Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials

Editor Ana de Bettencourt-Dias
Department of Chemistry, University of Nevada, Reno, USA

Lanthanide ions are remarkable for their luminescence properties. As each lanthanide ion shows a characteristic spectroscopic signature and line-like spectra, they have continued to fascinate researchers through the ages, leading to many applications from display technology to bioimaging and sensing.

Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials presents an overview of luminescent lanthanide complexes from fundamental theory to applications and spectroscopic techniques. The book begins with an introduction to the basic theoretical and practical aspects of the emission process, the spectroscopic techniques and the equipment used to characterize the emission. Subsequent chapters introduce a variety of different phenomena and applications, including:

- Circularly polarized luminescence
- Luminescence bioimaging with lanthanide complexes
- Two-photon absorption
- Lanthanide ions as chemosensors
- Nanoparticle upconversion luminescence
- Excitation spectroscopy
- Heterobimetallic complexes containing lanthanides

This book aims to serve scientists whose primary field of interest is spectroscopy and spectroscopic applications of lanthanide ions. It is a valuable introduction to the literature for scientists new to the field, as well as providing the more experienced researcher with a comprehensive overview of the latest research developments and applications.
Luminescence of Lanthanide Ions
in Coordination Compounds
and Nanomaterials
Contents

List of Contributors xi
Preface xiii

1 Introduction to Lanthanide Ion Luminescence 1
Ana de Bettencourt-Dias

1.1 History of Lanthanide Ion Luminescence 1
1.2 Electronic Configuration of the +III Oxidation State 2
 1.2.1 The 4f Orbitals 2
 1.2.2 Energy Level Term Symbols 2
1.3 The Nature of the f-f Transitions 5
 1.3.1 Hamiltonian in Central Field Approximation and Coulomb Interactions 5
 1.3.2 Spin–Orbit Coupling 10
 1.3.3 Crystal Field or Stark Effects 13
 1.3.4 The Crystal Field Parameters B_l^q and Symmetry 14
 1.3.5 Energies of Crystal Field Split Terms 18
 1.3.6 Zeeman Effect 19
 1.3.7 Point Charge Electrostatic Model 21
 1.3.8 Other Methods to Estimate Crystal Field Parameters 25
 1.3.9 Allowed and Forbidden f-f Transitions 27
 1.3.10 Induced Electric Dipole Transitions and Their Intensity – Judd–Ofelt Theory 34
 1.3.11 Transition Probabilities and Branching Ratios 37
 1.3.12 Hypersensitive Transitions 38
 1.3.13 Emission Efficiency and Rate Constants 39
1.4 Sensitisation Mechanism 40
 1.4.1 The Antenna Effect 40
 1.4.2 Non-Radiative Quenching 44
References 46

2 Spectroscopic Techniques and Instrumentation 49
David E. Morris and Ana de Bettencourt-Dias

2.1 Introduction 49
2.2 Instrumentation in Luminescence Spectroscopy 52
 2.2.1 Challenges in Design and Interpretation of Lanthanide Luminescence Experiments 52
 2.2.2 Common Luminescence Experiments 57
2.2.3 Basic Design Elements and Configurations in Luminescence Spectrometers 61
2.2.4 Luminescence Spectrometer Components and Characteristics 63
2.2.5 Recent Advances in Luminescence Instrumentation 67
2.3 Measurement of Quantum Yields of Luminescence in the Solid State and in Solution 69
2.3.1 Measurement Against a Standard in Solution 70
2.3.2 Measurement Against a Standard in the Solid State 71
2.3.3 Absolute Measurement with an Integrating Sphere 72
2.4 Excited State Lifetimes 73
2.4.1 Number of Coordinated Solvent Molecules 73

References 74

3 Circularly Polarised Luminescence 77
 Gilles Muller
3.1 Introduction 77
3.1.1 General Aspects: Molecular Chirality 77
3.1.2 Chiroptical Tools: from CD to CPL Spectroscopy 78
3.2 Theoretical Principles 79
3.2.1 General Theory 79
3.2.2 CPL Intensity Calculations, Selection Rules, Luminescence Selectivity, and Spectra–Structure Relationship 82
3.3 CPL Measurements 84
3.3.1 Instrumentation 84
3.3.2 Calibration and Standards 88
3.3.3 Artifacts in CPL Measurements 90
3.3.4 Proposed Instrumental Improvements to Record Eu(III)-Based CPL Signals 91
3.4 Survey of CPL Applications 93
3.4.1 Ln(III)-Containing Systems 93
3.4.2 Ln(III) Complexes with Achiral Ligands 94
3.4.3 Ln(III) Complexes with Chiral Ligands 99
3.5 Chiral Ln(III) Complexes to Probe Biologically Relevant Systems 109
3.5.1 Sensing through Coordination to the Metal Centre 109
3.5.2 Sensing through Coordination to the Antenna/Receptor Groups 112
3.6 Concluding Remarks 114
References 115

4 Luminescence Bioimaging with Lanthanide Complexes 125
 Jean-Claude G. Bünzli
4.1 Introduction 125
4.2 Luminescence Microscopy 127
4.2.1 Classical Optical Microscopy: a Short Survey 127
4.2.2 Principle of Luminescence Microscopy 128
4.2.3 Principle of Time-resolved Luminescence Microscopy 131
4.2.4 Early Instrumental Developments for Time-resolved Microscopy with LLBs 134
4.2.5 Optimisation of Time-resolved Microscopy Instrumentation 140
4.2.6 Commercial Instruments 143
4.3 Bioimaging with Lanthanide Luminescent Probes and Bioprobes 144
4.3.1 β-Diketonate Probes 144
4.3.2 Aliphatic Polyaminocarboxylate and Carboxylate Probes 154
4.3.3 Macrocyclic Probes 163
4.3.4 Self-assembled Triple Helical Bioprobes 171
4.3.5 Other Bioprobes 177
4.4 Conclusions and Perspectives 180
References 184

5 Two-photon Absorption of Lanthanide Complexes: from Fundamental Aspects to Biphotonic Imaging Applications 197
Anthony D’Aléo, Chantal Andraud and Olivier Maury
5.1 Introduction 197
5.2 Two-photon Absorption, a Third Nonlinear Optical Phenomenon 198
5.2.1 Theoretical and Historical Background 198
5.2.2 Experimental Determination of the 2PA Efficiency of Molecules 199
5.2.3 Two-photon Fluorescence Microscopy for Biological Imaging 200
5.2.4 Molecular Engineering for Multiphonic Imaging 201
5.3 Spectroscopic Evidence for the Two-photon Sensitisation of Lanthanide Luminescence 205
5.3.1 1961: The Breakthrough Experiments 205
5.3.2 Two-photon Excitation of f-f Transitions 206
5.3.3 The Two-photon Antenna Effect 207
5.3.4 The Charge Transfer State Mediated Sensitisation Process 209
5.3.5 Optimising Molecular Two-photon Cross Section: the Brightness Trade-off 211
5.3.6 Two-photon Excited Luminescence in Solid Matrix 214
5.3.7 Two-photon Time-gated Spectroscopy 214
5.4 Towards Biphotonic Microscopy Imaging 215
5.4.1 Proof of Concept 215
5.4.2 Towards the Design of an Optimised Bio-probe 217
5.4.3 Design of Lanthanide containing Nano-probes, toward Single-object Imaging 222
5.4.4 Towards NIR-to-NIR Imaging 223
5.5 Conclusions 225
References 226
Contents

8.2 Direct Excitation Lanthanide Luminescence 304
8.2.1 Luminescence Properties of the Lanthanide Ions 304
8.2.2 Ln(III) Excitation Spectroscopy 306
8.2.3 Ln(III) Emission Spectroscopy 307
8.2.4 Time-Resolved Ln(III) Luminescence Spectroscopy 308
8.2.5 Luminescence Resonance Energy Transfer 310
8.3 Defining the Ln(III) Ion Coordination Sphere through Direct Eu(III) Excitation Luminescence Spectroscopy 311
8.3.1 Eu(III) Complex Speciation in Solution: Number of Excitation Peaks 311
8.3.2 Excitation Spectra of Geometric Isomers 311
8.3.3 Innersphere Coordination of Anions 312
8.3.4 Ligand Ionisation 314
8.4 Luminescence Studies of Anion Binding in Catalysis and Sensing 317
8.4.1 Phosphate Ester Binding and Cleavage 317
8.4.2 Sensing Biologically Relevant Anions 318
8.5 Luminescence Studies of Ln(III) MRI Contrast Agents 320
8.5.1 Types of Ln(III) MRI Contrast Agents 320
8.5.2 Luminescence Studies of Ln(III) ParaCEST Agents 322
8.6 Conclusions 326
References 326

9 Heterometallic Complexes Containing Lanthanides 331
Stephen Faulkner and Manuel Tropiano

9.1 Introduction 331
9.2 Properties of a Heteromultimetallic Complex 332
9.3 Lanthanide Assemblies in the Solid State 335
9.4 Lanthanide Assemblies in Solution 338
9.4.1 Lanthanide Helicates 338
9.4.2 Non-helicate Structures 341
9.5 Heterometallic Complexes Derived from Bridging and Multi-compartmental Ligands 342
9.6 Energy Transfer in Assembled Systems 347
9.7 Responsive Multimetallic Systems 351
9.8 Summary and Prospects 353
References 353

Index 359
List of Contributors

Anthony D’Aléo, CINaM, UMR 7325 CNRS-Aix Marseille Université, France

Chantal Andraud, Laboratoire de chimie, UMR 5281 ENS Lyon-CNRS-Université de Lyon, France

Ana de Bettencourt-Dias, Department of Chemistry, University of Nevada, USA

Jean-Claude G. Bünzli, Swiss Federal Institute of Technology, Switzerland; and Korea University, Republic of Korea

Sarina J. Dorazio, University at Buffalo, State University of New York, USA

Stephen Faulkner, Chemistry Research Laboratory, University of Oxford, UK

Thorfinnur Gunnlaugsson, Trinity College, University of Dublin, Ireland

Olivier Maury, Laboratoire de chimie, UMR 5281 ENS Lyon-CNRS-Université de Lyon, France

David E. Morris, Los Alamos National Laboratory, USA

Janet R. Morrow, University at Buffalo, State University of New York, USA

Gilles Muller, Department of Chemistry, San José State University, USA

Simon J.A. Pope, School of Chemistry, Cardiff University, Wales, UK

Manuel Tropiano, Chemistry Research Laboratory, University of Oxford, UK

Frank C.J.M. van Veggel, Department of Chemistry, University of Victoria, Canada
The unique spectroscopic properties of the lanthanide ions prompted Sir William Crookes in his lecture delivered 1887 at the Royal Institution to say: “These elements perplex us in our researches, baffle us in our speculations, and haunt us in our very dreams. They stretch like an unknown sea before us – mocking, mystifying, and murmuring strange revelations and possibilities” (The Chemical News, 1887, pp. 83–88). These unique properties, which are line-like absorption and equally narrow emission spectra, played a central role in the separation and identification of the 14 elements. As each lanthanide ion shows a characteristic spectroscopic signature and line-like spectra, they have continued to fascinate researchers through the ages and have led to many applications as well as new fields of research. The interest in spectroscopy and spectroscopic applications of the lanthanide ions has resulted in a growing number of publications. Among these are several books that address one or more areas of lanthanide chemistry and spectroscopy, such as the recent Rare Earth Coordination Chemistry edited by Chunhui Huang, Wybourne and Smentek’s theoretical treatise on the Optical Spectroscopy of Lanthanides – Magnetic and Hyperfine Interactions, or Lanthanide Luminescence edited by Hänninen and Härmä. Our new book aims to serve scientists whose primary field of interest is spectroscopy and spectroscopic applications of lanthanide ions, veteran scientists for whom the field is reviewed, as well as new scientists, who can find here information that will help them to get started. Finally, this book is also intended as the basis for an intermediate to advanced course in f element spectroscopy.

The first two chapters of this work cover theoretical and practical aspects of the emission process, the spectroscopic techniques and the equipment used to characterize the emission. Chapter 3 introduces and reviews the property of circularly polarized emission, while Chapter 4 reviews the use of lanthanide ion complexes in bioimaging and fluorescence microscopy. Chapter 5 covers the phenomenon of two-photon absorption, its theory as well as applications in imaging, while Chapter 6 reviews the use of lanthanide ions as chemosensors. Chapter 7 introduces the basic principles of nanoparticle upconversion luminescence and its use for bioimaging and Chapter 8 reviews direct excitation of the lanthanide ions and the use of the excitation spectra to probe the metal ion’s coordination environment in coordination compounds and biopolymers. Finally, Chapter 9 describes the formation of heterobimetallic complexes, in which the lanthanide ion emission is promoted through the hetero-metal.

I am deeply indebted to all who made this book possible. My thanks to the contributing authors of the nine chapters, without whom this book would not have been possible. They are major driving forces in their respective areas and have contributed chapters that are at once excellent tutorials and thorough reviews of their fields. My heartfelt thanks go also to the publisher and everyone involved with the book at Wiley, who, with their continued patience, encouragement, professionalism and enthusiasm led the project to its successful conclusion.
Introduction to Lanthanide Ion Luminescence

Ana de Bettencourt-Dias

Department of Chemistry, University of Nevada, USA

1.1 History of Lanthanide Ion Luminescence

After the isolation of a sample of yttrium oxide from a new mineral by Johan Gadolin in 1794, several of the lanthanides, namely praseodymium and neodymium, as well as cerium, lanthanum, terbium and erbium were isolated in different degrees of purity [1]. It was only after Kirchhoff and Bunsen introduced the spectroscope in 1859 as a means of characterising elements that the remaining lanthanides were discovered and the already known ones could be obtained in pure form [2]. Spark spectroscopy provided the means to finally isolate in pure form the remaining lanthanides [3–5]. As will be discussed below, the 4f valence orbitals are buried within the core of the ions, shielded from the coordination environment by the filled 5s and 5p orbitals, and do not experience significant coupling with the ligands. Therefore, the electronic levels of the ions can be described in an analogous way to the atomic electronic levels with a Hamiltonian in central field approximation with electrostatic Coulomb interactions, spin–orbit coupling and finally crystal field and Zeeman effects added as perturbations. All these perturbations lead to a lifting of the degeneracy of the electronic levels and transitions between these split levels are experimentally observed [6]. These transitions, however, are forbidden by the parity rule, as there is no change in parity between excited and ground state. That the emission was nonetheless seen puzzled scientists for a long time [7]. Only when Judd and Ofelt independently proposed their theory of induced electric dipole
transitions [8,9] could the appearance of these transitions be satisfactorily explained. As the transitions are forbidden, the direct excitation of the lanthanide ions is also not easily accomplished, and this is why sensitised emission is a more appealing and energy efficient way to promote lanthanide-centred emission. While the ability of the lanthanide salts to emit light was key to their isolation in pure form, sensitised emission was first described by S.I. Weissman only in 1942 [10]. This author realised that when complexes of Eu(III) with salicylaldehyde and benzoylacetonato, as well as other related ligands, were irradiated with light in the wavelength range in which the organic ligands absorb, strong europium-characteristic red emission ensued. Weissman further observed that the emission intensity was temperature and solvent dependent, as opposed to what is seen for europium nitrate solutions [10]. After this seminal work, interest in sensitised luminescence spread through the scientific community, as the potential application of lanthanides for imaging and sensing was quickly recognised [11,12].

1.2 Electronic Configuration of the +III Oxidation State

1.2.1 The 4f Orbitals

The lanthanides’ position in the fourth period as the inner transition elements of the periodic table indicates that the filling of the 4f valence orbitals commences with them. The electronic configuration of the lanthanides is [Xe]4f°6s², with notable exceptions for lanthanum, cerium, gadolinium and lutetium, which have a [Xe]4f°15d¹6s² configuration. Upon ionisation to the most common +III oxidation state, the configuration is uniformly [Xe]4f°¹. La(III) therefore does not possess any f electrons, while Lu(III) has a filled 4f orbital. While the 4f orbitals are the valence orbitals, they are shielded from the coordination environment by the filled 5s and 5p orbitals, which are more spatially extended, as shown in Fig. 1.1, which displays the radial charge density distribution for Pr(III) [13]. Therefore, lanthanides bind mostly through ionic interactions and the ligand field perturbation upon the 4f orbitals is minimal. Nonetheless, as will be discussed below, symmetry considerations imposed by the ligand field affect the emission spectra of the lanthanide ions.

1.2.2 Energy Level Term Symbols

It is usual to describe the configurations of hydrogen-like atoms or ions, that is with only one electron, in terms of the quantum numbers \(n, \ell, m_\ell, s \) and \(m_s \). In polyelectronic atoms and ions, exchange and pairing energies lead to different configurations, or microstates, with different energies, which are described by new quantum numbers, the total orbital angular momentum quantum number \(L \) and its projection along the \(z \) axis, the total magnetic orbital angular momentum \(M_L \) and the total spin angular momentum quantum number \(S \), often indicated as the spin multiplicity, \(2S+1 \), as well as its projection along the \(z \) axis, the total magnetic spin quantum number \(M_S \). In the case of heavy elements, such as lanthanides, coupling of the spin and angular momenta is seen, and an additional quantum number, \(J \), the spin–orbit coupling or Russell–Saunders quantum number, is commonly utilised. As will be mentioned below, intermediate coupling for lanthanides is more correct, but the
Russell–Saunders formalism is simple to use and will be carried through this chapter. Term symbols with the format $2S+1L_J$, which summarise the quantum number information, are assigned to describe the individual microstates. For a polyelectronic atom or ion with i electrons,

\[
L = \sum_i l_i, \quad M_L = -L, \ldots, L
\]

\[
S = \sum_i s_i, \quad s_i = 1/2
\]

and

\[
J = L + S, L + S - 1, \ldots, |L - S|
\]

Term symbols can be obtained by determining the microstates, or allowed combinations of all electrons described by quantum numbers, of the atom or ion under consideration and methods to do it is can be found in textbooks [14,15]. Since multiple combinations of electrons are allowed, and therefore many microstates are present, Hund’s rules are followed for determination of the ground state. The ground state will have the largest spin multiplicity and the largest orbital multiplicity corresponding to the largest value of L. Finally, if S and L are equal for two states, the ground state will correspond to the largest value of J, if the electron shell is more than half-filled, or an inverted multiplet and the smallest value of J, if the orbital is less than half-filled, which is a regular multiplet. The ground state term symbols for f^n ($n =$ number of electrons in the f shell) configurations are shown in Table 1.1.

Figure 1.1 Radial charge density distribution of Pr(III). Reproduced from [13] with permission from Elsevier
A complete diagram, showing the ground and excited states of all lanthanide ions in the +III oxidation state with corresponding term symbols, is displayed in Fig. 1.2.

Table 1.2 summarises the most commonly observed emission transitions for the emissive Ln(III) ions.

<table>
<thead>
<tr>
<th>Table 1.1</th>
<th>Ground state term symbols for f^n electronic configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>Term</td>
</tr>
<tr>
<td>f^0/f^{14}</td>
<td>$1S_0$</td>
</tr>
<tr>
<td>f^1/f^{13}</td>
<td>$2F_{5/2}/2F_{7/2}$</td>
</tr>
<tr>
<td>f^2/f^{11}</td>
<td>$3H_{4}/3H_{6}$</td>
</tr>
<tr>
<td>f^3/f^{10}</td>
<td>$4I_{9,2}/4I_{15,2}$</td>
</tr>
<tr>
<td>f^4/f^{9}</td>
<td>$5I_{4}/5I_{8}$</td>
</tr>
<tr>
<td>f^5/f^{8}</td>
<td>$6I_{5,2}/6I_{15,2}$</td>
</tr>
<tr>
<td>f^6/f^{7}</td>
<td>$7F_{0}/7F_{6}$</td>
</tr>
<tr>
<td>f^7/f^{6}</td>
<td>$8S_{7/2}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 1.2</th>
<th>Most common emissive f-f transitions of Ln$^{3+}$ [16–28]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln</td>
<td>Transition</td>
</tr>
<tr>
<td>Pr</td>
<td>$^1D_2 \rightarrow ^3F_3$</td>
</tr>
<tr>
<td></td>
<td>$^1D_2 \rightarrow ^1G_4$</td>
</tr>
<tr>
<td></td>
<td>$^1D_2 \rightarrow ^3H_J(J = 4, 5)$</td>
</tr>
<tr>
<td></td>
<td>$^3P_0 \rightarrow ^3H_J(J = 4 - 6)$</td>
</tr>
<tr>
<td>Nd</td>
<td>$^4G_{5/2} \rightarrow ^6H_J(J = 5/2 - 13/2)$</td>
</tr>
<tr>
<td></td>
<td>$^4G_{5/2} \rightarrow ^6F_J(J = 1/2 - 9/2)$</td>
</tr>
<tr>
<td>Sm</td>
<td>$^5D_0 \rightarrow ^7F_J(J = 0 - 6)$</td>
</tr>
<tr>
<td>Eu</td>
<td>$^6P_{7/2} \rightarrow ^8S_{7/2}$</td>
</tr>
<tr>
<td>Gd</td>
<td>$^5D_4 \rightarrow ^7F_J(J = 6 - 0)$</td>
</tr>
<tr>
<td>Tb</td>
<td>$^4F_{9/2} \rightarrow ^4H_J(J = 15/2 - 9/2)$</td>
</tr>
<tr>
<td></td>
<td>$^4I_{15/2} \rightarrow ^6H_J(J = 15/2 - 9/2)$</td>
</tr>
<tr>
<td>Dy</td>
<td>$^2F_{5/2} \rightarrow ^2F_{7/2}$</td>
</tr>
<tr>
<td>Ho</td>
<td>$^5S_2 \rightarrow ^5I_{8}(J = 8, 7)$</td>
</tr>
<tr>
<td></td>
<td>$^5F_5 \rightarrow ^5I_{8}(J = 8, 7)$</td>
</tr>
<tr>
<td>Er</td>
<td>$^4S_{3/2} \rightarrow ^4I_{9}(J = 15/2, 13/2)$</td>
</tr>
<tr>
<td></td>
<td>$^4F_{9/2} \rightarrow ^4I_{15/2}$</td>
</tr>
<tr>
<td></td>
<td>$^4I_J(J = 9/2, 13/2) \rightarrow ^4I_{15/2}$</td>
</tr>
<tr>
<td>Tm</td>
<td>$^1D_2 \rightarrow ^3F_4/3H_4/3F_J(J = 3, 2)$</td>
</tr>
<tr>
<td></td>
<td>$^1G_4 \rightarrow ^3H_6/3F_4/3H_5$</td>
</tr>
<tr>
<td></td>
<td>$^3H_4 \rightarrow ^3H_6$</td>
</tr>
<tr>
<td>Yb</td>
<td>$^2F_{5/2} \rightarrow ^2F_{7/2}$</td>
</tr>
</tbody>
</table>
1.3 The Nature of the \(f-f \) Transitions

1.3.1 Hamiltonian in Central Field Approximation and Coulomb Interactions

The behaviour of an electron is described by the wave function \(\psi \), which is a solution of the Schrödinger equation 1.1.

\[
H \psi = E \psi
\]

(1.1)

This equation only has an exact solution for systems with one electron, but for polyelectronic systems with \(N \) electrons, the solution can be approximated by considering that each
electron is moving independently in a central spherically symmetric field $U(r_i)/e$ of the averaged potentials of all other electrons [6]. The Hamiltonian H_{CFA} for this central field approximation is shown in Equation 1.2.

$$H_{CFA} = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \nabla^2 + U(r_i) \right]$$

(1.2)

\(\hbar\) is the reduced Planck constant, \(m\) the mass and the Laplace operator is given by Equation 1.3.

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

(1.3)

The Schrödinger equation can thus be written as shown in Equation 1.4.

$$\sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \nabla^2 + U(r_i) \right] \Psi = E_{CFA} \Psi$$

(1.4)

In the central field approximation, solutions can be chosen such that the overall wavefunction and energy of the system are sums of wavefunctions and energies of one-electron systems, as shown in Equation 1.5.

$$\Psi = \sum_{i=1}^{N} \psi_i(a^i)$$

(1.5a)

$$E_{CFA} = \sum_{i=1}^{N} E_i$$

(1.5b)

\(a^i\) stands for the quantum numbers \(n, l\) and \(m_l\) which describe the state of the electron in the central field. By introducing the polar coordinates \(r, \theta\) and \(\phi\) instead of the Cartesian coordinates \(x, y\) and \(z\), one can separate each one-electron wave function into its radial R_{nl} and angular Y_{lm} components, as shown in Equation 1.6.

$$\psi_i(a^i) = \frac{1}{r} R_{nl}(r) Y_{lm}(\theta, \phi)$$

(1.6)

Since R_{nl} is a function of \(r\) only, it depends on the central field potential $U(r_i)$. A solution to this wave function, shown in Equation 1.7, is approximated and depends on the form of the central field.

$$R_{nl}(r) = -\left[\left(\frac{2Z}{na_0} \right)^3 \frac{(n-l-1)!}{2n(n+l)^3} \right]^{1/2} e^{-\frac{r}{\rho}} L_{n+l}^{2l+1}(\rho)$$

(1.7)

with $\rho = \frac{2Z}{na_0} r$ and $a_0 = \frac{\hbar^2}{4\pi^2 \mu e}$, where a_0 is the Bohr radius and μ the reduced mass. This expression also includes the Laguerre polynomials $L_{n+l}^{2l+1}(\rho)$ shown in Equation 1.8.
The angular wave functions, which are Laplacian spherical harmonics, on the other hand, are similar to the one-electron wave function and can thus be solved. Their expression is given in Equation 1.9.

\[Y_{lml}(\theta, \phi) = (-1)^m \left[\frac{(2l + 1)(l + |m_l|)!}{4\pi(l + |m_l|)!} \right] \frac{1}{\sqrt{\pi}} P_{l}^{m_l}(\cos \theta)e^{im\phi} \] (1.9)

\[P_{l}^{m_l}(\cos \theta) \] are the Legendre functions shown in Equation 1.10.

\[P_{l}^{m_l}(\cos \theta) = \frac{(1 - \cos^2 \theta)^{m_l/2}}{2^l l!} \frac{d^{m_l+l}}{d \cos^{m_l+l}}(\cos^2 \theta - 1)^l \] (1.10)

Relativistic corrections to the Schrödinger equation lead to the introduction of a spin function \(\delta(m_s, \sigma) \), where \(\sigma \) is a spin coordinate and \(m_s \) is the magnetic spin quantum number, to the one electron wave function in Equation 1.6, which then takes the shape shown in Equation 1.11.

\[\psi(n, l, m_l, m_s) = \delta(l, n, m_l, m_s)R_{nl}(r)Y_{lml}(\theta, \phi) \] (1.11)

Equation 1.5a can now be rewritten as Equation (1.12).

\[\Psi = \sum_{i=1}^{N} \psi_i(\alpha^i) \] (1.12)

While the two equations look similar, in Equation 1.12 \(\alpha^i \) stands for the four quantum numbers \(n, l, m_l \) and \(m_s \), which describe the state of each \(i \) of the \(N \) electrons. These permute to generate equally valid states following Pauli’s exclusion principle, to yield anti-symmetric wave functions in the central field, which are solutions to the Schrödinger equation (Equation 1.4).

The lack of perturbations to the Hamiltonian in the central field approximation results in high degeneracy \(D \) (Equation 1.13) of the \(f \) electron configurations.

\[D = \frac{(4l + 2)!}{N!(4l + 2 - N)!} = \frac{14!}{N!(14 - N)!} \] for \(l = 3 \) (1.13)

The Hamiltonian for the perturbation introduced by the potential energy \(H_{pot} \) felt by all electrons in the field of the nucleus corrected for the central spherically symmetric field is given by Equation 1.14.

\[H_{pot} = \sum_{i=1}^{N} \left[-\frac{Ze^2}{r_i} - U(r_i) \right] \] (1.14)
Ze is the nuclear charge, \(r_i \) the position coordinates of electron \(i \) and \(U(r_i) \) the spherical repulsive potential of all other electrons experienced by electron \(i \) moving independently in the field of the nucleus.

The repulsive Coulomb energy between pairs of electrons is an important perturbation to the central field approximation and its Hamiltonian \(H_{\text{Coulomb}} \) is given by Equation 1.15.

\[
H_{\text{Coulomb}} = \sum_{i<j}^N \frac{e^2}{r_{ij}}
\]

(1.15)

e is the charge of the electron and \(r_{ij} \) is the distance between electrons \(i \) and \(j \).

By applying \(H_{\text{Coulomb}} \) to the wave function of the unperturbed system, it can be shown that the electrostatic repulsion energy \(E_{\text{ER}} \) of the system is given by Equation 1.16.

\[
E_{\text{ER}} = \sum_{k=2,4,6} f_k F^k
\]

(1.16)

Here, \(k \) is an integer of values 2, 4 and 6, \(f_k \) are the coefficients representing the angular part of the wave function [29] and \(F^k \) are the electrostatic Slater two-electron radial integrals given by Equation 1.17.

\[
F^k = (4\pi)^2 e^2 \int_0^{\infty} \int_0^{\infty} \frac{r_<^k}{r_>^{k+1}} R_{\mu l}^2(r_i) R_{\nu l}^2(r_j) r_i^2 r_j^2 dr_i dr_j
\]

(1.17)

\(r_< \) is the smaller and \(r_> \) the larger of the values of \(r_i \) and \(r_j \). \(F^k \) instead of the Slater integrals are often indicated, for which:

\[
F_2 = F^2 / 225 \\
F_4 = F^4 / 1089 \\
F_6 = F^6 / 7361.64
\]

In the case of hydrogenic wave functions the following relationships are valid [30].

\[
F_4 = 0.145 F_2 \\
F_6 = 0.0164 F_2
\]

These show that the values of \(F_k \) decrease as \(k \) increases. Values of \(F_2 \) for the configurations \(f^2 \) to \(f^{13} \) are tabulated in Table 1.3 and show that they increase with increasing atomic number, as the inter-electronic repulsion is expected to increase.

The \(f_k \) angular coefficients are hydrogen-like and can be determined from

\[
f_k = \frac{(2l + 1)(l - |m_l|)!}{2(l + |m_l|)!} \frac{(2l' + 1)(l' - |m_{l'}|)!}{2(l' + |m_{l'}|)!} \int_0^\pi \{ P_l^{m_l}(\cos \theta_l) \}^2 P_0^k(\cos \theta_l) \sin \theta_l d\theta_l \\
\times \int_0^\pi \{ P_{l'}^{m_{l'}}(\cos \theta_{l'}) \}^2 P_0^k(\cos \theta_{l'}) \sin \theta_{l'} d\theta_{l'}
\]

(1.18)

As above, \(P_l^{m_l} \), \(P_{l'}^{m_{l'}} \) and \(P_0^k \) are Legendre polynomials.
In addition to the Coulomb interactions of electron–electron repulsion and electron–nucleus attraction, further perturbations influence the energy levels of the lanthanide ions, such as the coupling of the spin and angular momenta, commonly designated spin–orbit coupling, the crystal field or Stark effect, and the interaction with a magnetic field or Zeeman effect, which will be described in the following sections.

As illustrated in Fig. 1.3, by comparison to electron–electron repulsion, which leads to energy splits on the order of 10^4 cm^{-1}, and spin–orbit coupling, with splits on the order of 10^3 cm^{-1}, the crystal field and Zeeman effects are small perturbations, resulting in energy level splitting on the order of 10^2 cm^{-1} at the most [13]. The magnitude of these data compared to the d metals is shown comparatively in Table 1.4. In the case of transition metals, the crystal field splitting dominates the spin–orbit coupling. However, for lanthanide ions, the crystal field splitting is almost negligible. The spin–orbit coupling is of increasing

<table>
<thead>
<tr>
<th>Valence configuration</th>
<th>H_{Coulomb}</th>
<th>H_{s-o}</th>
<th>H_{cf}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3d^N$</td>
<td>70 000</td>
<td>500</td>
<td>15 000</td>
</tr>
<tr>
<td>$4d^N$</td>
<td>50 000</td>
<td>1000</td>
<td>20 000</td>
</tr>
<tr>
<td>$5d^N$</td>
<td>20 000</td>
<td>2000</td>
<td>25 000</td>
</tr>
<tr>
<td>$4f^N$</td>
<td>70 000</td>
<td>1500</td>
<td>500</td>
</tr>
<tr>
<td>$5f^N$</td>
<td>50 000</td>
<td>2500</td>
<td>2000</td>
</tr>
</tbody>
</table>

Table 1.3 Comparison of the average magnitude of perturbations for transition metal and lanthanide ions in cm$^{-1}$ [13]

Figure 1.3 Effect of the perturbations [Coulomb (H_{Coulomb}), spin–orbit (H_{s-o}), crystal field (H_{cf}), and magnetic field (H_Z)] on the electron configuration of an arbitrary Ln(III) Kramers’ ion. Energy units are arbitrary and not to scale. λ is described in Section 3.2
importance for the heavier elements. However, in the case of the lanthanides, it is still approximately an order of magnitude smaller than the Coulomb interactions and one order of magnitude larger than the crystal field splitting; therefore an intermediate coupling scheme, in which \(j-j\) in addition to Russell–Saunders coupling is also important, is more correct. Nonetheless, as mentioned above, the latter formalism is utilised due to its simplicity.

1.3.2 Spin–Orbit Coupling

The spin and angular momenta of the individual electrons couple with each other and this coupling is increasingly important with atomic number. The Hamiltonian \(H_{s-o}\) that describes this perturbation is given in Equation 1.19.

\[
H_{s-o} = \sum_{i=1}^{N} \xi(r_i)(s_i \cdot l_i) \tag{1.19}
\]

\(r_i\) is the position coordinate of electron \(i\), and \(s_i\) and \(l_i\) are its spin and angular momentum quantum numbers. \(\xi(r_i)\), the single electron spin–orbit coupling constant, is given by Equation 1.20.

\[
\xi(r_i) = \frac{\hbar^2}{2m^2c^2r_i} \frac{dU(r_i)}{dr_i} \tag{1.20}
\]

In this equation, \(c\) is the speed of light in a vacuum and \(\hbar\) is the reduced Planck constant. \(\xi(r_i)\) is related to the spin–orbit radial integral \(\zeta_{nl}\) by equation 1.21.

Table 1.4 Spin–orbit radial integral \(\zeta_{nl}\), spin-orbit coupling constant \(\lambda\) and \(F_2\) values for the \(\text{Ln}^{3+}_{(aq)}\) ions [25–28,31]

<table>
<thead>
<tr>
<th>(f^n)</th>
<th>(\zeta_{nl} \text{ [cm}^{-1}])</th>
<th>(\lambda \text{ [cm}^{-1}]^a)</th>
<th>(F_2 \text{ [cm}^{-1}]^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f^1)</td>
<td>625</td>
<td>625</td>
<td></td>
</tr>
<tr>
<td>(f^2)</td>
<td>740</td>
<td>370</td>
<td>305</td>
</tr>
<tr>
<td>(f^3)</td>
<td>884</td>
<td>295</td>
<td>321</td>
</tr>
<tr>
<td>(f^4)</td>
<td>1022</td>
<td>250</td>
<td>338</td>
</tr>
<tr>
<td>(f^5)</td>
<td>1157</td>
<td>231</td>
<td>364</td>
</tr>
<tr>
<td>(f^6)</td>
<td>1326</td>
<td>221</td>
<td>369</td>
</tr>
<tr>
<td>(f^7)</td>
<td>1450</td>
<td>0</td>
<td>384</td>
</tr>
<tr>
<td>(f^8)</td>
<td>1709</td>
<td>−285</td>
<td>401</td>
</tr>
<tr>
<td>(f^9)</td>
<td>1932</td>
<td>−386</td>
<td>407</td>
</tr>
<tr>
<td>(f^{10})</td>
<td>2141</td>
<td>−535</td>
<td>419</td>
</tr>
<tr>
<td>(f^{11})</td>
<td>2380</td>
<td>−793</td>
<td>440</td>
</tr>
<tr>
<td>(f^{12})</td>
<td>2628</td>
<td>−1314</td>
<td>461</td>
</tr>
<tr>
<td>(f^{13})</td>
<td>2870</td>
<td>−2880</td>
<td>444</td>
</tr>
</tbody>
</table>

\(a\) as Ce:LaCl\(_3\) [32] and \(f^{13}\) as Yb\(_3\)Ga\(_5\)O\(_{12}\) [33].

\(b\) [16]

\(c\) [30]
and to the many electron spin–orbit coupling constant λ by Equation 1.22, for $S \neq 0$.

$$\lambda = \pm \frac{\xi(r)}{2S}$$ (1.22)

Values of ζ_{nl} and λ for the hydrated Ln$^{3+}$ ions are summarised in Table 1.4, with λ positive for a more than half-filled shell and negative for a less than half-filled shell. It can be seen that ζ_{nl} increases with increasing number of f electrons, which corresponds to a higher atomic number Z and a stronger spin–orbit interaction, as expected.

H_{s-o} will permit coupling of $2^{5+}L$ states for $\Delta S \leq 1$ and $\Delta L \leq 1$. This effect is shown in Fig. 1.4, in which the energy splitting of the 4I level due to spin–orbit coupling is shown as a function of the ratio ζ_{nl}/F_2. The increased curvature of the levels shows the increasing spin–orbit coupling. The energy levels of the reverse multiplet of Er(III) and of the multiplet of Nd(III) are indicated by the vertical dashed lines.

The calculated compositions of the 4I multiplet levels of Nd(III) and of Er(III) are given below.

<table>
<thead>
<tr>
<th>Nd(III)</th>
<th>Er(III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^4I_{9/2}$: $-0.166[^2H] + 0.984[^4I]$</td>
<td>$^4I_{15/2}$: $0.982[^4I] - 0.186[^2K]$</td>
</tr>
<tr>
<td>$^4I_{11/2}$: $0.995[^4I]$</td>
<td>$^4I_{13/2}$: $0.995[^4I]$</td>
</tr>
<tr>
<td>$^4I_{13/2}$: $-0.993[^4I]$</td>
<td>$^4I_{11/2}$: $0.133[^4G] - 0.129[^2H] + 0.442[^2H'] + 0.875[^4I]$</td>
</tr>
<tr>
<td>$^4I_{15/2}$: $0.993[^4I] + 0.118[^2K]$</td>
<td>$^4I_{9/2}$: $-0.416[^4F] - 0.342[^2G] + 0.276[^2G'] - 0.219[^2H]$</td>
</tr>
<tr>
<td></td>
<td>$+ 0.438[^2H'] + 0.627[^4I]$</td>
</tr>
</tbody>
</table>
Here, $\langle ^4I_J \rangle$ is the wave function of the spin–orbit perturbed state and $[^4I]$ is the wave function of the unperturbed state; a state indicated by '' is a state with the same L and S but higher energy. Er(III), the heavier lanthanide ion, experiences a larger spin–orbit coupling, as can be seen from the graph as well as composition of the levels above. It can further be inferred that spin–orbit coupling leads to a splitting of the levels into terms with different J values. Diagonalisation of the energy matrix $\langle P'\alpha L'S'|L'SJ|P'\alpha L'S'J' \rangle$ allows estimation of the energies of the split terms (Equation 1.23).

$$\langle P'\alpha L'S'|\sum_{i}^{\xi(r)}s_{i}|P'\alpha L'S'J' \rangle = (-1)^{L+S+J}\sqrt{(2l+1)(l+1)}\delta_{JJ'} \times \left\{ \begin{array}{ccc} L & S & J \\ S' & L' & 1 \end{array} \right\} \langle P'\alpha L'S||V^{11}||P'\alpha L'S' \rangle$$

(1.23)

δ_{ij} are the Kronecker delta symbols, for which $\delta_{ij}=0$ for $i \neq j$ and $\delta_{ij}=1$ for $i=j$. α stands for all additional quantum numbers which describe the initial and final states of P'. The doubly reduced matrix elements $\langle P'\alpha L'S||V^{11}||P'\alpha L'S' \rangle$, containing the spin–orbit operator V^{11}, are tabulated [34]. The term between curly brackets is the six-j symbol, which describes the coupling of three momenta, in this case L, S and J. Online calculators are available to determine these, or they are tabulated [35]. From the 6-j symbol selection rules arise, as it is only non-zero when:

- $\Delta S = 0, \pm 1$
- $\Delta L = 0, \pm 1$
- $S' + S \geq 1$
- $L' + L \geq 1$
- $\Delta J = 0$

The energy of each term with respect to the barycentre of the parent term ^{2S+1}L can be approximated by Equation 1.24.

$$E_J = \frac{1}{2}\lambda[J(J+1) - L(L+1) - S(S+1)]$$

(1.24)

Using this equation, it is possible to estimate that the 3H_5 energy level of Pr$^{3+}$ ($4f^2$) will be located approximately 370 cm$^{-1}$ or -1λ below the barycentre of the 3H level, while the 3H_6 will be 6λ or 2220 cm$^{-1}$ above and the 3H_4 level -5λ or 1850 cm$^{-1}$ below [16]. From Equation 1.24 it can further be concluded that the energy gap ΔE between two adjacent levels with $J=J+1$ is approximated by Landé’s interval rule (see also Fig. 1.3), given in Equation 1.25.

$$\Delta E = \lambda J'$$

(1.25)

Landé’s interval rule is only strictly obeyed in the case of strong LS coupling and is only approximated in lanthanides, where intermediate coupling, consisting of interaction of levels with the same J but different L and S, is more correct. As a consequence, the magnitude of the interval ΔE determined through Equation 1.25 is usually more accurate for the lower energy levels of the lighter lanthanides. Nonetheless, a good approximation between the experimentally observed gaps and the gaps calculated by Landé’s rule is
usually seen, especially for ground-state multiplets. In the case of Pr$^{3+}$ the free ion energy levels for 3H_4, 3H_5 and 3H_6 are located at 0, 2152 and 4389 cm$^{-1}$, respectively [16], leading to ΔE values of 2152 and 2237 cm$^{-1}$ between $J=4$ and 5 and $J=5$ and 6, which reasonably approximate the values of 1850 and 2220 cm$^{-1}$ obtained through Equation 1.25.

1.3.3 Crystal Field or Stark Effects

When lanthanide ions are in inorganic lattices or compounds in general, in addition to the Coulomb interactions and the spin–orbit coupling, each electron i also feels the effect of the crystal field generated by the ligands surrounding the metal ion, in analogy to the effect first described by Stark of an electric field on the lines of the hydrogen spectrum [36]. This perturbation lifts the $2J+1$ degeneracy and generates new levels with M_J quantum numbers. Since a potential is generated by the electrons of the N ligands, which is felt by the electrons of the lanthanide ions, the Hamiltonian can be defined by Equation 1.26.

$$H_{cf} = -e \sum_{i=1}^{N} V(r_i)$$

e is the elementary charge, $V(r_i)$ is the potential felt by electron i and r_i its position. Following the same reasoning utilised to derive Equations 1.6 and 1.12 one can express the Hamiltonian as a function of the crystal field parameters B_{q}^{k}, which are related to the spherical harmonics Y_{q}^{k}, as shown in Equation 1.27 [37].

$$H_{cf} = \sum_{i,j,k} (B_{q}^{k})(C_{q}^{k})$$

The relationships between B_{q}^{k} and Y_{q}^{k} are shown in Equation 1.28.

$$B_{0}^{k} = \int_{0}^{\infty} R_{nl}^{2}(r) r^{k} dr \sqrt{\frac{4\pi}{2k+1}} Y_{0}^{k} \sum_{L} \frac{Z_{L} e^{2}}{R_{L}^{k+1}}$$

$$B_{q}^{k} = \int_{0}^{\infty} R_{nl}^{2}(r) r^{k} dr \sqrt{\frac{4\pi}{2k+1}} Re Y_{q}^{k} \sum_{L} \frac{Z_{L} e^{2}}{R_{L}^{k+1}}$$

$$B_{q}^{k} = \int_{0}^{\infty} R_{nl}^{2}(r) r^{k} dr \sqrt{\frac{4\pi}{2k+1}} Im Y_{q}^{k} \sum_{L} \frac{Z_{L} e^{2}}{R_{L}^{k+1}}$$

L are the ligands responsible for the crystal field at a distance R_{L}, Z their charge and e the elementary charge. Often, instead of B_{q}^{k}, the equivalent structural parameters A_{q}^{k} are utilised as shown below.

$$B_{q}^{k} = a \times A_{q}^{k}(r^{k})$$
is a constant for each B_k^q and A_k^q pair [29], and $\langle r^k \rangle$ represents the average or expectation value of r^k, where r is the nucleus–electron distance of the lanthanide ion, given by

$$\langle r^k \rangle = \int_0^\infty R_{nl}^2(r)r^k dr$$

(1.30)

Tabulated values of $\langle r^k \rangle$ for all Ln$^{3+}$ are summarised in Table 1.5.

$(C_k^q)_i$ are the related tensor operators, which transform as the spherical harmonics and are given by

$$(C_k^q)_i = \sqrt{\frac{4\pi}{2k+1}} y_k^q(i)$$

(1.31)

1.3.4 The Crystal Field Parameters B_k^q and Symmetry

The integer k runs in the range 0–7 and the parameters containing even values of k are responsible for the crystal field splitting, while those with odd values influence the intensity of the induced electronic dipole transitions (see Section 1.3.10 for more details) [8,9]. q is also an integer and its values depend on the symmetry of the crystal field and the magnitude of k, since $|q| \leq k$. The possible combinations of k and q for the crystal field parameters are given in Table 1.6 and the symmetry elements contained in the crystal field parameters are summarised in Table 1.7.

The B_0^0 coefficient is notably absent from these tables; since it is spherically symmetric, it acts equally on all f^N configurations. In energy level calculations it can therefore be incorporated into all spherically symmetric interactions and does not need to be considered individually.