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Preface

The unique spectroscopic properties of the lanthanide ions prompted Sir William Crookes in
his lecture delivered 1887 at the Royal Institution to say: “These elements perplex us in our
researches, baffle us in our speculations, and haunt us in our very dreams. They stretch like an
unknown sea before us — mocking, mystifying, and murmuring strange revelations and
possibilities” (The Chemical News, 1887, pp. 83-88). These unique properties, which are
line-like absorption and equally narrow emission spectra, played a central role in the
separation and identification of the 14 elements. As each lanthanide ion shows a characteristic
spectroscopic signature and line-like spectra, they have continued to fascinate researchers
through the ages and have led to many applications as well as new fields of research. The
interest in spectroscopy and spectroscopic applications of the lanthanide ions has resulted in a
growing number of publications. Among these are several books that address one or more
areas of lanthanide chemistry and spectroscopy, such as the recent Rare Earth Coordination
Chemistry edited by Chunhui Huang, Wybourne and Smentek’s theoretical treatise on the
Optical Spectroscopy of Lanthanides — Magnetic and Hyperfine Interactions, or Lanthanide
Luminescence edited by Hanninen and Harmi. Our new book aims to serve scientists whose
primary field of interest is spectroscopy and spectroscopic applications of lanthanide ions,
veteran scientists for whom the field is reviewed, as well as new scientists, who can find here
information that will help them to get started. Finally, this book is also intended as the basis for
an intermediate to advanced course in f element spectroscopy.

The first two chapters of this work cover theoretical and practical aspects of the emission
process, the spectroscopic techniques and the equipment used to characterize the emission.
Chapter 3 introduces and reviews the property of circularly polarized emission, while
Chapter 4 reviews the use of lanthanide ion complexes in bioimaging and fluorescence
microscopy. Chapter 5 covers the phenomenon of two-photon absorption, its theory as well
as applications in imaging, while Chapter 6 reviews the use of lanthanide ions as chemo-
sensors. Chapter 7 introduces the basic principles of nanoparticle upconversion lumines-
cence and its use for bioimaging and Chapter 8 reviews direct excitation of the lanthanide
ions and the use of the excitation spectra to probe the metal ion’s coordination environment
in coordination compounds and biopolymers. Finally, Chapter 9 describes the formation of
heterobimetallic complexes, in which the lanthanide ion emission is promoted through the
hetero-metal.

I am deeply indebted to all who made this book possible. My thanks to the contributing
authors of the nine chapters, without whom this book would not have been possible. They
are major driving forces in their respective areas and have contributed chapters that are at
once excellent tutorials and thorough reviews of their fields. My heartfelt thanks go also to
the publisher and everyone involved with the book at Wiley, who, with their continued
patience, encouragement, professionalism and enthusiasm led the project to its successful
conclusion.
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Introduction to Lanthanide
Ion Luminescence

Ana de Bettencourt-Dias

Department of Chemistry, University of Nevada, USA

1.1 History of Lanthanide Ion Luminescence

After the isolation of a sample of yttrium oxide from a new mineral by Johan Gadolin in
1794, several of the lanthanides, namely praseodymium and neodymium, as well as
cerium, lanthanum, terbium and erbium were isolated in different degrees of purity [1].
It was only after Kirchhoff and Bunsen introduced the spectroscope in 1859 as a means of
characterising elements that the remaining lanthanides were discovered and the already
known ones could be obtained in pure form [2]. Spark spectroscopy provided the means
to finally isolate in pure form the remaining lanthanides [3-5]. As will be discussed
below, the 4f valence orbitals are buried within the core of the ions, shielded from the
coordination environment by the filled 5s and 5p orbitals, and do not experience
significant coupling with the ligands. Therefore, the electronic levels of the ions can
be described in an analogous way to the atomic electronic levels with a Hamiltonian in
central field approximation with electrostatic Coulomb interactions, spin—orbit coupling
and finally crystal field and Zeeman effects added as perturbations. All these perturba-
tions lead to a lifting of the degeneracy of the electronic levels and transitions between
these split levels are experimentally observed [6]. These transitions, however, are
forbidden by the parity rule, as there is no change in parity between excited and ground
state. That the emission was nonetheless seen puzzled scientists for a long time [7]. Only
when Judd and Ofelt independently proposed their theory of induced electric dipole

Luminescence of Lanthanide lons in Coordination Compounds and Nanomaterials, First Edition.
Edited by Ana de Bettencourt-Dias.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.



2 Luminescence of Lanthanide lons in Coordination Compounds and Nanomaterials

transitions [8,9] could the appearance of these transitions be satisfactorily explained. As
the transitions are forbidden, the direct excitation of the lanthanide ions is also not easily
accomplished, and this is why sensitised emission is a more appealing and energy
efficient way to promote lanthanide-centred emission. While the ability of the lanthanide
salts to emit light was key to their isolation in pure form, sensitised emission was first
described by S.I. Weissman only in 1942 [10]. This author realised that when complexes
of Eu(Ill) with salicylaldehyde and benzoylacetonato, as well as other related ligands,
were irradiated with light in the wavelength range in which the organic ligands absorb,
strong europium-characteristic red emission ensued. Weissman further observed that the
emission intensity was temperature and solvent dependent, as opposed to what is seen for
europium nitrate solutions [10]. After this seminal work, interest in sensitised lumines-
cence spread through the scientific community, as the potential application of lanthanides
for imaging and sensing was quickly recognised [11,12].

1.2 Electronic Configuration of the +III Oxidation State

1.2.1 The 4f Orbitals

The lanthanides’ position in the fourth period as the inner transition elements of the
periodic table indicates that the filling of the 4f valence orbitals commences with them.
The electronic configuration of the lanthanides is [Xe]4f'6s%, with notable exceptions for
lanthanum, cerium, gadolinium and lutetium, which have a [Xe]4f"_]5d 165> configura-
tion. Upon ionisation to the most common +III oxidation state, the configuration is
uniformly [Xe]47"~". La(III) therefore does not possess any felectrons, while Lu(III) has a
filled 4f orbital. While the 4f orbitals are the valence orbitals, they are shielded from the
coordination environment by the filled 5s and 5p orbitals, which are more spatially
extended, as shown in Fig. 1.1, which displays the radial charge density distribution for
Pr(IIT) [13]. Therefore, lanthanides bind mostly through ionic interactions and the ligand
field perturbation upon the 4f orbitals is minimal. Nonetheless, as will be discussed
below, symmetry considerations imposed by the ligand field affect the emission spectra of
the lanthanide ions.

1.2.2 Energy Level Term Symbols

It is usual to describe the configurations of hydrogen-like atoms or ions, that is with only one
electron, in terms of the quantum numbers n, [, m;, s and m,. In polyelectronic atoms and
ions, exchange and pairing energies lead to different configurations, or microstates, with
different energies, which are described by new quantum numbers, the total orbital angular
momentum quantum number L and its projection along the z axis, the total magnetic orbital
angular momentum M;_and the total spin angular momentum quantum number S, often
indicated as the spin multiplicity, 25+1, as well as its projection along the z axis, the total
magnetic spin quantum number M. In the case of heavy elements, such as lanthanides,
coupling of the spin and angular momenta is seen, and an additional quantum number, J,
the spin—orbit coupling or Russell-Saunders quantum number, is commonly utilised. As
will be mentioned below, intermediate coupling for lanthanides is more correct, but the
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Figure 1.1 Radial charge density distribution of Pr(Ill). Reproduced from [13] with permission
from Elsevier

Russell-Saunders formalism is simple to use and will be carried through this chapter. Term
symbols with the format >*!L;, which summarise the quantum number information, are
assigned to describe the individual microstates. For a polyelectronic atom or ion with i
electrons,

L=>l, M.=-L,...,.L

S=Zs,-, Si=1/2

and
J=L+SL+S—1,....|L-Sl

Term symbols can be obtained by determining the microstates, or allowed combinations
of all electrons described by quantum numbers, of the atom or ion under consideration
and methods to do it is can be found in textbooks [14,15]. Since multiple combinations of
electrons are allowed, and therefore many microstates are present, Hund’s rules are
followed for determination of the ground state. The ground state will have the largest spin
multiplicity and the largest orbital multiplicity corresponding to the largest value of L.
Finally, if § and L are equal for two states, the ground state will correspond to the largest
value of J, if the electron shell is more than half-filled, or an inverted multiplet and the
smallest value of J, if the orbital is less than half-filled, which is a regular multiplet. The
ground state term symbols for f* (n = number of electrons in the f shell) configurations are
shown in Table 1.1.
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Table 1.1 Ground state term symbols for f"
electronic configurations

Configuration Term

o/ s,

fur? Fs)p/*Frp

o HyH,

FIf Hgs2/ s
10

rif oL/

Fif °Hs;,/°His)

P TR/ Fs

f S7/2

A complete diagram, showing the ground and excited states of all lanthanide ions in the
+III oxidation state with corresponding term symbols, is displayed in Fig. 1.2.

Table 1.2 summarises the most commonly observed emission transitions for the
emissive Ln(II) ions.

Table 1.2 Most common emissive f-f transitions of Ln>* [16-28]

Ln Transition A [nm]
Pr D, - F, 1000
]Dz N ;G4 1440
D, = *H,(/ = 4,5) 600, 690
3Py = *H,(J =4 - 6) 490, 545, 615, 640,
3P0_)3FI(/=2_4) 700, 725
Nd *Fyn = M0=9/2-13/2) 900, 1060, 1350
Sm *Gs), = °H/(J=5/2-13/2) 560, 595, 640, 700, 775
4Gy = OF() = 1/2-9/2) 870, 887, 926, 1010, 1150
Eu Dy = "F(J = 0-6) 580, 590, 615, 650, 720, 750, 820
Gd °P,, =55, 315
b D, - "F(J = 6-0) 490, 540, 580, 620, 650, 660, 675
o T U129/ 455, 340, 615, 695
s, = °H () =15/2-9/2) 2T B
Ho °S, =31/ =8,7) 545, 750
5F5 - 5[/(/ - 8, 7) 650, 965
Er 1Sy, = () =15/2,13/2) 545, 850
jF"/z =l 4 2168 1540
L(UJ=9/2,13/2) = "l;5) ’
Tm D, -» 3F4,3H4,3F,(/ =3,2) 450, 650, 740, 775
1G4 N 3H6,3F4,3H5 470, 650, 770
3H4 _)3H6 800
Yb 980

2Fs/z -2 IE7/2
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Figure 1.2 Diagram of energy levels with corresponding term symbols for Ln(lll) [16]

1.3 The Nature of the f-f Transitions

1.3.1 Hamiltonian in Central Field Approximation and Coulomb Interactions

The behaviour of an electron is described by the wave function y, which is a solution of the
Schrodinger equation 1.1.
Hy =Ey (1.1)

This equation only has an exact solution for systems with one electron, but for polyelec-
tronic systems with N electrons, the solution can be approximated by considering that each
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electron is moving independently in a central spherically symmetric field U(r;)/e of the
averaged potentials of all other electrons [6]. The Hamiltonian Hp, for this central field
approximation is shown in Equation 1.2.

n”_,
Hepa = ; {%V + U(r,)] (1.2)
h is the reduced Planck constant, m the mass and the Laplace operator is given by
Equation 1.3.
? 9 &
Vi=s o+t 1.3
oxr  Oy?  Oz2 (1.3)

The Schrodinger equation can thus be written as shown in Equation 1.4.

N

32
> {h V2 + U(ri)} Y= Ecpy ¥ (1.4)
o L2m

In the central field approximation, solutions can be chosen such that the overall wave-
function and energy of the system are sums of wavefunctions and energies of one-electron
systems, as shown in Equation 1.5.

Y= Zl//i(ai) (1.5a)
N

Ecpa = ZEi (1.5b)
i=1

a' stands for the quantum numbers n, [ and m; which describe the state of the electron in the
central field. By introducing the polar coordinates r, 8 and ¢ instead of the Cartesian
coordinates x, y and z, one can separate each one-electron wave function into its radial R,;
and angular Y}, components, as shown in Equation 1.6.

(@) = 2 Rr)Y i 0, ) (1.6)
r

Since R,; is a function of r only, it depends on the central field potential U(r;). A solution to
this wave function, shown in Equation 1.7, is approximated and depends on the form of the
central field.

(n—1-1)! £ Iy2l+l
Ru(r) = — Ln 1.7)
o=-|(Z)" Tt 0)
with p = r and ag = 3 ’2‘;62, where a is the Bohr radius and y the reduced mass. This

21+1

expression also includes the Laguerre polynomials L;°

(p) shown in Equation 1.8.
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ES
(n—1—1—=k)\Q2l+1+k)k!

n—Il—1

IFDED SN CI VRS o (1.8)

The angular wave functions, which are Laplacian spherical harmonics, on the other hand,
are similar to the one-electron wave function and can thus be solved. Their expression is
given in Equation 1.9.

21+ 1)(I — |my))!

Yin 0, 8) = V" | =)

] ZP;”’(cos 0)e™? (1.9)

P}" (cos ) are the Legendre functions shown in Equation 1.10.

(1 = cos? H)ml/ 2 gmtt
2l d cos™*@

P"(cos 0) = (cos?6 — 1) (1.10)

Relativistic corrections to the Schrodinger equation lead to the introduction of a spin
function d(my, 0), where o is a spin coordinate and m;, is the magnetic spin quantum number,
to the one electron wave function in Equation 1.6, which then takes the shape shown in
Equation 1.11.

l//(l’l, l, my, ms) = 5(17 n, mi, mS)Rnl(r)Ylm/(gv ¢) (L.11)

Equation 1.5a can now be rewritten as Equation (1.12).
N .
¥=> y(d) (1.12)
i=1

While the two equations look similar, in Equation 1.12 o stands for the four quantum
numbers n, [, m; and mg, which describe the state of each i of the N electrons. These
permutate to generate equally valid states following Pauli’s exclusion principle, to yield
anti-symmetric wave functions in the central field, which are solutions to the Schrodinger
equation (Equation 1.4).

The lack of perturbations to the Hamiltonian in the central field approximation results in
high degeneracy D (Equation 1.13) of the f electron configurations.

(4l +2)! 14!
NG +2-N) -~ Nia—ny  orl=3 (1.13)

The Hamiltonian for the perturbation introduced by the potential energy H,,, felt by all
electrons in the field of the nucleus corrected for the central spherically symmetric field is
given by Equation 1.14.

N 2
Hpo =) [— Ze_ - U(”i)] (1.14)
i=1 !
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Ze is the nuclear charge, r; the position coordinates of electron i and U(r;) the spherical
repulsive potential of all other electrons experienced by electron i moving independently in
the field of the nucleus.

The repulsive Coulomb energy between pairs of electrons is an important perturbation to
the central field approximation and its Hamiltonian Hc,,.mp 1S given by Equation 1.15.

N_ 2
e
H = — 1.15
Coulomb Z ry ( )
i<j
e is the charge of the electron and r;; is the distance between electrons 7 and j.
By applying Hcouoms to the wave function of the unperturbed system, it can be shown
that the electrostatic repulsion energy Egg of the system is given by Equation 1.16.

Emg= ) fiF* (1.16)

k=2,4.6

Here, k is an integer of values 2, 4 and 6, f} are the coefficients representing the angular part
of the wave function [29] and F* are the electrostatic Slater two-electron radial integrals
given by Equation 1.17.

k
,
rkil Ro(r)RY (1) rirjdridr; (17

n
>

F* = (4n)°¢?

o8
o8

r< is the smaller and 7, the larger of the values of r; and r;. F instead of the Slater integrals
are often indicated, for which:

F, = F?/225
Fy=F*/1089
Fe = F%/7361.64

In the case of hydrogenic wave functions the following relationships are valid [30].
F4=0.145F, F¢ =0.0164 F;,

These show that the values of F; decrease as k increases. Values of F, for the configurations

f* to f'? are tabulated in Table 1.3 and show that they increase with increasing atomic

number, as the inter-electronic repulsion is expected to increase.
The f; angular coefficients are hydrogen-like and can be determined from

_ @+ D= bt 22 + D)~ ) I

P 0;)}>Pi(cos 0;)sin 0;d0);
20+ Im) 20 + Im)! (7" (cos 0} Py(cos B;)sin

: 0 (1.18)
X J [P} (cos 6;))P4(cos 0;)sin 0,d0);
0

As above, P}", P;" and P§ are Legendre polynomials.
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Table 1.3 Comparison of the average magnitude of perturbations for transition metal and
lanthanide ions in cm™" [13]

Valence configuration Hcoulomb Hs_o Her

3dV 70000 500 15000
4dN 50000 1000 20000
5d™ 20000 2000 25000
a4 70000 1500 500
5M 50000 2500 2000

In addition to the Coulomb interactions of electron—electron repulsion and electron—
nucleus attraction, further perturbations influence the energy levels of the lanthanide ions,
such as the coupling of the spin and angular momenta, commonly designated spin—orbit
coupling, the crystal field or Stark effect, and the interaction with a magnetic field or Zeeman
effect, which will be described in the following sections.

As illustrated in Fig. 1.3, by comparison to electron—electron repulsion, which leads to
energy splits on the order of 10*cm™", and spin—orbit coupling, with splits on the order of
10°cm™, the crystal field and Zeeman effects are small perturbations, resulting in energy
level splitting on the order of 10?cm™" at the most [13]. The magnitude of these data
compared to the d metals is shown comparatively in Table 1.4. In the case of transition
metals, the crystal field splitting dominates the spin—orbit coupling. However, for lanthanide
ions, the crystal field splitting is almost negligible. The spin—orbit coupling is of increasing

~
E [arb.un.]
Free ion e-g repulsion Spin-orbit coupling  Crystal field spliting  Magnetic field splitting
Heot Coulomb interactions 4 levels Stark M, levels Zeeman +M, levels
¥4 terms H,. Hy H,
Hfdul’dmﬂ
afi5d
BF'.'.."?
f‘ ry
’ ~11/24
/ “Fapp W
G LS BE
e e 4 ” ~0/24
/ s’ Fan o
/ ’ -
rd -
f‘ ’II ” o “Fops L ek
ri —
/ e D ™ X £3/2
' P L2 - -2
SF z - -— N = 2 ===
! AZ - -~ —— e S e A azzZCT 12
e T Fin W3/2
~
™ ~ SH
—

Figure 1.3  Effect of the perturbations [Coulomb (Hcoulomb), Spin—-orbit (Hs.,), crystal field (H),
and magnetic field (Hz)] on the electron configuration of an arbitrary Ln(lll) Kramers’ ion. Energy
units are arbitrary and not to scale. A is described in Section 3.2
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Table 1.4 Spin—orbit radial integral ¢, spin-orbit coupling constant A and F, values for the
Ln’*,, ions [25-28,31]

™ ¢,y lem™] 2 lem™)? Fy [em™"1?
f! 625 625

I 740 370 305
£ 884 295 321
f 1022 250 338
r 1157 231 364
I 1326 221 369
f 1450 0 384
1 1709 -285 401
f 1932 -386 407
1o 2141 —-535 419
il 2380 -793 440
2 2628 -1314 461
3 2870 —-2880 444¢

af' as Ce:LaCl; [32] and f'* as Yb;GasOy, [33].
b116]
[30]

importance for the heavier elements. However, in the case of the lanthanides, it is still
approximately an order of magnitude smaller than the Coulomb interactions and one order
of magnitude larger than the crystal field splitting; therefore an intermediate coupling
scheme, in which j-j in addition to Russell-Saunders coupling is also important, is more
correct. Nonetheless, as mentioned above, the latter formalism is utilised due to its
simplicity.

1.3.2 Spin-Orbit Coupling

The spin and angular momenta of the individual electrons couple with each other and this
coupling is increasingly important with atomic number. The Hamiltonian H,_, that describes
this perturbation is given in Equation 1.19.

N
o= Y Eri)si- 1) (1.19)
i=1

r; is the position coordinate of electron i, and s; and /; are its spin and angular momentum
quantum numbers. &(r;), the single electron spin—orbit coupling constant, is given by
Equation 1.20.

o dU(ri)
2m2c?r; dr;

&) =

(1.20)

In this equation, ¢ is the speed of light in a vacuum and # is the reduced Planck constant. &(;)
is related to the spin—orbit radial integral {,; by equation 1.21.
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Er (1) | Nd (1)

1 L L | L 1 1 1 L

0 +5

Q/Fz

Figure 1.4 The energies and splitting of the *I level for the f* and f'' configurations as a function
of the ratio {,/F,. The energy levels for the ratios —5.7 for Er(lll) and 2.6 for Nd(lll) are indicated
by the dashed vertical lines. Adapted with permission from [16]. Interscience Publishers:
New York, 1968

oo
Cu = J R E(r)dr (1.21)
0
and to the many electron spin—orbit coupling constant A by Equation 1.22, for S # 0.
&(r)
A=+== 1.22
*58 (1.22)

Values of ¢,; and A for the hydrated Ln** ions are summarised in Table 1.4, with A positive
for a more than half-filled shell and negative for a less than half-filled shell. It can be seen
that £,; increases with increasing number of f electrons, which corresponds to a higher
atomic number Z and a stronger spin—orbit interaction, as expected.

H,._, will permit coupling of 25*!L states for AS <1 and AL < 1. This effect is shown in
Fig. 1.4, in which the energy splitting of the *I level due to spin—orbit coupling is shown as a
function of the ratio {,,;/ F,. The increased curvature of the levels shows the increasing spin—
orbit coupling. The energy levels of the reverse multiplet of Er(IIl) and of the multiplet of
Nd(II) are indicated by the vertical dashed lines.

The calculated compositions of the 4 multiplet levels of Nd(IIT) and of Er(Il) are given
below.

Nd(l Er(l11)

(y)y| = =0.166[*H] + 0.984[*1] (*I,5,| = 0.982[*1] - 0.186[ K]

(*I1 5| = 0.995[1] (*Is)5| = 0.995[*1

(41]3/2\ =—-0.993[*I] (41”/2} =0.133[*G] = 0.129[2H] + 0.442[*H'] + 0.875[*1]

]
]
(*115),| = 0.993[*1]+ 0.118[’K] (*I,),| = —0.416[*F] - 0.342[*G] +0.276[*G'] - 0.219[’H]
+0.438[2H'] + 0.627[*1]
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Here, (*I J‘ is the wave function of the spin—orbit perturbed state and [*] is the wave
function of the unperturbed state; a state indicated by ’ is a state with the same L and S but
higher energy. Er(Il), the heavier lanthanide ion, experiences a larger spin—orbit coupling,
as can be seen from the graph as well as composition of the levels above. It can further be
inferred that spin—orbit coupling leads to a splitting of the levels into terms with different J
values. Diagonalisation of the energy matrix <l”aLSJ ’Zi.f(ri)s,-l,-|l"a’L’S’J’> allows esti-
mation of the energies of the split terms (Equation 1.23).

(I"aLST |3 &r)sili | "a’ L'S T = (=1)"9¢,7 /21 + 1)1 + 1)5,7
L S J
X { X }(l”aLSHV“Hl"a’L’S’}

(1.23)
s I

o;; are the Kronecker delta symbols, for which 6;; =0 fori+j and 6;;=1 for i =j. o stands for
all additional quantum numbers which describe the initial and final states of I”. The doubly
reduced matrix elements (I"aLS||V'!||I"a’L'S'), containing the spin—orbit operator V', are
tabulated [34]. The term between curly brackets is the six-j symbol, which describes the
coupling of three momenta, in this case L, S and J. Online calculators are available to
determine these, or they are tabulated [35]. From the 6-j symbol selection rules arise, as it is
only non-zero when:

AS=0,21 AL=0,xl1
S+S>1 L+L>1

AJ=0

The energy of each term with respect to the barycentre of the parent term 25*!L can be
approximated by Equation 1.24.

E;= 1/2/1[.1(1 +1)-LIL+1)-SS+1)] (1.24)

Using this equation, it is possible to estimate that the *H 5 energy level of Pr** (4f%) will be
located approximately 370 cm™" or —14 below the barycentre of the *H level, while the >H 6
will be 64 or 2220cm™" above and the *H 4 level =54 or 1850 cm™! below [16]. From
Equation 1.24 it can further be concluded that the energy gap AE between two adjacent
levels with J'=J+ 1 is approximated by Landé’s interval rule (see also Fig. 1.3), given in
Equation 1.25.

AE =T (1.25)

Landé’s interval rule is only strictly obeyed in the case of strong LS coupling and is only
approximated in lanthanides, where intermediate coupling, consisting of interaction of
levels with the same J but different L and S, is more correct. As a consequence, the
magnitude of the interval AE determined through Equation 1.25 is usually more accurate for
the lower energy levels of the lighter lanthanides. Nonetheless, a good approximation
between the experimentally observed gaps and the gaps calculated by Landé’s rule is
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usually seen, especially for ground-state multiplets. In the case of Pr’* the free ion energy
levels for *H 40 3H s and 3H ¢ are located at 0, 2152 and 4389 cm™ ! respectively [16], leading
to AE values of 2152 and 2237 cm™! between J=4 and 5 and J =5 and 6, which reasonably
approximate the values of 1850 and 2220 cm™" obtained through Equation 1.25.

1.3.3 Crystal Field or Stark Effects

When lanthanide ions are in inorganic lattices or compounds in general, in addition to the
Coulomb interactions and the spin—orbit coupling, each electron i also feels the effect of
the crystal field generated by the ligands surrounding the metal ion, in analogy to the
effect first described by Stark of an electric field on the lines of the hydrogen
spectrum [36]. This perturbation lifts the 2/4 1 degeneracy and generates new levels
with M; quantum numbers. Since a potential is generated by the electrons of the N
ligands, which is felt by the electrons of the lanthanide ions, the Hamiltonian can be
defined by Equation 1.26.

Hy=—eY V(r) (1.26)

e is the elementary charge, V(r;) is the potential felt by electron i and r; its position.
Following the same reasoning utilised to derive Equations 1.6 and 1.12 one can express the
Hamiltonian as a function of the crystal field parameters B’;, which are related to the
spherical harmonics Y’ fl as shown in Equation 1.27 [37].

Hy=Y" (B’;)(C’;)i (1.27)

ik

The relationships between B’; and Y’; are shown in Equation 1.28.

s}
/ Z.e*
k — k L
O - J nl(r)r dr 2k+] OZRIEH
0
2 2
Ze
= J ](r)rj‘drq/—R qujﬂ (1.28)
0 L
Bt = rd m Y, Zie
= [ [gm
0

L are the ligands responsible for the crystal field at a distance R;, Z their charge and e the
elementary charge. Often, instead of B’;, the equivalent structural parameters A{ are utilised
as shown below.

B, = ax A}(r") (1.29)
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Table 1.5 Expectation values (r*) in a.u. [38]

ce*t 0.97 1.17 1.73 3.08 6.44 15.55
Pri* 0.93 1.08 1.55 2.65 5.36 12.53
Nd>* 0.90 1.01 1.39 2.31 4.53 10.31
Sm** 0.84 0.89 1.15 1.81 3.38 7.32
Eu** 0.82 0.84 1.06 1.62 2.96 6.28
Gd*+ 0.79 0.79 0.98 1.46 2.61 5.45
Th** 0.77 0.75 0.91 1.33 2.33 4.76
Dy** 0.75 0.71 0.84 1.21 2.08 4.19
Ho** 0.74 0.68 0.79 1.11 1.87 3.71
Er+ 0.72 0.65 0.74 1.02 1.69 3.31
Tm** 0.70 0.62 0.69 0.94 1.54 2.97
Yb** 0.69 0.60 0.65 0.87 1.40 2.67

aisa constant for each Bk and A pair [29], and <r > represents the average or expectation
value of /¥, where r is the nucleus—electron distance of the lanthanide ion, given by

(r*) = J: R (r)rdr (1.30)

Tabulated values of (r*) for all Ln’" are summarised in Table 1.5.
(C’;)i are the related tensor operators, which transform as the spherical harmonics and
are given by

(Ch); = YA (i) (1.31)

2k+1 a

1.3.4 The Crystal Field Parameters B’; and Symmetry

The integer k runs in the range 0-7 and the parameters containing even values of k are
responsible for the crystal field splitting, while those with odd values influence the intensity
of the induced electronic dipole transitions (see Section 1.3.10 for more details) [8,9]. ¢ is
also an integer and its values depend on the symmetry of the crystal field and the magnitude
of k, since |g| < k. The possible combinations of k and ¢ for the crystal field parameters are
given in Table 1.6 and the symmetry elements contained in the crystal field parameters
are summarised in Table 1.7.

The B coefficient is notably absent from these tables; since it is spherically symmetric,
it acts equally on all /" configurations. In energy level calculations it can therefore be
incorporated into all spherically symmetric interactions and does not need to be
considered individually.



