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Universidad de Oviedo

Laboratorio de Compuestos

Organometálicos y Catálisis

Red ORFEO-CINQA - Centro de

Innovación en Quı́mica

Avanzada

IUQOEM, Facultad de Quı́mica

C/Julián Claveŕıa 8
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VéroniqueMichelet

PSL Research University

Chimie ParisTech - CNRS

Institut de Recherche de Chimie

Paris

11 rue P. et M. Curie

75005 Paris Cedex 05

France

Carmen Nájera
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XVII

Preface

Alkyne is a basic functionality with “relatively low thermodynamic reactivities”

in the classical text of organic chemistry. These classical alkyne reactions often

require stoichiometric reagents, which result in low efficiency in chemical

syntheses, and “harsh” reaction conditions that cannot tolerate the presence

of the various “more reactive functional groups”. The pursuit of synthetic

efficiency combined with the recent emphasis of “future sustainability and Green

Chemistry,” and the pressing desire for new chemical tools in synthetic biology

inspire chemists to uncover new reactions that are catalytic in nature (rather than

consuming stoichiometric reagents), occur under ambient conditions (including

milder temperature and aqueous media), can tolerate various functional groups,

and render “dial-up” reactivity when needed. Alkynes provide the most ideal can-

didate for such features. While being relatively inert under “classical” conditions,

alkynes can be readily “activated” selectively, in the presence of other functional

groups and under mild conditions, via transition-metal catalysis through either

selective alkyne carbon-carbon triple bond reactions or terminal alkyne C-H

bond reactions. Such a unique reactivity allow alkynes to be embedded and

be “dialed-up” whenever needed. For the past few decades, modern alkyne

chemistry has thus been developed rapidly to feature these characteristics. These

developments further focus on atom-economic transformations where minimal

or no theoretical by-products are formed. Furthermore, many of these catalytic

transformations are orthogonal to biological conditions. These modern catalytic

alkyne reactions are much more resource-, time-, and manpower-efficient, and

provide an alternative to classical stoichiometric alkyne chemistry. This book

comprises a collection of contributions from leading experts and covers various

modern catalytic reactions of alkynes. We hope that this focused book will be

very helpful not only to students and researchers in chemistry but also to those in

material and biological studies and will provide themwith tools and opportunities

unavailable with classical alkyne chemistry.

Stanford Barry M. Trost

Montreal Chao-Jun Li

August 2014
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1

Introduction

Chao-Jun Li and Barry M. Trost

1.1

History of Alkynes

Alkyne is one of the fundamental functional groups that established the foun-

dation of organic chemistry [1]. The smallest member of this family, acetylene,

was first discovered in 1836 by Edmund Davy [2]. It was rediscovered and

named “acetylene” by Marcellin Berthelot in 1860 by passing vapors of organic

compounds through a red-hot tube or sparking electricity through a mixture

of cyanogen and hydrogen gas. Acetylene is a moderately common chemical

in the universe [3], often in the atmosphere of gas giants. In 1862, Friedrich

Wöhler discovered the generation of acetylene from the hydrolysis of calcium

carbide (Equation 1.1). Acetylene produced by this reaction was the main source

of organic chemicals in the coal-based chemical industry era. When petroleum

replaced coal as the chief source of carbon in the 1950s, partial combustion of

methane (Equation 1.2) or formation as a side product of hydrocarbon cracking

became the prevalent industrial manufacturing processes for acetylene. The

next member of the family, propyne, is also mainly prepared by the thermal

cracking of hydrocarbons. The first naturally occurring acetylic compound,

dehydromatricaria ester (1), was isolated in 1826 [4] from an Artemisia species.

Well over 1000 alkyne-containing natural products have been isolated since

then, among which many are polyyne-containing natural products isolated from

plants, fungi, bacteria, marine sponges, and corals [5].

CaC2 + H2O HH + Ca(OH)2
(1.1)

2CH4 + (3/2)O2 HH + 3H2O (1.2)

OH3CO

CH3

Dehydromatricaria ester (1)

Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations, First Edition.
Edited by Barry M. Trost and Chao-Jun Li.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.



2 1 Introduction

Thehighermembers of alkynes are generally derived from the smaller homologs

via alkyne homologation processes of the terminal alkynes (see Equation 1.8,

below), while some alkynes are generated through elimination reactions with

organic halides under basic conditions (Equation 1.3) [1]. A search in Sci Finder

shows that >70 000 terminal alkynes and >10 000 internal alkynes are now

commercially available from various sources.

R
R′

X

X
R

R′
X X B−

R′Ror (1.3)

1.2

Structure and Properties of Alkynes

Alkynes contain a tripe bond, composed of aσ-covalent bond formed from two sp-

hybridized carbons and two π-bonds resulted from the overlapping of two orthog-

onal unhybridized p-orbitals on each carbon (2) [1]. Consequently, alkynes are
generally rod-like. Cyclic alkynes are less common with benzyne as an important

reactive intermediate in organic chemistry [6]. Acetylene is linear and intrinsically

unstable under pressure due to its high compressibility as well as its propensity

to undergo exothermic self addition reactions. Consequently, acetylene itself can

explode violently at high pressure and the safe limit for acetylene is 103 kPa.Thus,

acetylene is generally shipped in acetone or dimethyl formamide (DMF) solutions

or contained in a gas cylinder with porous filling [7]. Acetylene has been used as

a burning fuel and for illumination purposes in the late nineteenth century and

early twentieth century [8]. In modern times, alkynes have found a wide range

of applications ranging from organic electronic materials, metal-organic frame

works (MOF), pharmaceutical agents, and others [9]. The linearity of the alkyne

creates strain when an alkyne is part of a ring [10]. In spite of this fact, cyclopen-

tyne, cyclohexyne, and cycloheptyne can be generated at least fleetingly, their

existence being confirmed by in situ trapping, notably by 1,3-dipolar cycload-

ditions [11]. Cyclooctyne is still highly strained but has sufficient stability to be

isolated and used in click chemistry to study biological processes [12].

R R′

2

1.3

Classical Reactions of Alkynes

The higher degree of unsaturation of alkynes compared to alkenes increases their

reactivity toward addition to both alkenes and alkynes. In particular, virtually

all additions of HX and RX to alkynes are exothermic. Consequently, these



1.3 Classical Reactions of Alkynes 3

stoichiometric addition reactions have been the basis of most reactions in the

classical alkyne chemistry (Equation 1.4) [1]. These classical alkyne addition

reactions include the additions of hydrogen, halogens, water, hydrogen halides,

halohydrins, hydroborations, and others. With a stoichiometric amount of a

strong oxidizing reagent such as KMnO4, the addition may be followed by C–C

cleavage to give the corresponding acids (Equation 1.5). Less reactive reagents

can also be added through the use of a transition-metal catalyst. The unique

electronic character of alkynes wherein their HOMO–LUMO gap is rather small

makes them especially effective as coordinators to transition metals. Thus, they

function as chemoselective functional groups for catalytic transformations. For

example, catalytic addition of dihydrogen to alkynes can proceed to either alkenes

or alkanes depending on the choice of the catalysts (Equation 1.6) [13]. Further,

the hydroalumination [14], hydrosilylation [15], hydrostannylation [16], as well

as carboalumination [17] represent important modern advances of the alkyne

addition reactions.

RR

X Y

YR

RX

RR

YX

+

X Y: halogens, HX, HOH, HOCl, HBR2, etc.

(1.4)

RR
KMnO4

RCO2H + HO2CR′ (1.5)

RR
H2

cat. M RR

HH H2

cat. M
R-CH2CH2-R (1.6)

A second class of reactions pertains to terminal alkynes. Due to the increased

s-character, the alkynyl C–Hbonds (pK a = 25) aremuchmore acidic than the cor-

responding alkenyl C–H bonds (pK a = 43) and alkyl C–H bonds (pK a > 50) [18].

Thus, base-promoted additions of terminal alkynes to carbonyl compounds can

occur under different basic conditions, a process discovered over a century ago

(Equation 1.7). Treatment of terminal alkynes with bases such as lithium amide,

butyllithium, or Grignard or zinc reagents generatesmetal acetylides stoichiomet-

rically, which can then react with different carbon-based electrophiles to produce

various higher alkyne homologs in the classical synthetic chemistry (Equation 1.8)

[1]. Such processes can be catalyzed to permit deprotonation with much weaker

bases as in the coupling with aryl halides under Pd/Cu catalysis (Sonogashira reac-

tion, see Equation 1.13).

R H +
R′ R′′

O Base
R

R′
R′′

OH
(1.7)

R + B− RH

E+

R E (1.8)
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1.4

Modern Reactions

Although the classical stoichiometric addition reactions, alkyne cleavage reac-

tions, and homologation reactions have established the foundation of alkyne

chemistry, a rebirth of interest derives from recent concerns regarding societal

and ecological sustainability under the mantra of Green Chemistry [19], which

emphasizes chemical transformations that are more atom economic [20] and

chemoselective, thereby minimizing the use of protecting groups [21]. Further-

more, rapid developments in the field of chemical biology demand chemical

transformations that are orthogonal to biological conditions and functionalities

in bioorganisms and which can work efficiently under both in vitro and in vivo

biological conditions [22]. Alkynes, being both good π-donors and π-acceptors
for transition metals as well as being energy rich, can be effectively activated

by a catalyst thereby lowering the energy barrier to proceed to the more stable

products while being unreactive toward various biological elements. At the same

time, they can be chemoselectively activated in the presence of most typical

functional groups (e.g., hydroxyl and carbonyl groups as well as alkenes) and in

protic solvents including water [23]. Such triggered reactivities are orthogonal

to the classical reactivities and can be tuned to target specific desired reaction

sites while maintaining tolerance toward other functionalities through the

discrete choice of catalyst, which will greatly simplify the syntheses of complex

compounds and allow direct modifications of biomolecules in their native states

and ambient environment. Modern developments, in view of atom economy,

can be represented by three major classes: (i) catalytic cyclization reactions, (ii)

catalytic homologations of terminal alkynes, and (iii) catalytic isomerization

reactions of alkyne.

Although alkyne oligomerization was known at a high temperature since the

late nineteenth century [2], various cyclization reactions of alkynes catalyzed by

transition metals are among the most important developments in modern alkyne

chemistry.Themost well-known examples include the transition-metal-catalyzed

[2 + 2 + 2] cycloaddition reactions (Equation 1.9) [24], the Pauson–Khand-type

reaction of alkyne–alkene–carbon monoxide (Equation 1.10) [25], the enyne

cyclization reactions (Equation 1.11) [26], and the 1,3-dipolar cycloaddition such

as that with azides (the archetypical Click reaction) (Equation 1.12) [27].

+
cat.

(1.9)

+ + CO

cat.

O

(1.10)
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cat.

cat.
(1.11)

R + N3 R′ N

NN

R R′
cat.

(1.12)

The second major class of modern alkyne reactions is the catalytic transfor-

mation of terminal alkyne C–H bonds. Although homologation of terminal

alkynes through the reactions of metal acetylides with organic halide is a classical

alkyne reaction, such a reaction cannot be applied to aryl and vinyl halides due

to their inert nature in nucleophilic substitution reactions. The development of

catalytic coupling of terminal alkynes with aryl and vinyl halides (the Sonogashira

reaction) has overcome this classical challenge and opened up a new reactivity

mode in alkyne homologation (Equation 1.13) [28]. Complimentary to the

classical Favorskii reaction (Equation 1.7), the modern development of catalytic

direct addition of terminal alkynes to aldehydes provides great opportunities in

generating optically active propargyl alcohols (Equation 1.14) [29]. The catalytic

direct additions of terminal alkynes to imines (and derivatives) (Equation 1.15)

[30] and conjugate addition to unsaturated carbonyl compounds (Equation 1.16)

[31] represent other major achievements in modern alkyne reactions. On the

other hand, the catalytic oxidative dimerization (Glaser–Hay coupling) [32] and

simple alkyne dimerization (Equation 1.17) [33] which date from the late 1800s

have become increasingly important in modern synthetic chemistry.

R X Ar+ R Ar
cat.

−HX
(1.13)

R +
R′ R′′

O

R′ R′′

OH

R

cat.
(1.14)

R +
R′ R′′

NR′′′

R′ R′′

NHR′′′

R

cat.
(1.15)

R +

R

O

R′
R′

O

cat.
(1.16)
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R R+
cat.

[O]
RR

R

R
+

R

R

(1.17)

Two additional processes that have much unrealized potential in synthetic

chemistry are the alkyne disproportionation (metathesis) and the alkyne redox

isomerization reactions. Like the alkene metathesis, the catalytic alkyne–alkyne

metathesis reaction retains all functionalities by switching the groups attached

to the alkynes (Equation 1.18) [34]. Another unique atom-economic reaction

of alkynes that is currently under-utilized but will have a great potential for

future development is the “alkyne-zipper reaction” (Equation 1.19) [35]. Such

reactions shift readily accessible internal alkyne triple bond to terminal positions

for further homologations. A different type of “retaining functionality is found in

the redox isomerization of propargyl alcohols to generate conjugated ketones”

(Equation 1.20) [36].

R R R′ R′+ R R′ R R′+
cat.

(1.18)

R

n
cat.

nR (1.19)

R′
R

OH
cat.

R R′

O

(1.20)

1.5

Conclusion

With the recent emphasis on sustainability and the ever increasing needs in syn-

thetic efficiency, alkynes provide a truly unique functionality that is orthogonal to

other functional groups, biological conditions, and ambient environment, yet can

be selectively triggered to occur in a specific reaction mode with the absence of

protecting groups or anhydrous conditions. Such reactions will have great poten-

tial to simplify synthetic chemistry and will find wide applications in chemical

biology and organic materials. This book, comprising experts on related subjects,

provides an overview of developments of modern alkyne reactions. Due to the

limit of space, many other important developments in modern alkyne chemistry
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such as various catalytic conversions of alkyne triple bonds [37] and alkyne poly-

merizations [38] have not been covered in this book.
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