

Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials

Editor **Ana de Bettencourt-Dias**

WILEY

Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials

Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials

Edited by

ANA DE BETTENCOURT-DIAS

Department of Chemistry, University of Nevada, Reno, USA

WILEY

This edition first published 2014
© 2014 John Wiley and Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Luminescence of lanthanide ions in coordination compounds and nanomaterials
/ edited by Dr Ana de Bettencourt-Dias.

pages cm

Includes bibliographical references and index.

ISBN 978-1-119-95083-7 (cloth)

1. Nanostructured materials. 2. Luminescence. 3. Rare earth metals—Optical properties. 4. Coordination compounds. I. Bettencourt-Dias, Ana de, editor.
TA418.9.N35L86 2014
546'.41—dc23

2014012258

A catalogue record for this book is available from the British Library.

ISBN: 9781119950837

Set in 10/12 pt TimesLTStd-Roman by Thomson Digital, Noida, India

Contents

List of Contributors

xi

Preface

xiii

1	Introduction to Lanthanide Ion Luminescence	1
	<i>Ana de Bettencourt-Dias</i>	
1.1	History of Lanthanide Ion Luminescence	1
1.2	Electronic Configuration of the +III Oxidation State	2
1.2.1	The $4f$ Orbitals	2
1.2.2	Energy Level Term Symbols	2
1.3	The Nature of the f_f Transitions	5
1.3.1	Hamiltonian in Central Field Approximation and Coulomb Interactions	5
1.3.2	Spin–Orbit Coupling	10
1.3.3	Crystal Field or Stark Effects	13
1.3.4	The Crystal Field Parameters B_q^k and Symmetry	14
1.3.5	Energies of Crystal Field Split Terms	18
1.3.6	Zeeman Effect	19
1.3.7	Point Charge Electrostatic Model	21
1.3.8	Other Methods to Estimate Crystal Field Parameters	25
1.3.9	Allowed and Forbidden f_f Transitions	27
1.3.10	Induced Electric Dipole Transitions and Their Intensity – Judd–Ofelt Theory	34
1.3.11	Transition Probabilities and Branching Ratios	37
1.3.12	Hypersensitive Transitions	38
1.3.13	Emission Efficiency and Rate Constants	39
1.4	Sensitisation Mechanism	40
1.4.1	The Antenna Effect	40
1.4.2	Non-Radiative Quenching	44
	References	46
2	Spectroscopic Techniques and Instrumentation	49
	<i>David E. Morris and Ana de Bettencourt-Dias</i>	
2.1	Introduction	49
2.2	Instrumentation in Luminescence Spectroscopy	52
2.2.1	Challenges in Design and Interpretation of Lanthanide Luminescence Experiments	52
2.2.2	Common Luminescence Experiments	57

2.2.3	Basic Design Elements and Configurations in Luminescence Spectrometers	61
2.2.4	Luminescence Spectrometer Components and Characteristics	63
2.2.5	Recent Advances in Luminescence Instrumentation	67
2.3	Measurement of Quantum Yields of Luminescence in the Solid State and in Solution	69
2.3.1	Measurement Against a Standard in Solution	70
2.3.2	Measurement Against a Standard in the Solid State	71
2.3.3	Absolute Measurement with an Integrating Sphere	72
2.4	Excited State Lifetimes	73
2.4.1	Number of Coordinated Solvent Molecules	73
	References	74
3	Circularly Polarised Luminescence	77
	<i>Gilles Muller</i>	
3.1	Introduction	77
3.1.1	General Aspects: Molecular Chirality	77
3.1.2	Chiroptical Tools: from CD to CPL Spectroscopy	78
3.2	Theoretical Principles	79
3.2.1	General Theory	79
3.2.2	CPL Intensity Calculations, Selection Rules, Luminescence Selectivity, and Spectra–Structure Relationship	82
3.3	CPL Measurements	84
3.3.1	Instrumentation	84
3.3.2	Calibration and Standards	88
3.3.3	Artifacts in CPL Measurements	90
3.3.4	Proposed Instrumental Improvements to Record Eu(III)-Based CPL Signals	91
3.4	Survey of CPL Applications	93
3.4.1	Ln(III)-Containing Systems	93
3.4.2	Ln(III) Complexes with Achiral Ligands	94
3.4.3	Ln(III) Complexes with Chiral Ligands	99
3.5	Chiral Ln(III) Complexes to Probe Biologically Relevant Systems	109
3.5.1	Sensing through Coordination to the Metal Centre	109
3.5.2	Sensing through Coordination to the Antenna/Receptor Groups	112
3.6	Concluding Remarks	114
	References	115
4	Luminescence Bioimaging with Lanthanide Complexes	125
	<i>Jean-Claude G. Bünzli</i>	
4.1	Introduction	125
4.2	Luminescence Microscopy	127

4.2.1	Classical Optical Microscopy: a Short Survey	127
4.2.2	Principle of Luminescence Microscopy	128
4.2.3	Principle of Time-resolved Luminescence Microscopy	131
4.2.4	Early Instrumental Developments for Time-resolved Microscopy with LLBs	134
4.2.5	Optimisation of Time-resolved Microscopy Instrumentation	140
4.2.6	Commercial Instruments	143
4.3	Bioimaging with Lanthanide Luminescent Probes and Bioprobe	144
4.3.1	β -Diketonate Probes	144
4.3.2	Aliphatic Polyaminocarboxylate and Carboxylate Probes	154
4.3.3	Macrocyclic Probes	163
4.3.4	Self-assembled Triple Helical Bioprobe	171
4.3.5	Other Bioprobe	177
4.4	Conclusions and Perspectives	180
	References	184
5	Two-photon Absorption of Lanthanide Complexes: from Fundamental Aspects to Biphotonic Imaging Applications	197
	<i>Anthony D'Aléo, Chantal Andraud and Olivier Maury</i>	
5.1	Introduction	197
5.2	Two-photon Absorption, a Third Nonlinear Optical Phenomenon	198
5.2.1	Theoretical and Historical Background	198
5.2.2	Experimental Determination of the 2PA Efficiency of Molecules	199
5.2.3	Two-photon Fluorescence Microscopy for Biological Imaging	200
5.2.4	Molecular Engineering for Multiphonic Imaging	201
5.3	Spectroscopic Evidence for the Two-photon Sensitisation of Lanthanide Luminescence	205
5.3.1	1961: The Breakthrough Experiments	205
5.3.2	Two-photon Excitation of <i>f,f</i> Transitions	206
5.3.3	The Two-photon Antenna Effect	207
5.3.4	The Charge Transfer State Mediated Sensitisation Process	209
5.3.5	Optimising Molecular Two-photon Cross Section: the Brightness Trade-off	211
5.3.6	Two-photon Excited Luminescence in Solid Matrix	214
5.3.7	Two-photon Time-gated Spectroscopy	214
5.4	Towards Biphotonic Microscopy Imaging	215
5.4.1	Proof of Concept	215
5.4.2	Towards the Design of an Optimised Bio-probe	217
5.4.3	Design of Lanthanide containing Nano-probes, toward Single-object Imaging	222
5.4.4	Towards NIR-to-NIR Imaging	223
5.5	Conclusions	225
	References	226

6 Lanthanide Ion Complexes as Chemosensors	231
<i>Thorfinnur Gunnlaugsson and Simon J. A. Pope</i>	
6.1 Photophysical Properties of Ln ^{III} Based Sensors	231
6.1.1 Emission Based Sensors	231
6.1.2 Luminescence Lifetime	232
6.1.3 Spectral Form, Hypersensitivity and Ratiometric Peaks	233
6.2 Sensor Design Principles	233
6.2.1 The Design of Ln-receptor Sites and Antenna Components	234
6.2.2 Covalent versus Self-assembled Ln-receptor Design	235
6.2.3 Sensors for Cations	237
6.2.4 Sensors for Anions	249
6.3 Interactions with DNA and Biological Systems	260
References	265
7 Upconversion of Ln³⁺-based Nanoparticles for Optical Bio-imaging	269
<i>Frank C.J.M. van Veggel</i>	
7.1 Introduction	269
7.2 Physical Properties of Ln ³⁺ Ions	272
7.3 Basic Principles of Upconversion	272
7.4 Synthesis of Core and Core–Shell Nanoparticles	277
7.4.1 Syntheses in Organic Solvent	277
7.4.2 Syntheses in Aqueous Media	277
7.4.3 Surface Modification	278
7.5 Characterisation	278
7.5.1 Basic Techniques	278
7.5.2 Advanced Techniques	279
7.6 Bio-imaging	283
7.6.1 Basics	283
7.6.2 Cell Studies	283
7.6.3 Animal Studies	287
7.6.4 Discussion	290
7.7 Upconversion and Magnetic Resonance Imaging	293
7.8 Conclusions and Outlook	295
References	295
8 Direct Excitation Ln(III) Luminescence Spectroscopy to Probe the Coordination Sphere of Ln(III) Catalysts, Optical Sensors and MRI Agents	303
<i>Janet R. Morrow and Sarina J. Dorazio</i>	
8.1 Introduction	303
8.1.1 Luminescence Spectroscopy for Defining the Ln(III) Coordination Sphere	303

8.2	Direct Excitation Lanthanide Luminescence	304
8.2.1	Luminescence Properties of the Lanthanide Ions	304
8.2.2	Ln(III) Excitation Spectroscopy	306
8.2.3	Ln(III) Emission Spectroscopy	307
8.2.4	Time-Resolved Ln(III) Luminescence Spectroscopy	308
8.2.5	Luminescence Resonance Energy Transfer	310
8.3	Defining the Ln(III) Ion Coordination Sphere through Direct Eu(III) Excitation Luminescence Spectroscopy	311
8.3.1	Eu(III) Complex Speciation in Solution: Number of Excitation Peaks	311
8.3.2	Excitation Spectra of Geometric Isomers	311
8.3.3	Innersphere Coordination of Anions	312
8.3.4	Ligand Ionisation	314
8.4	Luminescence Studies of Anion Binding in Catalysis and Sensing	317
8.4.1	Phosphate Ester Binding and Cleavage	317
8.4.2	Sensing Biologically Relevant Anions	318
8.5	Luminescence Studies of Ln(III) MRI Contrast Agents	320
8.5.1	Types of Ln(III) MRI Contrast Agents	320
8.5.2	Luminescence Studies of Ln(III) ParaCEST Agents	322
8.6	Conclusions	326
	References	326
9	Heterometallic Complexes Containing Lanthanides	331
	<i>Stephen Faulkner and Manuel Tropiano</i>	
9.1	Introduction	331
9.2	Properties of a Heteromultimetallic Complex	332
9.3	Lanthanide Assemblies in the Solid State	335
9.4	Lanthanide Assemblies in Solution	338
9.4.1	Lanthanide Helicates	338
9.4.2	Non-helicate Structures	341
9.5	Heterometallic Complexes Derived from Bridging and Multi-compartmental Ligands	342
9.6	Energy Transfer in Assembled Systems	347
9.7	Responsive Multimetallic Systems	351
9.8	Summary and Prospects	353
	References	353
Index		359

List of Contributors

Anthony D'Aléo, CINaM, UMR 7325 CNRS-Aix Marseille Université, France

Chantal Andraud, Laboratoire de chimie, UMR 5281 ENS Lyon-CNRS-Université de Lyon, France

Ana de Bettencourt-Dias, Department of Chemistry, University of Nevada, USA

Jean-Claude G. Bünzli, Swiss Federal Institute of Technology, Switzerland; and Korea University, Republic of Korea

Sarina J. Dorazio, University at Buffalo, State University of New York, USA

Stephen Faulkner, Chemistry Research Laboratory, University of Oxford, UK

Thorfinnur Gunnlaugsson, Trinity College, University of Dublin, Ireland

Olivier Maury, Laboratoire de chimie, UMR 5281 ENS Lyon-CNRS-Université de Lyon, France

David E. Morris, Los Alamos National Laboratory, USA

Janet R. Morrow, University at Buffalo, State University of New York, USA

Gilles Muller, Department of Chemistry, San José State University, USA

Simon J.A. Pope, School of Chemistry, Cardiff University, Wales, UK

Manuel Tropiano, Chemistry Research Laboratory, University of Oxford, UK

Frank C.J.M. van Veggel, Department of Chemistry, University of Victoria, Canada

Preface

The unique spectroscopic properties of the lanthanide ions prompted Sir William Crookes in his lecture delivered 1887 at the Royal Institution to say: “These elements perplex us in our researches, baffle us in our speculations, and haunt us in our very dreams. They stretch like an unknown sea before us – mocking, mystifying, and murmuring strange revelations and possibilities” (*The Chemical News*, 1887, pp. 83–88). These unique properties, which are line-like absorption and equally narrow emission spectra, played a central role in the separation and identification of the 14 elements. As each lanthanide ion shows a characteristic spectroscopic signature and line-like spectra, they have continued to fascinate researchers through the ages and have led to many applications as well as new fields of research. The interest in spectroscopy and spectroscopic applications of the lanthanide ions has resulted in a growing number of publications. Among these are several books that address one or more areas of lanthanide chemistry and spectroscopy, such as the recent *Rare Earth Coordination Chemistry* edited by Chunhui Huang, Wybourne and Smentek’s theoretical treatise on the *Optical Spectroscopy of Lanthanides – Magnetic and Hyperfine Interactions*, or *Lanthanide Luminescence* edited by Hänninen and Härmä. Our new book aims to serve scientists whose primary field of interest is spectroscopy and spectroscopic applications of lanthanide ions, veteran scientists for whom the field is reviewed, as well as new scientists, who can find here information that will help them to get started. Finally, this book is also intended as the basis for an intermediate to advanced course in *f* element spectroscopy.

The first two chapters of this work cover theoretical and practical aspects of the emission process, the spectroscopic techniques and the equipment used to characterize the emission. Chapter 3 introduces and reviews the property of circularly polarized emission, while Chapter 4 reviews the use of lanthanide ion complexes in bioimaging and fluorescence microscopy. Chapter 5 covers the phenomenon of two-photon absorption, its theory as well as applications in imaging, while Chapter 6 reviews the use of lanthanide ions as chemo-sensors. Chapter 7 introduces the basic principles of nanoparticle upconversion luminescence and its use for bioimaging and Chapter 8 reviews direct excitation of the lanthanide ions and the use of the excitation spectra to probe the metal ion’s coordination environment in coordination compounds and biopolymers. Finally, Chapter 9 describes the formation of heterobimetallic complexes, in which the lanthanide ion emission is promoted through the hetero-metal.

I am deeply indebted to all who made this book possible. My thanks to the contributing authors of the nine chapters, without whom this book would not have been possible. They are major driving forces in their respective areas and have contributed chapters that are at once excellent tutorials and thorough reviews of their fields. My heartfelt thanks go also to the publisher and everyone involved with the book at Wiley, who, with their continued patience, encouragement, professionalism and enthusiasm led the project to its successful conclusion.

1

Introduction to Lanthanide Ion Luminescence

Ana de Bettencourt-Dias

Department of Chemistry, University of Nevada, USA

1.1 History of Lanthanide Ion Luminescence

After the isolation of a sample of yttrium oxide from a new mineral by Johan Gadolin in 1794, several of the lanthanides, namely praseodymium and neodymium, as well as cerium, lanthanum, terbium and erbium were isolated in different degrees of purity [1]. It was only after Kirchhoff and Bunsen introduced the spectroscope in 1859 as a means of characterising elements that the remaining lanthanides were discovered and the already known ones could be obtained in pure form [2]. Spark spectroscopy provided the means to finally isolate in pure form the remaining lanthanides [3–5]. As will be discussed below, the $4f$ valence orbitals are buried within the core of the ions, shielded from the coordination environment by the filled $5s$ and $5p$ orbitals, and do not experience significant coupling with the ligands. Therefore, the electronic levels of the ions can be described in an analogous way to the atomic electronic levels with a Hamiltonian in central field approximation with electrostatic Coulomb interactions, spin–orbit coupling and finally crystal field and Zeeman effects added as perturbations. All these perturbations lead to a lifting of the degeneracy of the electronic levels and transitions between these split levels are experimentally observed [6]. These transitions, however, are forbidden by the parity rule, as there is no change in parity between excited and ground state. That the emission was nonetheless seen puzzled scientists for a long time [7]. Only when Judd and Ofelt independently proposed their theory of induced electric dipole

transitions [8,9] could the appearance of these transitions be satisfactorily explained. As the transitions are forbidden, the direct excitation of the lanthanide ions is also not easily accomplished, and this is why sensitised emission is a more appealing and energy efficient way to promote lanthanide-centred emission. While the ability of the lanthanide salts to emit light was key to their isolation in pure form, sensitised emission was first described by S.I. Weissman only in 1942 [10]. This author realised that when complexes of Eu(III) with salicylaldehyde and benzoylacetonato, as well as other related ligands, were irradiated with light in the wavelength range in which the organic ligands absorb, strong europium-characteristic red emission ensued. Weissman further observed that the emission intensity was temperature and solvent dependent, as opposed to what is seen for europium nitrate solutions [10]. After this seminal work, interest in sensitised luminescence spread through the scientific community, as the potential application of lanthanides for imaging and sensing was quickly recognised [11,12].

1.2 Electronic Configuration of the +III Oxidation State

1.2.1 The 4f Orbitals

The lanthanides' position in the fourth period as the inner transition elements of the periodic table indicates that the filling of the 4f valence orbitals commences with them. The electronic configuration of the lanthanides is $[Xe]4f^n6s^2$, with notable exceptions for lanthanum, cerium, gadolinium and lutetium, which have a $[Xe]4f^{n-1}5d^16s^2$ configuration. Upon ionisation to the most common +III oxidation state, the configuration is uniformly $[Xe]4f^{n-1}$. La(III) therefore does not possess any *f* electrons, while Lu(III) has a filled 4f orbital. While the 4f orbitals are the valence orbitals, they are shielded from the coordination environment by the filled 5s and 5p orbitals, which are more spatially extended, as shown in Fig. 1.1, which displays the radial charge density distribution for Pr(III) [13]. Therefore, lanthanides bind mostly through ionic interactions and the ligand field perturbation upon the 4f orbitals is minimal. Nonetheless, as will be discussed below, symmetry considerations imposed by the ligand field affect the emission spectra of the lanthanide ions.

1.2.2 Energy Level Term Symbols

It is usual to describe the configurations of hydrogen-like atoms or ions, that is with only one electron, in terms of the quantum numbers n , l , m_l , s and m_s . In polyelectronic atoms and ions, exchange and pairing energies lead to different configurations, or microstates, with different energies, which are described by new quantum numbers, the total orbital angular momentum quantum number L and its projection along the z axis, the total magnetic orbital angular momentum M_L , and the total spin angular momentum quantum number S , often indicated as the spin multiplicity, $2S+1$, as well as its projection along the z axis, the total magnetic spin quantum number M_S . In the case of heavy elements, such as lanthanides, coupling of the spin and angular momenta is seen, and an additional quantum number, J , the spin-orbit coupling or Russell-Saunders quantum number, is commonly utilised. As will be mentioned below, intermediate coupling for lanthanides is more correct, but the

Figure 1.1 Radial charge density distribution of $\text{Pr}(\text{III})$. Reproduced from [13] with permission from Elsevier

Russell–Saunders formalism is simple to use and will be carried through this chapter. Term symbols with the format $^{2S+1}L_J$, which summarise the quantum number information, are assigned to describe the individual microstates. For a polyelectronic atom or ion with i electrons,

$$L = \sum_i l_i, \quad M_L = -L, \dots, L$$

$$S = \sum_i s_i, \quad s_i = 1/2$$

and

$$J = L + S, L + S - 1, \dots, |L - S|.$$

Term symbols can be obtained by determining the microstates, or allowed combinations of all electrons described by quantum numbers, of the atom or ion under consideration and methods to do it is can be found in textbooks [14,15]. Since multiple combinations of electrons are allowed, and therefore many microstates are present, Hund's rules are followed for determination of the ground state. The ground state will have the largest spin multiplicity and the largest orbital multiplicity corresponding to the largest value of L . Finally, if S and L are equal for two states, the ground state will correspond to the largest value of J , if the electron shell is more than half-filled, or an inverted multiplet and the smallest value of J , if the orbital is less than half-filled, which is a regular multiplet. The ground state term symbols for f^n (n = number of electrons in the f shell) configurations are shown in Table 1.1.

Table 1.1 Ground state term symbols for f^n electronic configurations

Configuration	Term
f^0/f^{14}	1S_0
f^1/f^{13}	$^2F_{5/2}/^2F_{7/2}$
f^2/f^{12}	$^3H_4/^3H_6$
f^3/f^{11}	$^4I_{9/2}/^4I_{15/2}$
f^4/f^{10}	$^5I_4/^5I_8$
f^5/f^9	$^6H_{5/2}/^6H_{15/2}$
f^6/f^8	$^7F_0/^7F_6$
f^7	$^8S_{7/2}$

A complete diagram, showing the ground and excited states of all lanthanide ions in the +III oxidation state with corresponding term symbols, is displayed in Fig. 1.2.

Table 1.2 summarises the most commonly observed emission transitions for the emissive $\text{Ln}(\text{III})$ ions.

Table 1.2 Most common emissive $f-f$ transitions of Ln^{3+} [16–28]

Ln	Transition	λ [nm]
Pr	$^1D_2 \rightarrow ^3F_4$	1000
	$^1D_2 \rightarrow ^1G_4$	1440
	$^1D_2 \rightarrow ^3H_J (J = 4, 5)$	600, 690
	$^3P_0 \rightarrow ^3H_J (J = 4 - 6)$	490, 545, 615, 640,
	$^3P_0 \rightarrow ^3F_J (J = 2 - 4)$	700, 725
Nd	$^4F_{3/2} \rightarrow ^4I_J (J = 9/2 - 13/2)$	900, 1060, 1350
Sm	$^4G_{5/2} \rightarrow ^6H_J (J = 5/2 - 13/2)$	560, 595, 640, 700, 775
	$^4G_{5/2} \rightarrow ^6F_J (J = 1/2 - 9/2)$	870, 887, 926, 1010, 1150
Eu	$^5D_0 \rightarrow ^7F_J (J = 0 - 6)$	580, 590, 615, 650, 720, 750, 820
Gd	$^6P_{7/2} \rightarrow ^8S_{7/2}$	315
Tb	$^5D_4 \rightarrow ^7F_J (J = 6 - 0)$	490, 540, 580, 620, 650, 660, 675
Dy	$^4F_{9/2} \rightarrow ^6H_J (J = 15/2 - 9/2)$	475, 570, 660, 750
	$^4I_{15/2} \rightarrow ^6H_J (J = 15/2 - 9/2)$	455, 540, 615, 695
Ho	$^5S_2 \rightarrow ^5I_J (J = 8, 7)$	545, 750
	$^5F_5 \rightarrow ^5I_J (J = 8, 7)$	650, 965
Er	$^4S_{3/2} \rightarrow ^4I_J (J = 15/2, 13/2)$	545, 850
	$^4F_{9/2} \rightarrow ^4I_{15/2}$	660
	$^4I_J (J = 9/2, 13/2) \rightarrow ^4I_{15/2}$	810, 1540
Tm	$^1D_2 \rightarrow ^3F_4, ^3H_4, ^3F_J (J = 3, 2)$	450, 650, 740, 775
	$^1G_4 \rightarrow ^3H_6, ^3F_4, ^3H_5$	470, 650, 770
	$^3H_4 \rightarrow ^3H_6$	800
Yb	$^2F_{5/2} \rightarrow ^2F_{7/2}$	980

Figure 1.2 Diagram of energy levels with corresponding term symbols for Ln(III) [16]

1.3 The Nature of the $f\text{-}f$ Transitions

1.3.1 Hamiltonian in Central Field Approximation and Coulomb Interactions

The behaviour of an electron is described by the wave function ψ , which is a solution of the Schrödinger equation 1.1.

$$H\psi = E\psi \quad (1.1)$$

This equation only has an exact solution for systems with one electron, but for polyelectronic systems with N electrons, the solution can be approximated by considering that each

6 Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials

electron is moving independently in a central spherically symmetric field $U(r_i)/e$ of the averaged potentials of all other electrons [6]. The Hamiltonian H_{CFA} for this central field approximation is shown in Equation 1.2.

$$H_{CFA} = \sum_{i=1}^N \left[\frac{-\hbar^2}{2m} \nabla^2 + U(r_i) \right] \quad (1.2)$$

\hbar is the reduced Planck constant, m the mass and the Laplace operator is given by Equation 1.3.

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \quad (1.3)$$

The Schrödinger equation can thus be written as shown in Equation 1.4.

$$\sum_{i=1}^N \left[\frac{-\hbar^2}{2m} \nabla^2 + U(r_i) \right] \Psi = E_{CFA} \Psi \quad (1.4)$$

In the central field approximation, solutions can be chosen such that the overall wavefunction and energy of the system are sums of wavefunctions and energies of one-electron systems, as shown in Equation 1.5.

$$\Psi = \sum_{i=1}^N \psi_i(a^i) \quad (1.5a)$$

$$E_{CFA} = \sum_{i=1}^N E_i \quad (1.5b)$$

a^i stands for the quantum numbers n, l and m_l which describe the state of the electron in the central field. By introducing the polar coordinates r, θ and ϕ instead of the Cartesian coordinates x, y and z , one can separate each one-electron wave function into its radial R_{nl} and angular Y_{lm_l} components, as shown in Equation 1.6.

$$\psi_i(a^i) = \frac{1}{r} R_{nl}(r) Y_{lm_l}(\theta, \phi) \quad (1.6)$$

Since R_{nl} is a function of r only, it depends on the central field potential $U(r_i)$. A solution to this wave function, shown in Equation 1.7, is approximated and depends on the form of the central field.

$$R_{nl}(r) = - \left[\left(\frac{2Z}{na_0} \right)^3 \frac{(n-l-1)!}{2n(n+l)^3} \right]^{1/2} e^{-\frac{\rho}{2}} \rho^l L_{n+l}^{2l+1}(\rho) \quad (1.7)$$

with $\rho = \frac{2Z}{na_0} r$ and $a_0 = \frac{\hbar^2}{4\pi^2 \mu e^2}$, where a_0 is the Bohr radius and μ the reduced mass. This expression also includes the Laguerre polynomials $L_{n+l}^{2l+1}(\rho)$ shown in Equation 1.8.

$$L_{n+l}^{2l+1}(\rho) = \sum_{k=0}^{n-l-1} (-1)^{k+1} \frac{\{(n+l)!\}^2}{(n-l-1-k)(2l+1+k)!k!} \rho^k \quad (1.8)$$

The angular wave functions, which are Laplacian spherical harmonics, on the other hand, are similar to the one-electron wave function and can thus be solved. Their expression is given in Equation 1.9.

$$Y_{lm_l}(\theta, \phi) = (-1)^m \left[\frac{(2l+1)(l-|m_l|)!}{4\pi(l+|m_l|)!} \right]^{\frac{1}{2}} P_l^{m_l}(\cos \theta) e^{im_l \phi} \quad (1.9)$$

$P_l^{m_l}(\cos \theta)$ are the Legendre functions shown in Equation 1.10.

$$P_l^{m_l}(\cos \theta) = \frac{(1 - \cos^2 \theta)^{m_l/2}}{2^l l!} \frac{d^{m_l+l}}{d \cos^{m_l+l} \theta} (\cos^2 \theta - 1)^l \quad (1.10)$$

Relativistic corrections to the Schrödinger equation lead to the introduction of a spin function $\delta(m_s, \sigma)$, where σ is a spin coordinate and m_s is the magnetic spin quantum number, to the one electron wave function in Equation 1.6, which then takes the shape shown in Equation 1.11.

$$\psi(n, l, m_l, m_s) = \delta(l, n, m_l, m_s) R_{nl}(r) Y_{lm_l}(\theta, \phi) \quad (1.11)$$

Equation 1.5a can now be rewritten as Equation (1.12).

$$\Psi = \sum_{i=1}^N \psi_i(\alpha^i) \quad (1.12)$$

While the two equations look similar, in Equation 1.12 α^i stands for the four quantum numbers n , l , m_l and m_s , which describe the state of each i of the N electrons. These permute to generate equally valid states following Pauli's exclusion principle, to yield anti-symmetric wave functions in the central field, which are solutions to the Schrödinger equation (Equation 1.4).

The lack of perturbations to the Hamiltonian in the central field approximation results in high degeneracy D (Equation 1.13) of the f electron configurations.

$$D = \frac{(4l+2)!}{N!(4l+2-N)!} = \frac{14!}{N!(14-N)!} \quad \text{for } l = 3 \quad (1.13)$$

The Hamiltonian for the perturbation introduced by the potential energy H_{pot} felt by all electrons in the field of the nucleus corrected for the central spherically symmetric field is given by Equation 1.14.

$$H_{pot} = \sum_{i=1}^N \left[-\frac{Ze^2}{r_i} - U(r_i) \right] \quad (1.14)$$

Ze is the nuclear charge, r_i the position coordinates of electron i and $U(r_i)$ the spherical repulsive potential of all other electrons experienced by electron i moving independently in the field of the nucleus.

The repulsive Coulomb energy between pairs of electrons is an important perturbation to the central field approximation and its Hamiltonian $H_{Coulomb}$ is given by Equation 1.15.

$$H_{Coulomb} = \sum_{i < j}^N \frac{e^2}{r_{ij}} \quad (1.15)$$

e is the charge of the electron and r_{ij} is the distance between electrons i and j .

By applying $H_{Coulomb}$ to the wave function of the unperturbed system, it can be shown that the electrostatic repulsion energy E_{ER} of the system is given by Equation 1.16.

$$E_{ER} = \sum_{k=2,4,6} f_k F^k \quad (1.16)$$

Here, k is an integer of values 2, 4 and 6, f_k are the coefficients representing the angular part of the wave function [29] and F^k are the electrostatic Slater two-electron radial integrals given by Equation 1.17.

$$F^k = (4\pi)^2 e^2 \int_0^\infty \int_0^\infty \frac{r_{<}^k}{r_{>}^{k+1}} R_{nl}^2(r_i) R_{n'l'}^2(r_j) r_i^2 r_j^2 dr_i dr_j \quad (1.17)$$

$r_{<}$ is the smaller and $r_{>}$ the larger of the values of r_i and r_j . F_k instead of the Slater integrals are often indicated, for which:

$$\begin{aligned} F_2 &= F^2/225 \\ F_4 &= F^4/1089 \\ F_6 &= F^6/7361.64 \end{aligned}$$

In the case of hydrogenic wave functions the following relationships are valid [30].

$$F_4 = 0.145 F_2 \quad F_6 = 0.0164 F_2$$

These show that the values of F_k decrease as k increases. Values of F_2 for the configurations f^2 to f^{13} are tabulated in Table 1.3 and show that they increase with increasing atomic number, as the inter-electronic repulsion is expected to increase.

The f_k angular coefficients are hydrogen-like and can be determined from

$$\begin{aligned} f_k &= \frac{(2l+1)(l-|m_l|)!}{2(l+|m_l|)!} \frac{(2l'+1)(l'-|m_{l'}|)!}{2(l'+|m_{l'}|)!} \int_0^\pi \{P_l^{m_l}(\cos \theta_i)\}^2 P_0^k(\cos \theta_i) \sin \theta_i d\theta_i \\ &\times \int_0^\pi \{P_{l'}^{m_{l'}}(\cos \theta_i)\}^2 P_0^k(\cos \theta_i) \sin \theta_i d\theta_i \end{aligned} \quad (1.18)$$

As above, $P_l^{m_l}$, $P_{l'}^{m_{l'}}$ and P_0^k are Legendre polynomials.

Table 1.3 Comparison of the average magnitude of perturbations for transition metal and lanthanide ions in cm^{-1} [13]

Valence configuration	H_{Coulomb}	H_{s-o}	H_{cf}
$3d^N$	70 000	500	15 000
$4d^N$	50 000	1000	20 000
$5d^N$	20 000	2000	25 000
$4f^N$	70 000	1500	500
$5f^N$	50 000	2500	2000

In addition to the Coulomb interactions of electron–electron repulsion and electron–nucleus attraction, further perturbations influence the energy levels of the lanthanide ions, such as the coupling of the spin and angular momenta, commonly designated spin–orbit coupling, the crystal field or Stark effect, and the interaction with a magnetic field or Zeeman effect, which will be described in the following sections.

As illustrated in Fig. 1.3, by comparison to electron–electron repulsion, which leads to energy splits on the order of 10^4 cm^{-1} , and spin–orbit coupling, with splits on the order of 10^3 cm^{-1} , the crystal field and Zeeman effects are small perturbations, resulting in energy level splitting on the order of 10^2 cm^{-1} at the most [13]. The magnitude of these data compared to the d metals is shown comparatively in Table 1.4. In the case of transition metals, the crystal field splitting dominates the spin–orbit coupling. However, for lanthanide ions, the crystal field splitting is almost negligible. The spin–orbit coupling is of increasing

Figure 1.3 Effect of the perturbations [Coulomb (H_{Coulomb}), spin–orbit (H_{s-o}), crystal field (H_{cf}), and magnetic field (H_Z)] on the electron configuration of an arbitrary Ln(III) Kramers' ion. Energy units are arbitrary and not to scale. λ is described in Section 3.2

Table 1.4 Spin-orbit radial integral ζ_{nl} , spin-orbit coupling constant λ and F_2 values for the $\text{Ln}^{3+}_{(\text{aq})}$ ions [25–28,31]

f^N	ζ_{nl} [cm $^{-1}$]	λ [cm $^{-1}$] ^a	F_2 [cm $^{-1}$] ^b
f^1	625	625	
f^2	740	370	305
f^3	884	295	321
f^4	1022	250	338
f^5	1157	231	364
f^6	1326	221	369
f^7	1450	0	384
f^8	1709	-285	401
f^9	1932	-386	407
f^{10}	2141	-535	419
f^{11}	2380	-793	440
f^{12}	2628	-1314	461
f^{13}	2870	-2880	444 ^c

^a f^1 as Ce:LaCl₃ [32] and f^{13} as Yb₃Ga₅O₁₂ [33].^b [16]^c [30]

importance for the heavier elements. However, in the case of the lanthanides, it is still approximately an order of magnitude smaller than the Coulomb interactions and one order of magnitude larger than the crystal field splitting; therefore an intermediate coupling scheme, in which j - j in addition to Russell–Saunders coupling is also important, is more correct. Nonetheless, as mentioned above, the latter formalism is utilised due to its simplicity.

1.3.2 Spin–Orbit Coupling

The spin and angular momenta of the individual electrons couple with each other and this coupling is increasingly important with atomic number. The Hamiltonian $H_{s\text{-}o}$ that describes this perturbation is given in Equation 1.19.

$$H_{s\text{-}o} = \sum_{i=1}^N \xi(r_i)(s_i \cdot l_i) \quad (1.19)$$

r_i is the position coordinate of electron i , and s_i and l_i are its spin and angular momentum quantum numbers. $\xi(r_i)$, the single electron spin–orbit coupling constant, is given by Equation 1.20.

$$\xi(r_i) = \frac{\hbar^2}{2m^2c^2r_i} \frac{dU(r_i)}{dr_i} \quad (1.20)$$

In this equation, c is the speed of light in a vacuum and \hbar is the reduced Planck constant. $\xi(r_i)$ is related to the spin–orbit radial integral ζ_{nl} by equation 1.21.

Figure 1.4 The energies and splitting of the 4I level for the f^3 and f^{11} configurations as a function of the ratio ζ_{nl}/F_2 . The energy levels for the ratios -5.7 for Er(III) and 2.6 for Nd(III) are indicated by the dashed vertical lines. Adapted with permission from [16]. Interscience Publishers: New York, 1968

$$\zeta_{nl} = \int_0^{\infty} R_{nl}^2 \xi(r) dr \quad (1.21)$$

and to the many electron spin-orbit coupling constant λ by Equation 1.22, for $S \neq 0$.

$$\lambda = \pm \frac{\xi(r)}{2S} \quad (1.22)$$

Values of ζ_{nl} and λ for the hydrated Ln^{3+} ions are summarised in Table 1.4, with λ positive for a more than half-filled shell and negative for a less than half-filled shell. It can be seen that ζ_{nl} increases with increasing number of f electrons, which corresponds to a higher atomic number Z and a stronger spin-orbit interaction, as expected.

H_{s-o} will permit coupling of ^{2S+1}L states for $\Delta S \leq 1$ and $\Delta L \leq 1$. This effect is shown in Fig. 1.4, in which the energy splitting of the 4I level due to spin-orbit coupling is shown as a function of the ratio ζ_{nl}/F_2 . The increased curvature of the levels shows the increasing spin-orbit coupling. The energy levels of the reverse multiplet of Er(III) and of the multiplet of Nd(III) are indicated by the vertical dashed lines.

The calculated compositions of the 4I multiplet levels of Nd(III) and of Er(III) are given below.

Nd(III)	Er(III)
$\langle ^4I_{9/2} \rangle = -0.166[^2H] + 0.984[^4I]$	$\langle ^4I_{15/2} \rangle = 0.982[^4I] - 0.186[^2K]$
$\langle ^4I_{11/2} \rangle = 0.995[^4I]$	$\langle ^4I_{13/2} \rangle = 0.995[^4I]$
$\langle ^4I_{13/2} \rangle = -0.993[^4I]$	$\langle ^4I_{11/2} \rangle = 0.133[^4G] - 0.129[^2H] + 0.442[^2H'] + 0.875[^4I]$
$\langle ^4I_{15/2} \rangle = 0.993[^4I] + 0.118[^2K]$	$\langle ^4I_{9/2} \rangle = -0.416[^4F] - 0.342[^2G] + 0.276[^2G'] - 0.219[^2H]$ $+ 0.438[^2H'] + 0.627[^4I]$

Here, $\langle {}^4I_J |$ is the wave function of the spin-orbit perturbed state and $[{}^4I]$ is the wave function of the unperturbed state; a state indicated by ' is a state with the same L and S but higher energy. Er(III), the heavier lanthanide ion, experiences a larger spin-orbit coupling, as can be seen from the graph as well as composition of the levels above. It can further be inferred that spin-orbit coupling leads to a splitting of the levels into terms with different J values. Diagonalisation of the energy matrix $\langle l^n \alpha LSJ | \sum_i \xi(r_i) s_i l_i | l^n \alpha' L' S' J' \rangle$ allows estimation of the energies of the split terms (Equation 1.23).

$$\begin{aligned} \langle l^n \alpha LSJ | \sum_i \xi(r_i) s_i l_i | l^n \alpha' L' S' J' \rangle &= (-1)^{L+S+j} \zeta_{nl} \sqrt{(2l+1)(l+1)} \delta_{JJ'} \\ &\times \left\{ \begin{matrix} L & S & J \\ S' & L' & 1 \end{matrix} \right\} \langle l^n \alpha LS | |V^{11}| |l^n \alpha' L' S' \rangle \end{aligned} \quad (1.23)$$

δ_{ij} are the Kronecker delta symbols, for which $\delta_{ij} = 0$ for $i \neq j$ and $\delta_{ij} = 1$ for $i = j$. α stands for all additional quantum numbers which describe the initial and final states of l^n . The doubly reduced matrix elements $\langle l^n \alpha LS | |V^{11}| |l^n \alpha' L' S' \rangle$, containing the spin-orbit operator V^{11} , are tabulated [34]. The term between curly brackets is the six- j symbol, which describes the coupling of three momenta, in this case L , S and J . Online calculators are available to determine these, or they are tabulated [35]. From the 6- j symbol selection rules arise, as it is only non-zero when:

$$\begin{aligned} \Delta S &= 0, \pm 1 & \Delta L &= 0, \pm 1 \\ S' + S &\geq 1 & L' + L &\geq 1 \\ \Delta J &= 0 \end{aligned}$$

The energy of each term with respect to the barycentre of the parent term ${}^{2S+1}L$ can be approximated by Equation 1.24.

$$E_J = \frac{1}{2} \lambda [J(J+1) - L(L+1) - S(S+1)] \quad (1.24)$$

Using this equation, it is possible to estimate that the 3H_5 energy level of Pr^{3+} ($4f^2$) will be located approximately 370 cm^{-1} or -1λ below the barycentre of the 3H level, while the 3H_6 will be 6λ or 2220 cm^{-1} above and the 3H_4 level -5λ or 1850 cm^{-1} below [16]. From Equation 1.24 it can further be concluded that the energy gap ΔE between two adjacent levels with $J' = J + 1$ is approximated by Landé's interval rule (see also Fig. 1.3), given in Equation 1.25.

$$\Delta E = \lambda J' \quad (1.25)$$

Landé's interval rule is only strictly obeyed in the case of strong LS coupling and is only approximated in lanthanides, where intermediate coupling, consisting of interaction of levels with the same J but different L and S , is more correct. As a consequence, the magnitude of the interval ΔE determined through Equation 1.25 is usually more accurate for the lower energy levels of the lighter lanthanides. Nonetheless, a good approximation between the experimentally observed gaps and the gaps calculated by Landé's rule is

usually seen, especially for ground-state multiplets. In the case of Pr^{3+} the free ion energy levels for 3H_4 , 3H_5 and 3H_6 are located at 0, 2152 and 4389 cm^{-1} , respectively [16], leading to ΔE values of 2152 and 2237 cm^{-1} between $J=4$ and 5 and $J=5$ and 6, which reasonably approximate the values of 1850 and 2220 cm^{-1} obtained through Equation 1.25.

1.3.3 Crystal Field or Stark Effects

When lanthanide ions are in inorganic lattices or compounds in general, in addition to the Coulomb interactions and the spin-orbit coupling, each electron i also feels the effect of the crystal field generated by the ligands surrounding the metal ion, in analogy to the effect first described by Stark of an electric field on the lines of the hydrogen spectrum [36]. This perturbation lifts the $2J+1$ degeneracy and generates new levels with M_J quantum numbers. Since a potential is generated by the electrons of the N ligands, which is felt by the electrons of the lanthanide ions, the Hamiltonian can be defined by Equation 1.26.

$$H_{cf} = -e \sum_1^N V(r_i) \quad (1.26)$$

e is the elementary charge, $V(r_i)$ is the potential felt by electron i and r_i its position. Following the same reasoning utilised to derive Equations 1.6 and 1.12 one can express the Hamiltonian as a function of the crystal field parameters B_q^k , which are related to the spherical harmonics Y_q^k , as shown in Equation 1.27 [37].

$$H_{cf} = \sum_{i,j,k} \left(B_q^k \right) (C_q^k)_i \quad (1.27)$$

The relationships between B_q^k and Y_q^k are shown in Equation 1.28.

$$\begin{aligned} B_0^k &= \int_0^{\infty} R_{nl}^2(r) r^k dr \sqrt{\frac{4\pi}{2k+1}} Y_0^k \sum_L \frac{Z_L e^2}{R_L^{k+1}} \\ B_q^k &= \int_0^{\infty} R_{nl}^2(r) r^k dr \sqrt{\frac{4\pi}{2k+1}} \text{Re } Y_q^k \sum_L \frac{Z_L e^2}{R_L^{k+1}} \\ B_q'^k &= \int_0^{\infty} R_{nl}^2(r) r^k dr \sqrt{\frac{4\pi}{2k+1}} \text{Im } Y_q^k \sum_L \frac{Z_L e^2}{R_L^{k+1}} \end{aligned} \quad (1.28)$$

L are the ligands responsible for the crystal field at a distance R_L , Z their charge and e the elementary charge. Often, instead of B_q^k , the equivalent structural parameters A_k^q are utilised as shown below.

$$B_q^k = a \times A_k^q \langle r^k \rangle \quad (1.29)$$

Table 1.5 Expectation values $\langle r^k \rangle$ in a.u. [38]

	$\langle r^1 \rangle$	$\langle r^2 \rangle$	$\langle r^3 \rangle$	$\langle r^4 \rangle$	$\langle r^5 \rangle$	$\langle r^6 \rangle$
Ce ³⁺	0.97	1.17	1.73	3.08	6.44	15.55
Pr ³⁺	0.93	1.08	1.55	2.65	5.36	12.53
Nd ³⁺	0.90	1.01	1.39	2.31	4.53	10.31
Sm ³⁺	0.84	0.89	1.15	1.81	3.38	7.32
Eu ³⁺	0.82	0.84	1.06	1.62	2.96	6.28
Gd ³⁺	0.79	0.79	0.98	1.46	2.61	5.45
Tb ³⁺	0.77	0.75	0.91	1.33	2.33	4.76
Dy ³⁺	0.75	0.71	0.84	1.21	2.08	4.19
Ho ³⁺	0.74	0.68	0.79	1.11	1.87	3.71
Er ³⁺	0.72	0.65	0.74	1.02	1.69	3.31
Tm ³⁺	0.70	0.62	0.69	0.94	1.54	2.97
Yb ³⁺	0.69	0.60	0.65	0.87	1.40	2.67

a is a constant for each B_q^k and A_k^q pair [29], and $\langle r^k \rangle$ represents the average or expectation value of r^k , where r is the nucleus–electron distance of the lanthanide ion, given by

$$\langle r^k \rangle = \int_0^\infty R_{nl}^2(r) r^k dr \quad (1.30)$$

Tabulated values of $\langle r^k \rangle$ for all Ln³⁺ are summarised in Table 1.5.

$(C_q^k)_i$ are the related tensor operators, which transform as the spherical harmonics and are given by

$$(C_q^k)_i = \sqrt{\frac{4\pi}{2k+1}} Y_q^k(i) \quad (1.31)$$

1.3.4 The Crystal Field Parameters B_q^k and Symmetry

The integer k runs in the range 0–7 and the parameters containing even values of k are responsible for the crystal field splitting, while those with odd values influence the intensity of the induced electronic dipole transitions (see Section 1.3.10 for more details) [8,9]. q is also an integer and its values depend on the symmetry of the crystal field and the magnitude of k , since $|q| \leq k$. The possible combinations of k and q for the crystal field parameters are given in Table 1.6 and the symmetry elements contained in the crystal field parameters are summarised in Table 1.7.

The B_0^0 coefficient is notably absent from these tables; since it is spherically symmetric, it acts equally on all f^N configurations. In energy level calculations it can therefore be incorporated into all spherically symmetric interactions and does not need to be considered individually.