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Preface to the Second Edition

The first edition of this book was published in 1998 and we were pleased that it was well received. It has
been used in over 25 countries as a text for courses in physics, chemistry and engineering, and it has been
translated into French, Italian, Japanese, Portuguese and Russian. Thermodynamics as formulated in the
twentieth century, what we chose to call ‘Modern Thermodynamics’ is a theory of irreversible processes in
contrast to nineteenth century thermodynamics, which is a theory of states. In the latter, thermodynamics is
confined to initial and final states, the processes that transform a state are not central to the theory; they are
treated as another subject, ‘kinetics’. In Modern Thermodynamics, however, entropy-increasing irreversible
processes are central to the theory. In it, we find additional tools, such as the rate of entropy production, to
characterize and analyze nonequilibrium systems, and new results, such as the Onsager reciprocal relations,
that are applicable to the thermoelectric effect, thermal diffusion and other cross-effects.

The context in which thermodynamics is being taught is rapidly changing. Therefore we have added new
sections to chapters, which show more applications of the subject. The following is a partial list. In Chapter 2
we have included ‘energy flows’ in turbines and jet engines, and basics of renewable energies such as solar and
wind energy. We have also included a description of the hurricane as a heat engine in Chapter 3. Chapter 11
now has sections on nonequilibrium electromagnetic radiation. In Chapter 19, we have included rates of
entropy production in dissipative structures. In response to suggestions by users of this text, we have included
a chapter on Statistical Thermodynamics, which makes this text self-contained by the inclusion of derivations
of heat capacities of solids and Planck’s law of blackbody radiation. Several other changes have been made
to improve the presentation of the concepts.

Entropy and entropy-producing irreversible processes are generally thought of as agents of disorder. A
central message of this book is that, under far-from-equilibrium conditions, irreversible processes are, in
fact, the drivers of self-organization and order we see all around us in Nature. These emergent structures,
called dissipative structures, are distinct from machines and are a good thermodynamic basis on which we
may begin to build a theory of biological organisms. It is an important direction for future developments in
thermodynamics. We have included a section on this topic in the final chapter.





Preface to the First Edition
Why Thermodynamics?

I

Since half a century ago, our view of Nature has changed drastically. Classical science emphasized equilibrium
and stability. Now we see fluctuations, instability, evolutionary processes on all levels from chemistry and
biology to cosmology. Everywhere we observe irreversible processes in which time symmetry is broken. The
distinction between reversible and irreversible processes was first introduced in thermodynamics through the
concept of ‘entropy’, the arrow of time, as Arthur Eddington called it. Therefore our new view of Nature leads
to an increased interest in thermodynamics. Unfortunately, most introductory texts are limited to the study of
equilibrium states, restricting thermodynamics to idealized, infinitely slow reversible processes. The student
does not see the relationship between irreversible processes that naturally occur, such as chemical reactions
and heat conduction, and the rate of increase of entropy. In this text, we present a modern formulation of
thermodynamics in which the relation between the rate of increase of entropy and irreversible processes is
made clear from the very outset. Equilibrium remains an interesting field of inquiry but in the present state
of science, it appears essential to include irreversible processes as well.

It is the aim of this book to give a readable introduction to present-day thermodynamics, starting with
its historical roots as associated with heat engines but including also the thermodynamic description of far-
from-equilibrium situations. As is well known today, far-from-equilibrium situations lead to new space–time
structures. For this reason the restriction to equilibrium situations hides, in our opinion, some essential features
of the behavior of matter and energy. An example is the role of fluctuations. The atomic structure of matter
leads to fluctuations. However, at equilibrium or near equilibrium, these fluctuations are inconsequential.

Indeed a characteristic feature of equilibrium thermodynamics is the existence of extremum principles.
For isolated systems entropy increases and is therefore maximum at equilibrium. In other situations (such
as constant temperature) there exist functions called thermodynamic potentials which are also extrema (that
is maximum or minimum) at equilibrium. This has important consequences. A fluctuation that leads to a
temporal deviation from equilibrium is followed by a response that brings back the system to the extremum
of the thermodynamic potential. The equilibrium world is also a stable world. This is no longer so in far-
from-equilibrium situations. Here fluctuations may be amplified by irreversible dissipative processes and lead
to new space–time structures which one of us (I. Prigogine) has called ‘dissipative structures’ to distinguish
them from ‘equilibrium’ structures such as crystals. Therefore distance from equilibrium becomes a parameter
somewhat similar to temperature. When we lower the temperature, we go from the gaseous state to a liquid
and then a solid. As we shall see, here the variety is even greater. Take the example of chemical reactions.
Increasing the distance from equilibrium we may obtain in succession oscillatory reactions, new spatial
periodic structures and chaotic situations in which the time behavior becomes so irregular that initially close
trajectories diverge exponentially.

One aspect is common to all these nonequilibrium situations, the appearance of long-range coherence.
Macroscopically distinct parts become correlated. This is in contrast to equilibrium situations where the range
of correlations is determined by short-range intermolecular forces. As a result, situations that are impossible to
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realize at equilibrium become possible in far-from-equilibrium situations. This leads to important applications
in a variety of fields. We can produce new materials in nonequilibrium situations where we escape from the
restrictions imposed by the phase rule. Also, nonequilibrium structures appear at all levels in biology. We
give some simple examples in Chapters 19 and the postface. It is now generally admitted that biological
evolution is the combined result of Darwin’s natural selection as well as of self-organization, which results
from irreversible processes.

Since Ludwig Boltzmann (1844–1906) introduced a statistical definition of entropy in 1872, entropy
is associated with disorder. The increase of entropy is then described as an increase of disorder, as the
destruction of any coherence that may be present in the initial state. This has unfortunately led to the view that
the consequences of the Second Law are self-evident, are trivial. This is, however, not true even for equilibrium
thermodynamics, which leads to highly nontrivial predictions. Anyway, equilibrium thermodynamics covers
only a small fraction of our everyday experience. We now understand that we cannot describe Nature around
us without an appeal to nonequilibrium situations. The biosphere is maintained in nonequilibrium through
the flow of energy coming from the Sun and this flow is itself the result of the nonequilibrium situation of
our present state of the universe.

It is true that the information obtained from thermodynamics both for equilibrium and nonequilibrium
situations is limited to a few general statements. We have to supplement them by the equation of state at equi-
librium or the rate laws, such as chemical reaction rates. Still the information we obtain from thermodynamics
is quite valuable precisely because of its generality.

II

Our book is subdivided into five parts. The first, Chapters 1 to 4, deals with the basic principles. The systems
considered in thermodynamics are large systems (the number of particles N is a typical Avogadro number).
Such systems are described by two types of variables, variables such as pressure or temperature, which
are independent of the size of the system and are called ‘intensive’ variables, and variables such as the total
energy, which are proportional to the number of particles (‘extensive variables’). Historically thermodynamics
started with empirical observations concerning the relation between these variables (e.g. the relation between
pressure and volume). This is the main subject of Chapter 1. However, the two conceptual innovations of
thermodynamics are the formulation of the ‘First Law’ expressing conservation of energy (Chapter 2) and of
the ‘Second Law’ introducing entropy (Chapter 3).

Ignis mutat res. Fire transforms matter; fire leads to chemical reactions, to processes such as melting and
evaporation. Fire makes fuel burn and release heat. Out of all this common knowledge, nineteenth century
science concentrated on the single fact that combustion produces heat and that heat may lead to an increase
in volume; as a result, combustion produces work. Fire leads, therefore, to a new kind of machine, the heat
engine, the technological innovation on which industrial society has been founded.

What is then the link between ‘heat’ and ‘work’? This question was at the origin of the formulation of the
principle of energy conservation. Heat is of the same nature as energy. In the heat engine, heat is transferred
into work but energy is conserved.

However, there was more. In 1811 Baron Jean-Joseph Fourier, the Prefect of Isère, won the prize of the
French Academy of Sciences for his mathematical description of the propagation of heat in solids. The result
stated by Fourier was surprisingly simple and elegant: heat flow is proportional to the gradient of temperature.
It is remarkable that this simple law applies to matter, whether its state is solid, liquid or gaseous. Moreover,
it remains valid whatever the chemical composition of the body, whether it is iron or gold. It is only the
coefficient of proportionality between the heat flow and the gradient of temperature that is specific to each
substance.
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Fourier’s law was the first example describing an irreversible process. There is a privileged direction of
time as heat flows according to Fourier’s law, from higher to lower temperature. This is in contrast with the
laws of Newtonian dynamics in which the past and future play the same role (time enters only in Newton’s law
through a second derivative, so Newton’s law is invariant in respect to time inversion). As already mentioned,
it is the Second Law of thermodynamics that expresses the difference between ‘reversible’ and irreversible
processes through the introduction of entropy. Irreversible processes produce entropy.

The history of the two principles of thermodynamics is a most curious one. Born in the middle of
technological questions, they acquired rapidly a cosmological status. Let us indeed state the two principles
as formulated by Rudolph Clausius (1822–1888) in the year 1865:

The energy of the universe is constant.
The entropy of the universe approaches a maximum.

It was the first evolutionary formulation of cosmology. This was a revolutionary statement as the existence
of irreversible processes (and therefore of entropy) conflicts with the time-reversible view of dynamics. Of
course, classical dynamics has been superseded by quantum theory and relativity. However, this conflict
remains because, in both quantum theory and relativity, the basic dynamical laws are time-reversible.

The traditional answer to this question is to emphasize that the systems considered in thermodynamics
are so complex (they contain a large number of interacting particles) that we are obliged to introduce
approximations. The Second Law of thermodynamics would have its roots in these approximations! Some
authors go so far as to state that entropy is only the expression of our ignorance!

Here again the recent extension of thermodynamics to situations far-from-equilibrium is essential. As we
mentioned already, irreversible processes lead then to new space–time structures. They therefore play a basic
constructive role. No life would be possible without irreversible processes (see Chapter 19). It seems absurd
to suggest that life would be the result of our approximations! We can therefore not deny the reality of entropy,
the very essence of an arrow of time in nature. We are the children of evolution and not its progenitors.

Questions regarding the relation between entropy and dynamics have received great attention recently but
they are far from simple. Not all dynamical processes require the concept of entropy. The motion of the Earth
around the Sun is an example in which irreversibility (such as friction due to tides) can be ignored and the
motion described by time symmetric equations. However, recent developments in nonlinear dynamics have
shown that such systems are exceptions. Most systems exhibit chaos and irreversible behavior. We begin to
be able to characterize the dynamical systems for which irreversibility is an essential feature leading to an
increase in entropy.

Let us go back to our book. In our presentation a central role is played by entropy production. As we show
in Chapter 15, entropy production can be expressed in terms of thermodynamic flows Ji and thermodynamic
forces Xi. An example is heat conduction where Ji is the flow of heat and Xi the gradient of temperature. We
can now distinguish three stages. At equilibrium both the flows and the forces vanish. This is the domain of
traditional thermodynamics. It is covered in Chapters 5 to 11. The reader will find many results familiar from
all textbooks on thermodynamics. However, some subjects neglected in most textbooks are treated here. An
example is thermodynamic stability theory, which plays an important role both at equilibrium and out from
equilibrium. This forms the second part of the book.

Thermodynamic theory of stability and fluctuation, which originated in the work of Gibbs, is the subject
of Chapters 12 to 14. Here, first we go through the classical theory of stability, as Gibbs formulated it,
which depends on thermodynamic potentials. We then discuss the theory of stability in terms of the modern
theory of entropy production, which is more general than the classical theory. This gives us the foundation
for the study of stability of nonequilibrium systems discussed in the later part of the book. We then turn to
the thermodynamic theory of fluctuations, which has its origin in Einstein’s famous formula that relates the
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probability of a fluctuation to a decrease in entropy. This theory also gives us the basic results that will later
lead us to Onsager’s reciprocal relations, discussed in Chapter 16.

The fourth part, Chapters 15 to 17, is devoted to the neighborhood of equilibrium, which is defined by
linear relations between flows and forces (such as realized in Fourier’s law). This is a well-explored field
dominated by Onsager’s reciprocity relations. Indeed in 1931, Lars Onsager discovered the first general
relations in nonequilibrium thermodynamics for the linear, near-equilibrium region. These are the famous
‘reciprocal relations’. In qualitative terms, they state that if a force, say ‘one’ (corresponding, for example,
to a temperature gradient), may influence a flux ‘two’ (for example a diffusion process), then force ‘two’ (a
concentration gradient) will also influence the flux ‘one’ (the heat flow).

The general nature of Onsager’s relations has to be emphasized. It is immaterial, for instance, whether the
irreversible processes take place in a gaseous, liquid or solid medium. The reciprocity expressions are valid
independently of any microscopic assumptions.

Reciprocal relations have been the first results in the thermodynamics of irreversible processes to indicate
that this was not some ill-defined no-man’s-land but a worthwhile subject of study whose fertility could be
compared with that of equilibrium thermodynamics. Equilibrium thermodynamics was an achievement of the
nineteenth century, nonequilibrium thermodynamics was developed in the twentieth century and Onsager’s
relations mark a crucial point in the shift of interest away from equilibrium toward nonequilbrium.

It is interesting to notice that now the flow of entropy, even close to equilibrium, irreversibility can no
longer be identified with the tendency to disorder. We shall give numerous examples in the text, but let us
already illustrate this conclusion in a simple situation corresponding to thermal diffusion. We take two boxes
connected by a cylinder, we heat one box and cool the other. Inside the box there is a mixture of two gases,
say hydrogen and nitrogen. We then observe that, at the steady state, the concentration of hydrogen is higher
in one box, of nitrogen in the other. Irreversible processes here cause the flow of heat to produce both disorder
(‘thermal motion’) and order (separation of the two components). We see that a nonequilibrium system may
evolve spontaneously to a state of increased complexity. This constructive role of irreversibility becomes ever
more striking in far-from-equilibrium situations to which we now turn.

The main novelty is that in far-from-equilibrium situations, which correspond to the third stages of
thermodynamics, there is in general no longer any extremum principle (Chapters 18 and 19). As a result,
fluctuations are no longer necessarily damped. Stability is no longer the consequence of the general laws
of physics. Fluctuations may grow and invade the whole system. As mentioned, we have called ‘dissipative
structures’ these new spatiotemporal organizations, which may emerge in far-from-equilibrium situations.
These dissipative structures correspond to a form of supramolecular coherence involving an immense number
of molecules. In far-from-equilibrium situations we begin to observe new properties of matter that are hidden
at equilibrium.

We already mentioned the constructive role of irreversibility and the appearance of long-range correlations
in far-from-equilibrium systems. Let us add also ‘unpredictability’ because the new nonequilibrium states
of matter appear at so-called bifurcation points where the system may in general ‘choose’ between various
states. We are far from the classical description of nature as an automaton.

One often speaks of ‘self-organization’. Indeed, as there are generally a multitude of dissipative structures
available, molecular fluctuations determine which one will be chosen. We begin to understand the enormous
variety of structures we observe in the natural world. Today the notion of dissipative structures and of self-
organization appear in a wide range of fields from astrophysics up to human sciences and the economy.
We want to quote a recent report to the European Communities due to C.K. Biebracher, G. Nicolis and
P. Schuster:

The maintenance of the organization in nature is not – and cannot be – achieved by central management;
order can only be maintained by self-organization. Self-organizing systems allow adaptation to the pre-
vailing environment, i.e., they react to changes in the environment with a thermodynamic response which
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makes the systems extraordinarily flexible and robust against perturbations of the outer conditions. We
want to point out the superiority of self-organizing systems over conventional human technology which
carefully avoids complexity and hierarchically manages nearly all technical processes. For instance, in
synthetic chemistry, different reaction steps are usually carefully separated from each other and contri-
butions from the diffusion of the reactants are avoided by stirring reactors. An entirely new technology
will have to be developed to tap the high guidance and regulation potential of self-organizing systems
for technical processes. The superiority of self-organizing systems is illustrated by biological systems
where complex products can be formed with unsurpassed accuracy, efficiency and speed.

(From C.F. Biebricher, G. Nicolis and P. Schuster, Self-Organization in the Physico-Chemical and Life
Sciences, 1994, Report on Review Studies, PSS 0396, Commission of the European Communities,
Director General for Science, Research and Development)

III

This book is aimed to be an introductory text. No previous familiarity with thermodynamics is assumed.
Interested readers are invited to consult more specialized texts. For this reason we have excluded a number
of interesting problems often associated with ‘extended thermodynamics’. These are the questions that deal
with strong gradients or with very long time scales when memory effects have to be included. Every theory
is based on idealizations, which have a limited domain of validity. In our presentation the assumption is that
at least local quantities such as temperature and pressure take well-defined values. More precisely this is
called the ‘local equilibrium assumption’, which is a reasonable approximation for the phenomena studied in
this book.

Science has no final form and is moving away from a static geometrical picture towards a description in
which evolution and history plays an essential role. For this new description of nature, thermodynamics is
basic. This is the message our book wants to transmit to the reader.
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Notes for Instructors

The first 11 chapters and Chapter 20 (statistical thermodynamics) are intended for a one-semester introductory
undergraduate course on modern thermodynamics for students in physics, chemistry and engineering. Not
all chapters are meant to be for all the three branches; the instructor may drop a few chapters to emphasize
others. Exercises in each chapter are chosen to illustrate applications of the subject in many areas. In the
current research environment, interdisciplinary research is becoming increasingly important. It is therefore
important to make the students aware of a wide variety of applications of thermodynamics at an early stage.

Chapters 12 to 19 are meant for an advanced undergraduate or a graduate course in thermodynamics.
For these chapters a good knowledge of vector calculus is assumed. These chapters do not include worked
examples. The exercises are designed to give the student a deeper understanding of the topics and practical
applications.

Throughout the text, the reader is encouraged to use Mathematica* or Maple† to do tedious calculations
or look at complex physicochemical situations. Appendix 1.2 in the first chapter introduces the reader to the
use of Mathematica.

[Supplementary Online Material]

Full solutions to exercises, PowerPoint slides of all figures, Data Tables and Answers to Exercises, are
available for instructors as PDF files at:

http://sites.google.com/site/modernthermodynamics/

These supplementary website files are password protected. Instructors can obtain the password by sending a
request to Professor Kondepudi at dilip@wfu.edu. The above website also contains other useful thermody-
namic information related to the book.

*Mathematica is the registered trademark of Wolfram Research Inc.
†Maple is the registered trademark of Waterloo Maple Inc.

http://sites.google.com/site/modernthermodynamics/
mailto:dilip@wfu.edu




List of Variables

Variables

a van der Waals constant
ak activity of k
A affinity
Ak affinity of reaction k
b van der Waals constant
cx, [x] concentration of x (mol L−1)
c0 standard state concentration
C heat capacity
Cm molar heat capacity
Cmp molar heat capacity at constant pressure
CmV molar heat capacity at constant volume
e electron charge
Ea activation energy
f fugacity
F Faraday constant
F Helmholtz energy
Fm molar Helmholtz energy
g acceleration due to gravity
G Gibbs free energy
Gm molar Gibbs (free) energy
ΔGf Gibbs (free) energy of formation
ΔG0

f standard Gibbs energy of formation
ΔGr Gibbs (free) energy of a reaction
ΔGfus enthalpy of fusion
ΔGvap enthalpy of vaporization
G‡ transition-state Gibbs energy
hT,p heat of reaction per unit 𝜉
h enthalpy density
H enthalpy
Hm molar enthalpy
Hmk partial molar enthalpy of k
ΔHf enthalpy of formation
ΔH0

f standard enthalpy of formation
ΔHr enthalpy of a reaction
ΔHfus enthalpy of fusion
ΔHvap enthalpy of vaporization

H‡ transition-state enthalpy
I electric current
Jk thermodynamic flow
k rate constant
kB Boltzmann constant
K(T) equilibrium constant at temperature T
Ki Henry’s constant of i
mk molality, concentration (in moles of

solute/kilogram of solvent)
m0 standard state molality
Mk molar mass of component k
nk concentration (mol m−3)
N molar amount of substance
Ñ number of molecules
Nk total molar amount of k
NA Avogadro constant
p0 standard state pressure
p total pressure
pc critical pressure
pk partial pressure of k
q molecular partition function
Q total partition function
Rkf forward rate of reaction k
Rkr reverse rate of reaction k
s(x) entropy density at x
S total entropy
Sm molar entropy
S‡ transition-state entropy
T temperature
Tb boiling point
Tc critical temperature
Tm melting point
u energy density
U total internal energy
Um total molar energy
𝜈 (d𝜉/dt) velocity of reaction or rate of conversion
V total volume



xxvi List of Variables

V voltage or potential difference
Vm molar volume
Vmc critical molar volume
Vmk partial molar volume of k

[x], cx concentration of x (mol L−1)
xk mole fraction of k
zk ion-number of k
Z compressibility factor

Greek letters

𝛼 isothermal compressibility
𝛽 Stefan–Boltzmann constant
𝜙 electrical potential
𝜙k osmotic coefficient of k
𝛾 ratio of molar heat capacities
𝛾 surface tension
𝛾k activity coefficient of
Γk general mobility k in a field
𝜇k chemical potential of k
𝜇0

k standard chemical potential of k
𝜇± mean activity coefficient

𝜈jk stoichiometric coefficients of reaction k
Π osmotic pressure
𝜌 density
Σ interfacial area
𝜉 extent of reaction
d𝜉/dt (v) velocity of reaction or rate of

conversion
𝜉k extent of reaction of reaction k
d𝜉k/dt (vk) velocity of reaction k or rate of

conversion k
𝜏k𝜓 interaction energy per mole of k due to

potential 𝜓
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