Introduction 229
9.2 Impact on Environment: Nanoecotoxicology 229
9.3 Impact on Health: Nanotoxicology 232
9.3.1 The Basis of Nanogenotoxicity: NPs Affect DNA Integrity and Stability 235
9.3.2 Hallmarks of gene Expression in Response to NPs 236
9.3.3 New Frontiers in Nanotoxicology: Nanomaterials Drive Epigenetic Changes 244
References 248

Part II Bioinspired Materials – Bioinspired Materials for Technological Application 255

10 Bioinspired Interfaces for Self-cleaning Technologies 257
Victoria Dutschk
10.1 The Concept of Bioinspiration in Materials Engineering 257
10.1 Terms
- 10.1.1 Terms 257
- 10.1.2 Bioinspiration and Nanotechnology 259

10.2 Basics of Wetting
- 10.2.1 Contact Angle and Contact Angle Hysteresis 260
- 10.2.2 Contact Angle on Rough Surfaces 261

10.3 Self-cleaning Technologies
- 10.3.1 Fluid Transport 265
- 10.3.2 Biofouling 267
- 10.3.3 Water, Oil, and Stain Repellency 268

10.4 Summary
- Summary 273
- References 273

11 Catechol-Based Biomimetic Functional Materials and their Applications
- Félix Busqué, Josep Sedó, Daniel Ruiz-Molina, and Javier Saiz-Poseu

11.1 Introduction 277

11.2 Adhesives 278
- 11.2.1 General Purpose Adhesives 278
- 11.2.2 Adhesive Hydrogels for Biomedical Applications 280

11.3 Functionalizable Platforms (Primers) on Macroscopic Surfaces 282
- 11.3.1 Polydopamine 283
- 11.3.1.1 Bio- and Biomedical Applications 283
- 11.3.2 Hydrophobic/Hydrophilic Coatings 284
- 11.3.2.1 Other Catechol-Containing Polymers 285
- 11.3.2.2 Antifouling Coatings 286
- 11.3.2.3 Antibacterial Coatings 286
- 11.3.2.4 Hydrophobic/Hydrophilic Coatings 287

11.4 Micro-/Nanoscopic Surface Functionalization
- 11.4.1 Catechol-Modified Ferric NPs 288
- 11.4.1.1 Therapeutic Uses and Imaging 288
- 11.4.1.2 Biosensors 289
- 11.4.2 Functionalization of Nano- and Microstructures Other than Fe₃O₄ NPs 290

11.5 Functional Scaffolds 290
- 11.5.1 Oriental Lacquers 290
- 11.5.2 Melanin 291
- 11.5.3 Polydopamine-Based Nanoparticles 293

11.6 Chelating Materials/Siderophore-Like Materials 293
- 11.6.1 Therapeutic Uses and Imaging 294
- 11.6.2 Heavy Metal Scavenging 295

11.7 Materials for Chemo-/Biosensing 296
- 11.8 Electronic Devices 297
11.8.1 Molecular Electronics 297
11.8.2 Dye-Sensitized Solar Cells 298
11.8.3 Miscellaneous Devices 301
References 301

12 Current Approaches to Designing Nanomaterials Inspired by Mussel Adhesive Proteins 309
Hao Meng, Joseph Gazella, and Bruce P. Lee
12.1 Introduction 309
12.2 Mussel Adhesive Proteins and DOPA 310
12.2.1 Catechol Side Chain Chemistry 310
12.2.1.1 Reversible Physical Interactions 310
12.2.1.2 Oxidation-Mediated Crosslinking 312
12.3 Nanoparticle Stabilization 313
12.3.1 Grafting Catechol–Polymer Conjugate 314
12.3.2 Surface-Initiated Polymerization 315
12.3.3 Chemical Modification of Catechol Side Chain 316
12.4 Nanocomposite Materials 317
12.4.1 Nanocomposite Hydrogel 317
12.4.2 LbL Nanocomposite Films 318
12.4.3 Nanocomposite Fiber 319
12.4.4 Nanocomposite Rubber 320
12.5 Gecko and Mussel Dual Mimetic Adhesive 321
12.6 Polydopamine as a Multifunctional Anchor 322
12.6.1 Polydopamine-Mediated Hierarchical Surface Modification 322
12.6.2 Polydopamine-Coated Nanoparticles for Therapeutic Applications 323
12.7 Summary and Future Outlook 323
Acknowledgment 325
References 325

Part III Bioinspired Materials – Bioinspired Materials for Biomedical Applications 335

13 Functional Gradients in Biological Composites 337
André R. Studart, Rafael Libanori, and Randall M. Erb
13.1 Introduction 337
13.2 Chemical Gradient 340
13.3 Hydration Gradient 346
13.4 Mineral Gradient 349
13.5 Texture Gradient 353
13.6 Porosity Gradient 359
13.7 Conclusions 363
References 364
14 Novel Bioinspired Phospholipid Polymer Biomaterials for Nanobioengineering 369

Kazuhiko Ishihara

14.1 Introduction 369
14.2 Molecular Design of an Artificial Cell Membrane Surface 370
14.3 Polymer Nanoparticles System with an Artificial Cell Membrane Structure 372
14.3.1 Preparation of Polymer Nanoparticles with an Artificial Cell Membrane Structure 372
14.3.2 Functionality of Biomolecules Immobilized on an Artificial Cell Membrane Surface 373
14.3.3 Multiple Functions of the Artificial Cell Membrane Structure 376
14.4 Nanomaterials Entrapped in the Polymeric Nanoparticles with an Artificial Cell Membrane 379
14.4.1 Surface Modification of Quantum Dots (QDs) with Phospholipid Polymers 379
14.4.2 Encapsulation of QDs in the Polymeric Nanoparticles Covered with Artificial Cell Membrane 381
14.4.3 In-Cell Performance of Polymeric Nanoparticles Covered with Artificial Cell Membrane 382
14.5 Future Perspectives 386
List of Abbreviations 386
References 387

15 Bioinspired Functionalized Nanoparticles as Tools for Detection, Quantification and Targeting of Biomolecules 391

Carlos Lodeiro, Elisabete Oliveira, Cristina Núñez, Hugo M. Santos, Javier Fernández-Lodeiro, and Jose Luis Capelo

15.1 Introduction 391
15.2 Bioinspired Functionalized Nanoparticles 394
15.2.1 Bioinspired Probes and Nanoparticle Functionalization 394
15.3 Biomedical Applications 396
15.3.1 In Vitro Diagnostics Using Nanoparticles 396
15.3.1.1 Detection of Biomolecules 396
15.3.1.2 Detection of Tumor Cells: Bioimaging 397
15.3.1.3 Separation and Purification of Biological Molecules and Cells 398
15.3.1.4 Biodetection of Pathogens 398
15.4 Therapeutics Applications of Nanoparticles 398
15.4.1 Drug Delivery (DS) and Gene Delivery (GD) 398
15.4.2 Tumor Destruction via Heating and Radiation 399
15.4.3 Tissue Engineering 401
15.4.4 Bacterial Inactivation 402
15.5 Mass Spectrometry and Nanomaterials for Biomolecule Identification 402
16 Engineering Protein Based Nanoparticles for Applications in Tissue Engineering 425
Witold I. Tatkiewicz, Joaquin Seras-Franzoso, Cesar Diez-Gil, Elena Garcia Fruitós, Esther Vázquez, Imma Ratera, Antoni Villaverde, and Jaume Veciana

16.1 Introduction 425
16.2 Inclusion Bodies; Protein-Based Nanoparticles as Novel Bionanomaterials 426
16.3 Physicochemical and Nanoscale Properties of Inclusion Bodies 427
16.3.1 Hydrophilicity of Inclusion Bodies 427
16.3.2 Nanomechanical Properties of IBs Determined by AFM 428
16.3.3 Stiffness Mapping of the IBs by AFM 430
16.3.4 Supramolecular Organization of Protein Nanoparticles (IBs) 432
16.4 Cell Proliferation Assisted by Protein-Based Nanoparticles 433
16.4.1 IB-Stimulation of Cell Proliferation 433
16.4.2 Properties of IBs are Sensed by Cells 435
16.5 Microscale Engineering of Protein-Based Nanoparticles for Cell Guidance 436
16.6 Conclusions and Perspectives 441

References 442

Index 447
List of Contributors

Alfredo Ambrosone
Consiglio Nazionale delle Ricerche
Istituto di Cibernetica “E. Caianiello”
Via Campi Flegrei, 34
80078, Pozzusoli
Italy

E. Caianiello

Alejandro Baeza
Centro de Investigación Biomédica en Red de Bioingeniería
Biomateriales y Nanomedicina (CIBER-BBN)
C/Monforte de Lemos 3-5
Pabellón 11
28029 Madrid
Spain

and

Universidad Complutense de Madrid
Instituto de Investigación Sanitaria
Hospital 12 de Octubre i+12
Dpto. Química Inorgánica y Bioinorgánica
Plaza Ramón y Cajal s/n
28040 Madrid
Spain

M. J. Blanco-Prieto
Universidad de Navarra
Facultad de Farmacia
Departamento de Farmacia y Tecnología Farmacéutica
Irunlarrea 1
31008 Pamplona
Spain

Regina Bleul
Fraunhofer ICT-IMM
Nanoparticle Technologies Department
Carl-Zeiss-Str. 18-20
55129 Mainz
Germany

Christian Buchwalder
University of British Columbia
Faculty of Pharmaceutical Sciences
2405 Wesbrook Mall
Vancouver, BC V6T 1Z3
Canada

Félix Busqué
Universitat Autònoma de Barcelona
Departament de Química
Campus UAB
08193 Barcelona
Spain
Jose Luis Capelo
University NOVA of Lisbon
Faculty of Science and Technology
Chemistry Department
BIOSCOPE Research Group,
REQUIMTE
Caparica Campus
Quinta da Torre
2829-516 Caparica
Portugal
and
ProteoMass Scientific Society
Madan Parque
Rua dos Inventores
2825-182 Caparica
Portugal

Randall M. Erb
Northeastern University
Department of Mechanical and
Industrial Engineering
Boston MA 02115
USA

Javier Fernández-Lodeiro
University NOVA of Lisbon
Faculty of Science and Technology
Chemistry Department
BIOSCOPE Research Group,
REQUIMTE
Caparica Campus
Quinta da Torre
2829-516 Caparica
Portugal
and
ProteoMass Scientific Society
Madan Parque
Rua dos Inventores
2825-182 Caparica
Portugal

Cesar Diez-Gil
Institut de Ciencia de Materials de Barcelona (CSIC)
Department of Molecular Nanoscience and Organic Materials
Bellaterra
Av de Serragalliners
08193 Barcelona
Spain
and
Biomateriales y Nanomedicina
(CIBER-BBN)
CIBER de Bioingeniería
Bellaterra
08193 Barcelona
Spain

Elena García Fruitós
Biomateriales y Nanomedicina
(CIBER-BBN)
CIBER de Bioingeniería
Bellaterra
08193 Barcelona
Spain
and
Universitat Autònoma de Barcelona
Institut de Biotecnologia i de Biomedicina
Cerdanyola del Vallés
Carrer de la Vall Moronta
08193 Barcelona
Spain

Victoria Dutschk
University of Twente
Faculty for Engineering Technology (CTW)
Engineering of Fibrous Smart Materials (EFSM)
Drienerlolaan 5
7522 NB Enschede
The Netherlands
and
Universitat Autònoma de Barcelona
Institut de Biotecnologia i de Biomedicina
Cerdanyola del Vallés
Carrer de la Vall Moronta
08193 Barcelona
Spain
Universitat Autònoma de Barcelona
Departament de Genètica i de Microbiologia
Cerdanyola del Vallès
Carrer de la Vall Moronta
08193 Barcelona
Spain

A. García-Márquez
UMR CNRS 8180
Université de Versailles
Saint-Quentin-en-Yvelines
Institut Lavoisier
45 Avenue des Etats-Unis
78035 Versailles Cedex
France

Florence Gazeau
UMR 7057 CNRS/Université
Paris Diderot
Laboratoire Matières et Systèmes Complexes
10 rue Alice Domon et Léonie Duquet
75205 Paris
France

Joseph Gazella
Michigan Technological University
Department of Biomedical Engineering
1400 Townsend Dr.
Houghton, MI 49931
USA

Pablo Guardia
Istituto Italiano di Tecnologia
Nanochemistry
via Morego 30
16163 Genoa
Italy

Urs O. Häfeli
University of British Columbia
Faculty of Pharmaceutical Sciences
2405 Wesbrook Mall
Vancouver, BC V6T 1Z3
Canada

P. Horcajada
UMR CNRS 8180
Université de Versailles
Saint-Quentin-en-Yvelines
Institut Lavoisier
45 Avenue des Etats-Unis
78035 Versailles Cedex
France

Kazuhiko Ishihara
The University of Tokyo
School of Engineering
Department of Materials Engineering
Department of Bioengineering
7-3-1, Hongo
Bunkyo-ku
Tokyo 113–8656
Japan

Hamilton Kakwere
Istituto Italiano di Tecnologia
Nanochemistry
via Morego 30
16163 Genoa
Italy

Loredana Latterini
University of Perugia
Chemistry Department and Centro Eccellenza Materiali Innovativi Nanostrutturati (CEMIN)
Via Elce di Sotto 8
06123 Perugia
Italy
Bruce P. Lee
Michigan Technological University
Department of Biomedical Engineering
1400 Townsend Dr.
Houghton, MI 49931
USA

Rafael Libanori
ETH Zurich
Department of Materials
Complex Materials
8093 Zurich
Switzerland

Carlos Lodeiro
University NOVA of Lisbon
Faculty of Science and Technology
Chemistry Department
BIOSCOPE Research Group,
REQUIMTE
Caparica Campus
Quinta da Torre
2829-516 Caparica
Portugal

and

ProteoMass Scientific Society
Madan Parque
Rua dos Inventores
2825-182 Caparica
Portugal

Julia Lorenzo
Universitat Autònoma de Barcelona
Institut de Biotecnologia i Biomedicina (IBB)
Departament de Bioquímica i de Biologia Molecular
Cerdanyola del Vallés
Carrer de la Vall Moronta
08193 Barcelona
Spain

Valentina Marchesano
Consiglio Nazionale delle Ricerche
Istituto di Cibernetica “E. Caianiello”
Via Campi Flegrei, 34
80078, Pozzuoli
Italy

Michael Maskos
Fraunhofer ICT-IMM
Nanoparticle Technologies Department
Carl-Zeiss-Str. 18-20
55129 Mainz
Germany

Hao Meng
Michigan Technological University
Department of Biomedical Engineering
1400 Townsend Dr.
Houghton, MI 49931
USA

Jose Maria Montenegro
University of Malaga
Central Research Services
Bulevar Louis Pasteur 33
Edificio SCAI Campus de Teatinos
29071 Malaga
Spain

and

The Andalusian Centre for Nanomedicine and Biotechnology BIONAND
Parque Tecnológico de Andalucía Severo Ochoa, 35
29590 Campanillas, Málaga
Spain
Fernando Novio
Institut Catala de Nanociencia i Nanotecnologia (ICN2)
Consejo Superior de Investigaciones Científicas (CSIC)
Campus UAB
Bellatera
Av de Serragalliners
08193 Barcelona
Spain

Cristina Núñez
University NOVA of Lisbon
Faculty of Science and Technology
Chemistry Department
BIOSCOPE Research Group,
REQUIMTE
Caparica Campus
Quinta da Torre
2829-516 Caparica
Portugal

and

ProteoMass Scientific Society
Madan Parque
Rua dos Inventores
2825-182 Caparica
Portugal

and

University of Trás-os-Montes and Alto Douro
CECAV
Veterinary Science Department
Quinta de Prados
5001-801 Vila Real
Portugal

Elisabete Oliveira
University NOVA of Lisbon
Faculty of Science and Technology
Chemistry Department
BIOSCOPE Research Group,
REQUIMTE
Caparica Campus
Quinta da Torre
2829-516 Caparica
Portugal

and

ProteoMass Scientific Society
Madan Parque
Rua dos Inventores
2825-182 Caparica
Portugal

and

University of Trás-os-Montes and Alto Douro
CECAV
Veterinary Science Department
Quinta de Prados
5001-801 Vila Real
Portugal

Wolfgang J. Parak
Philipps Universität Marburg
Fachbereich Physik
Renthof 7
35037 Marburg
Germany

and

CIC Biomagune
Paseo Miramón 182
20009 San Sebastian
Spain

Teresa Pellegrino
Istituto Italiano di Tecnologia
Nanochemistry
via Morego 30
16163 Genoa
Italy
and
Nanoscience Institute of CNR
National Nanotechnology Laboratory,
Via Arnesano
73100 Lecce
Italy

Christian Pfeiffer
Philipps Universität Marburg
Fachbereich Physik
Renthof 7
35037 Marburg
Germany

Imma Ratera
Institut de Ciencia de Materials de Barcelona (CSIC)
Department of Molecular Nanoscience and Organic Materials
Bellaterra
Av de Serragalliners
08193 Barcelona
Spain

and
Biomateriales y Nanomedicina (CIBER-BBN)
CIBER de Bioingeniería
Bellaterra
08193 Barcelona
Spain

Andreas Riedinger
Istituto Italiano di Tecnologia
Nanochemistry
via Morego 30
16163 Genoa
Italy

Daniel Ruiz-Molina
Institut Catala de Nanociencia i Nanotecnologia (ICN2)
Consejo Superior de Investigaciones Científicas (CSIC)
Campus UAB
Bellaterra
Av de Serragalliners
08193 Barcelona
Spain

Katayoun Saatchi
University of British Columbia
Faculty of Pharmaceutical Sciences
2405 Wesbrook Mall
Vancouver, BC V6T 1Z3
Canada

Javier Saiz-Poseu
Consejo Superior de Investigaciones, Científicas (CSIC)
Institut Català de Nanociència I Nanotecnologia (ICN2)
Campus UAB
Bellaterra
Av de Serragalliners
08193 Barcelona
Spain

Hugo M. Santos
University NOVA of Lisbon
Faculty of Science and Technology
Chemistry Department
BIOSCOPE Research Group,
REQUIMTE
Caparica Campus
Quinta da Torre
2829-516 Caparica
Portugal

and
List of Contributors

C. Serre
UMR CNRS 8180
Université de Versailles
Saint-Quentin-en-Yvelines
Institut Lavoisier
45 Avenue des Etats-Unis
78035 Versailles Cedex
France

André R. Studart
ETH Zurich
Department of Materials
Complex Materials
8093 Zurich
Switzerland

C. Tamames-Tabar
UMR CNRS 8180
Université de Versailles
Saint-Quentin-en-Yvelines
Institut Lavoisier
45 Avenue des Etats-Unis
78035 Versailles Cedex
France

and

Universidad de Navarra
Facultad de Farmacia
Departamento de Farmacia y
Tecnología Farmacéutica
Irunlarrea 1
31008 Pamplona
Spain
Luigi Tarpani
University of Perugia
Chemistry Department and Centro
Eccellenza Materiali Innovativi
Nanostrutturati (CEMIN)
Via Elce di Sotto 8
06123 Perugia
Italy

Witold I. Tatkiewicz
Institut de Ciencia de Materials de
Barcelona (CSIC)
Department of Molecular
Nanoscience and Organic Materials
Bellaterra
Av de Serragalliners
08193 Barcelona
Spain

and

Biomateriales y Nanomedicina
(CIBER-BBN)
CIBER de Bioingeniería
Bellaterra
08193 Barcelona
Spain

Angela Tino
Consiglio Nazionale delle Ricerche
Istituto di Cibernetica “E. Caianiello”
Via Campi Flegrei, 34
80078, Pozzuoli
Italy

Claudia Tortiglione
Consiglio Nazionale delle Ricerche
Istituto di Cibernetica “E. Caianiello”
Via Campi Flegrei, 34
80078, Pozzuoli
Italy

María Vallet-Regí
Centro de Investigación Biomédica
en Red de Bioingeniería
Biomateriales y Nanomedicina
(CIBER-BBN)
C/Monforte de Lemos 3-5
Pabellón 11
28029 Madrid
Spain

and

Universidad Complutense de
Madrid
Instituto de Investigación Sanitaria
Hospital 12 de Octubre i+12
Dpto. Química Inorgánica y
Bioinorgánica
Plaza Ramón y Cajal s/n
28040 Madrid
Spain

Esther Vázquez
Biomateriales y Nanomedicina
(CIBER-BBN)
CIBER de Bioingeniería
Bellaterra
08193 Barcelona
Spain

and

Universitat Autònoma de Barcelona
Institut de Biotecnologia i de
Biomedicina
Cerdanyola del Vallés
Carrer de la Vall Moronta
08193 Barcelona
Spain

and
Universitat Autònoma de Barcelona
Departament de Genètica i de Microbiologia
Cerdanyola del Vallès
Carrer de la Vall Moronta
08193 Barcelona
Spain

Jaume Veciana
Institut de Ciencia de Materials de Barcelona (CSIC)
Department of Molecular Nanoscience and Organic Materials
Bellaterra
Av de Serragalliners
08193 Barcelona
Spain

and

Biomateriales y Nanomedicina
(CIBER-BBN)
CIBER de Bioingeniería
Bellaterra
08193 Barcelona
Spain

Antoni Villaverde
Biomateriales y Nanomedicina
(CIBER-BBN)
CIBER de Bioingeniería
Bellaterra
08193 Barcelona
Spain

and

Universitat Autònoma de Barcelona
Institut de Biotecnologia i de Biomedicina
Cerdanyola del Vallès
Carrer de la Vall Moronta
08193 Barcelona
Spain

and

Universitat Autònoma de Barcelona
Departament de Genètica i de Microbiologia
Cerdanyola del Vallés
Carrer de la Vall Moronta
08193 Barcelona
Spain
Foreword

Without being aware, mankind has been in contact with nanomaterials for a long time. For example, a bright blue pigment invented and used 5000 years ago in Egypt, or the fourth century Lycurgus Cup, the magnificent Roman glass cage cup made of a dichroic glass showing different colors depending on which angle light is shown through, provide today clues how to develop new nanomaterials that could be used in almost any field. In particular, with the latest developments in nanoscience and nanotechnology, biology and medicine have been making revolutionary progress that will provide in the future new diagnosis and therapeutic solutions. The editors of this book were able to collect valuable contributions from top-level scientists that illustrate representative examples of how bionanomaterials could lead to new devices or structures with unique properties. This fresh, exciting, and multidisciplinary field has been bridging principles and tools from physics, chemistry, or engineering to produce such novel elements at all dimensional ranges, including nanoparticles (0D), nanofibers (1D), thin-coating or nanostructured surfaces (2D), or 3D nano-organized materials (hybrid systems, nanocomposites, nano/meso-porous structures, and so on). Bionanomaterials are able to interact peculiarly with biological systems, permitting the accomplishment of tasks that could not be possible with higher-scale materials; well-established examples are nanoparticles for imaging with improved sensitivity, to be used as sensors or to deliver drugs to specific parts of the body.

The authors clearly realized the importance of using modern bioinspired concepts to develop tailored materials for a growing range of technological applications. Along with over 3.8 billion years of evolution, Nature has introduced highly effective biological mechanisms to produce surfaces and materials with exclusive or exceptional features. Biomimetic strategies rely first on the discovery of the structural or physicochemical reasons behind the manifestation of such characteristics, followed by the design and production of synthetic counterparts that could reproduce a similar effect. The second section of this book provides striking examples of bioinspired materials, including surfaces with extreme wettability properties, functional materials with improved adhesion (especially in wet environments), and structural and functional systems based on the complex and hierarchical organization of natural composites. These lessons from Nature are explored in the last section of the book, where bioinspired materials are
specifically proposed for biomedical applications, showing their potential for future applications in drug delivery, theragnosis, and regenerative medicine.

This editorial project provides the latest scientific and technological developments in the fields of bionanomaterials and biological inspired nanomaterials, which will be of value to academic and industrial researchers – the accumulated knowledge, together with the potential applicability of such systems, will have a tremendous impact across a range of different fields, including in the biomedical arena. Young research workers will also have in the contents of this book an indispensable support that could guide them in choosing to begin, or to continue, working in this stimulating area of research, which encompasses a wide range of disciplines, including chemistry, physics, materials science and engineering, biology, and medicine.

João F. Mano (University of Minho);
e-mail: jmano@dep.uminho.pt

João F. Mano is Professor at the University of Minho, Portugal, and staff member of the 3B’s research group Biomaterials, Biodegradables and Biomimetics. His research interests include the development of new materials and concepts for biomedical applications. He was awarded the Stimulus to Excellence by the Portuguese Minister for Science and Technology in 2005 and the Materials Science and Technology Prize by the Federation of European Materials Societies in 2007.
Preface

Throughout history, far-reaching technical advances have changed established paradigms. Nowadays, nanotechnology is emerging as the latest revolutionary development that is expected to profoundly affect how novel materials, capable of delivering solutions that are cost-efficient, environmentally safe, and affording improved technical performance, are designed and manufactured.

Nanotechnology deals with the manipulation and fabrication of objects or structures at, and below, the nanometric scale, with the ultimate goal of developing new materials for specific technological niches. Because the physical and chemical properties of nanomaterials differ from those of bulk materials, they belong by themselves as a unique class. Although nanoscience started off as an academic research field in the mid-1980s, there are already plenty of examples of commercial applications of nanotechnology in the marketplace. Nanomaterials can be found as key components in healthcare, electronics, cosmetics, textiles, information technology, and environmental protection industries. Not surprisingly, the increasing interest they have attracted has translated into a sharp increase in both public and private funding in nanoscience and nanotechnology-related research.

In particular, the size-specific properties of nanomaterials make them a superior alternative to traditional materials in biology and medicine, and specifically for the fabrication of novel biomaterials, in such areas as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, and tissue engineering, all of which are reviewed in this book. Overall, understanding and controlling the action mechanisms of the nanodevices targeting key biological processes stand out as foremost scientific challenges.

Alongside purely synthetic approaches, Nature itself offers different models and strategies at the nanoscale that can be mimicked with success. Indeed, the study of nanostructures found in many different animals, plants, and other biological systems has shown us ways to develop new materials for energy production, superhydrophobics, adhesives, biosensors, and materials with improved physical and chemical resistance. As far as future technological applications are concerned, these bioinspired nanomaterials are already showing great potential.
This book includes some of the most recent breakthrough research in both bio- and bioinspired nanomaterials. In this respect, it is intended as a navigation guide through some innovative and elegant contributions from a wide group of researchers of high standing in their respective fields, aimed at an advanced and specialist readership community, and relevant in general to readers in research, academia, or private companies focused on high added value contributions.
Part I
Bionanomaterials