Snow avalanches can have highly destructive consequences in developed areas. Each year, avalanche catastrophes occur in mountain regions around the globe and cause unnecessary fatalities and severe damage to buildings and infrastructure. In some mountainous regions, especially in the European Alps, technical avalanche defence structures are built to increase the level of safety for inhabited areas; however, new infrastructure such as roads, railway lines and tourist facilities cause new risk potential in hazardous areas. As a result, the demand is increasing for technical avalanche protection solutions.

Avalanche defence structures and protection systems are used in most inhabited mountain regions worldwide. During the last decades, technical avalanche protection has evolved from a specialist field to an independent engineering branch that has gained importance in alpine countries such as Austria, Italy, France and Switzerland, as well as in other countries such as Canada, Iceland, Norway and USA.

This work is the first comprehensive, English-language overview of technical avalanche protection and establishes state-of-the-art best practices in the field. It covers the fundamentals of avalanche protection technology and includes plans, dimensions, construction and maintenance of defence structures. The editors have collaborated with an international team of experts from Austria, Canada, France, Iceland, Italy, Japan, Norway, Switzerland and USA to produce this landmark handbook.

Dipl.-Ing. Dr. Florian Rudolf-Miklau is an expert on torrent and avalanche control. In 2002 he became an advisor for technical protection and project financing at the Federal Ministry of Agriculture, Forestry, Environment and Water Management in Vienna. He is Chair of the Austrian standards committee ON-K.256 “Protection against natural hazards” and member of the advisory board of the INTERPRAEVENT research society as well as lecturer at the University of Natural Resources and Life Sciences and Vienna Technical University. He also acts as a court-certified expert.

Dipl.-Ing. Siegfried Sauermoser is director of the Tyrolean Section of the Forest Engineering Service in Torrent and Avalanche Control in Innsbruck, Austria. He has 12 years of work experience as project manager for avalanche barriers. He acts as lecturer at the University of Vienna, University of Innsbruck and University Center Svalbard in Spitzbergen, Norway. He is a juridical certified expert for torrent and avalanche protection structures and a member of the Austrian Board for Alpine Safety.

Arthur I. Mears, P.E., has a B.S. in Civil Engineering and an M.S. in Geology from the University of Colorado in Boulder, USA. Based in Gunnison, he founded Arthur I. Mears, P.E., Inc. in 1981, specializing in avalanche, rockfall and debris-flow analysis and mitigation. He has been a consultant for over 1000 projects in 9 states and 8 countries.
Edited by
Florian Rudolf-Miklau
Siegfried Sauermoser
Arthur I. Mears

The Technical
Avalanche Protection
Handbook
Edited by
Florian Rudolf-Miklau
Siegfried Sauermoser
Arthur I. Mears

The Technical Avalanche Protection Handbook

Ernst & Sohn
A Wiley Brand
Preface

Large, high-energy snow avalanches can have high destructive consequences in developed areas. Each year, avalanche catastrophes occur in many mountain regions around the globe. This causes a large number of fatalities and severe damage to buildings and infrastructure. In some mountain areas, especially in the European Alps, a high level of safety for settlement areas is attained by application of technical avalanche defense construction. Simultaneously, new risk potentials continue to emerge in mountain regions from building in endangered areas, the establishment of new roads and railway lines across the mountains and development of tourism (skiing, alpine resorts). These are sometimes located partially or entirely outside protected areas. Consequently the demand for technical avalanche protection in these regions is constantly increasing.

During the last decades technical avalanche protection has evolved – especially in the Alpine countries Austria, Switzerland, Italy and France as well as Norway, Iceland, USA and Canada – from a specialist field to a stand-alone engineering branch. Currently avalanche defense structures and protection systems are established in practically all inhabited mountain regions worldwide. With this engineering handbook the editors are able to provide the first comprehensive overview of the field of technical avalanche protection in the English language and establish a common state-of-the-art. The book is based on the German edition, which was published in 2011, and comprises all relevant facts on fundamentals of avalanche protection technology as well as of planning, dimensioning, construction and maintenance of defense structures.

Technical avalanche protection denotes structural measures (defense structures), which are predominantly applied to protect inhabited areas. In such areas frequent and/or large avalanches may occur and cause significant risks to humans and material assets. The structures may consist of steel, concrete, earth, rock or wood material. Planning of defense structures is based on an intensive analysis and assessment of avalanche hazards and risks. Structure design usually considers a design event, which takes into account avalanches with a certain probability of occurrence and the applicable mass and energy associated with this design event. An unusual aspect of design, construction and maintenance is the enormous force of impact by avalanches and the extreme environmental and climatic conditions (alpine high altitude areas, subarctic climate) to which the structures are exposed. The extreme terrain and climatic conditions at the construction sites also bring about extraordinary challenges to workers and engineers.

However, several decades of experience in avalanche protection engineering have demonstrated the limits and usefulness of structural avalanche defense systems. Alternatively new technologies were developed in the field of artificial avalanche release, supported by sophisticated methods of avalanche monitoring. One of the starting points for emerging new technologies was the large avalanche cycle in the Alps in 1999. The new methods can be combined with classical defense structures and applied together with other kinds of protection measures (e.g. avalanche warning, closure, evacuation) for the purpose of an integrated avalanche risk management
procedure. Temporary avalanche protection systems – in the wider sense of the term technical avalanche protection – are also comprehensively presented in this book.

Until recently the state-of-the-art of technical avalanche engineering was available in several normative documents; however most advances in this field result from empirical developments in engineering practice. The highest stage of development and standardization was reached in the field of snow supporting structures in the starting zone. The oldest and best established standard in this field is the Swiss guideline on ‘Defense structures in avalanche starting zones’ (in its current version 2007) [194], which represents one of the most important sources of this handbook. Recently in several European countries standardization processes took place which lead to the publication of normative documents, partially in order to adapt the Swiss Guideline to national framework conditions: for example France: Norme Française (1992) [219]; Iceland: Jóhannesson und Margreth [148]; Austria: ÖNORM-Regeln 24805 ff. [244–246]. In other countries such as Norway, USA, Canada or Japan still no specific national standards are available. One of the most important steps was the adaptation of norms to the regulation of the Eurocode (unified European standardization). This handbook includes a comprehensive overview of the relevant standards and guidelines of technical avalanche protection at the current status. The Eurocode refers to Swiss (SIA), Austrian (ON), German (DIN) and US standards.

In Chapter 1 the reader is introduced to the system of technical avalanche protection and its historical development based on a fundamental classification of protection measures. Chapter 2 deals with the fundamentals of avalanche formation and the criteria for frequency, magnitude and risk assessment. Subsequently Chapter 3 presents the physical principles of avalanche dynamics impact on objects and the numerical avalanche process models best established in engineering practice. Chapter 4 is dedicated to the system of hazard and risk mapping, based on hazard and risk assessment, and shows the planning processes for structural avalanche defense. The most important protection concepts and goals are also provided in Chapter 4 as well as criteria of a sustainable planning according to technical, economic and environmental principles. Chapter 5 provides a comprehensive and systematic overview of defense structures in the avalanche starting zone as well as the avalanche path and runout zone. All relevant, applicable and historic construction types are presented by technical description system sketches and photographs. The construction and dimensioning of avalanche defense structures, with special respect to supporting components, building material and geotechnical fundaments of foundation are dealt with in Chapter 6. This chapter also comprises all relevant information for dimensioning and technical calculation of required in engineering practice. Chapter 7 presents the fundamentals of construction works and maintenance for avalanche defense structures and with special respect to the Alpine environment. Details on construction methods, construction site infrastructure, transportation systems and construction equipment is included as well as the system of monitoring (inspection) and maintenance for avalanche defense structures over their useful life. Chapter 8 gives a comprehensive overview of the methods of building protection (object protection) in areas endangered by avalanches. Finally Chapter 9 comprises the fundamentals and technology of temporary avalanche protection by artificial release, avalanche warning and monitoring. In this chapter current
developments and best practice examples of artificial avalanche release technology from Switzerland and Austria were added (referring to the chapter in the German edition). Chapter 10 finally presents an international overview (table) of avalanche protection in the most endangered countries (based on the German edition).

During the writing of this handbook the editors were able to bring together an international team of leading experts in technical avalanche protection. Authors from Austria, Switzerland, USA, Norway, Canada, Iceland, Japan, France and Italy have directly contributed to this book or supported it with essential information. The book represents a sequel of publication in the field of natural hazard engineering in the framework of Wiley/Ernst & Sohn Berlin publishing house. The main purpose of this publication is to share specialized engineering knowledge and experience in avalanche protection among experts worldwide and contribute to more safety in mountain regions exposed to avalanche risks.

Special thanks go to the Federal Ministry of Agriculture, Forestry, Environment and Water Management in Vienna, the Austrian Service for Torrent and Avalanche Control, the Austrian Standards Institute, the WSL Institute for Snow and Avalanche Research SLF in Davos, the Tyrolean Avalanche Warning Service in Innsbruck, the Austrian Research Centre for Forests, the Austrian Meteorological Service, the Icelandic Meteorological Office (Reykjavík), the American Avalanche Association (AAA), the South East Alaska Avalanche Center (AAC) and the Canadian Avalanche Association CAA (Revelstoke), who have actively supported the creation and elaboration of this handbook. The publication of this handbook would not have been possible without the intensive translation work by DeAnn Cougler (Munich; MB eurocom international languages Vienna) and the critical review by Emily Procter (Bolzano) as well as the design work of Andreas Herbert (Innsbruck). We also thank the legion of colleagues, who have given technical advice and the companies in the field of avalanche protection, who have supported us by latest information on new technologies. Finally special appreciation goes to the team of Ernst & Sohn in Berlin, especially Claudia Ozimek and Ute-Marlen Günther, for the support, patience and engagement to bring avalanche protection technology to the global engineering community.

Vienna, Innsbruck and Gunnison, October 2014

Florian Rudolf-Miklau, Siegfried Sauermoser, and Art Mears
List of contributors

The editors

DI Dr. Florian Rudolf-Miklau
Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management
Austrian Service for Torrent and Avalanche Control
Marxergasse 2
1030 Vienna
Austria

DI Siegfried Sauermoser
Austrian Service for Torrent and Avalanche Control, Section Tyrol
Wilhelm-Greil-Str. 9
6020 Innsbruck
Austria

Arthur I. Mears
Arthur I. Mears, P.E., Inc.
555 County Road 16
Gunnison, CO 81230
U.S.A.

DI Matthias Granig
Austrian Service for Torrent and Avalanche Control
Staff Unit for Snow and Avalanches
Wilhelm-Greil-Str. 9
6020 Innsbruck
Austria

Dr. Robert Hofmann
State authorised and certified chartered engineer
Consulting engineer for structural engineering
Hochstraße 17/2
2380 Perchtoldsdorf
Austria

Dr. Karl Kleemayr
Federal Research and Training Centre for Forests, Natural Hazards and Landscape BFW
Institute for Natural Hazards
Rennweg 1
6020 Innsbruck
Austria

Dipl.-Bauring. ETH Stefan Margreth
WSL Institute for Snow and Avalanche Research SLF
Organisational Unit Snow Avalanches and Prevention Measures
Flüelastr. 11
7260 Davos Village
Switzerland

Mag. Michael Mölk
Austrian Service for Torrent and Avalanche Control
Staff Unit for Geology
Wilhelm-Greil-Str. 9
6020 Innsbruck
Austria

The authors

Dr. Karl Gabl
Austrian Central Institute for Meteorology and Geodynamics ZAMG
Branch office Innsbruck
Fürstenweg 180
6020 Innsbruck
Austria

PhD. Peter Gauer
Norwegian Geotechnical Institute NGI
Sognsveien 72
0806 Oslo
Norway
DI Patrick Nairz
Avalanche Warning Service of Tyrol
Tyrolean Provincial Government, Department for Civil Protection and Disaster Prevention
Eduard-Wallnöfer-Platz 3 (Landhaus 1)
A-6020 Innsbruck
Austria

DI Wolfgang Schilcher
Austrian Service for Torrent and Avalanche Control, Section Vorarlberg
Oberfeldweg 6
6700 Bludenz
Austria

DI Christoph Skolaut
Consulting Engineers Skolaut Naturraum
Herzog-Odilo-Straße 1/1
5310 Mondsee
Austria

DDI Dr. Jürgen Suda
alpininfra, consulting + engineering gmbh
Kuefsteingasse 15-19
1140 Vienna
Austria

Dipl.-Bauing. ETH Lukas Stoffel
WSL Institute for Snow and Avalanche Research SLF
Organisational Unit Snow Avalanches and Preventionntion Measures
Flüelastr. 11
7260 Davos Village
Switzerland

Dr. Markus Stoffel
University of Bern, Institute of Geological Sciences
DendroLab.ch
Baltzerstr. 1-3
3012 Bern
Switzerland

DI Gebhard Walter
Austrian Service for Torrent and Avalanche Control
Section Tyrol
Wilhelm-Greil-Str. 9
6020 Innsbruck
Austria

MSc Emily Simone Procter
European Academy of Bolzano EURAC, Institute of Mountain Emergency Medicine
Viale Druso, 1
39100 Bolzano
Italy

DI Arnold Kogelnig
Wyssen avalanche control AG
Reimmichlgasse 5
6020 Innsbruck
Austria

Mag. Roderich Urschler
SUFAG Snowbusiness GmbH
Hans-Maier-Strasse 9
6020 Innsbruck
Austria

Marco Larghi
Inauen Schätti
Tschachen 1
8762 Schwanden
Switzerland
The Contributors to the survey in chapter 10

Francois Rapin
National Research Institute of Science and Technology for Environment and Agriculture IRSTEA
Research Unit ADRET
BP 76
Domaine Universitaire
38402 St. Martin D’Heres Cedex
France

Bernhard Zenke
Bavarian Environment Agency
Unit 87 - Avalanche Warning Center, Avalanche Protection
Heßstr. 128
80797 Munich
Germany

Yasuo Ishii
Public Works Research Institute
Erosion and Sediment Research Group
Landslide Research Team
2-6-8, Nishiki-cho, Myoko-shi,
Niigata-ken, 944-0051
Japan

Dr. Rudolf Pollinger
Autonomous Province of Bolzano-Bozen
Department 30 – Flood Control
Cesare-Battisti-Straße 23
39100 Bozen
Italy

Krister Kristensen
Norwegian Geotechnical Institute NGI
P.O. Box. 3930 Ullevål Stadion
806 Oslo
Norway

Tomas Johannesson
Iceland Met Office
Veðurstofa Íslands
Bústaðavegi 7- 9
108 Reykjavík
Iceland

Pere Oller
Institut Cartogràfic i Geològic de Catalunya
ICGC Territorial Support Center (CST)
Pyrenees
Passeig Pompeu Fabra, 21
25620 Tremp
Spain

Chris Stethem
Stethem & Associates Ltd.
409, 8 Avenue
Canmore, AB T1W2E6
Canada
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Avalanche hazards</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Overview and terminology</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Avalanche hazards: historical and geographical relevance</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Technical avalanche defense: classification</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Classification scheme of defense measures and their effects</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Permanent technical avalanche protection (defense structures)</td>
<td>6</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Technical avalanche defense with temporary effects</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Avalanche disasters, development of avalanche defense: historical overview</td>
<td>10</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Chronicle of avalanche catastrophes</td>
<td>10</td>
</tr>
<tr>
<td>1.3.1.1</td>
<td>Avalanche disasters in the Alps</td>
<td>10</td>
</tr>
<tr>
<td>1.3.1.2</td>
<td>Avalanche disasters in other regions</td>
<td>12</td>
</tr>
<tr>
<td>1.4</td>
<td>History of avalanche defense</td>
<td>13</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Historical development in Europe</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Avalanches: evolution and impact</td>
<td>17</td>
</tr>
<tr>
<td>2.1</td>
<td>Characteristics of avalanches</td>
<td>17</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Definitions and classifications</td>
<td>17</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Spatial and temporal occurrence of avalanches</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Meteorological principles of avalanche evolution</td>
<td>19</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Weather conditions forming avalanches in the European Alps</td>
<td>19</td>
</tr>
<tr>
<td>2.2.1.1</td>
<td>General remarks</td>
<td>19</td>
</tr>
<tr>
<td>2.2.1.2</td>
<td>Northwestern (precipitation build up) area</td>
<td>20</td>
</tr>
<tr>
<td>2.2.1.3</td>
<td>Western weather conditions</td>
<td>21</td>
</tr>
<tr>
<td>2.2.1.4</td>
<td>South foehn situation</td>
<td>22</td>
</tr>
<tr>
<td>2.2.1.5</td>
<td>Occlusion from the North East – north-east location</td>
<td>23</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Weather conditions forming avalanches in North America (western ranges)</td>
<td>23</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Weather conditions forming avalanches in other mountain regions</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>Nivological principles of avalanche evolution</td>
<td>24</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Properties of material snow</td>
<td>24</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Genesis of snow</td>
<td>25</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Snow metamorphism</td>
<td>27</td>
</tr>
<tr>
<td>2.3.3.1</td>
<td>General remarks</td>
<td>27</td>
</tr>
<tr>
<td>2.3.3.2</td>
<td>Principles of snow metamorphosis</td>
<td>27</td>
</tr>
<tr>
<td>2.3.3.3</td>
<td>Initial metamorphism</td>
<td>28</td>
</tr>
<tr>
<td>2.3.3.4</td>
<td>Equilibrium growth metamorphism</td>
<td>28</td>
</tr>
<tr>
<td>2.3.3.5</td>
<td>Faceting</td>
<td>29</td>
</tr>
<tr>
<td>2.3.3.6</td>
<td>Melt-freeze metamorphism</td>
<td>30</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Snowpack</td>
<td>31</td>
</tr>
<tr>
<td>2.3.4.1</td>
<td>Formation of snowpack and layering</td>
<td>31</td>
</tr>
<tr>
<td>2.3.4.2</td>
<td>Movements and tensions in snow cover</td>
<td>31</td>
</tr>
</tbody>
</table>
2.3.4.3 Avalanche classification according to evolution ... 33
2.4 Frequency and magnitude of avalanche events .. 34
2.4.1 Criteria for frequency, magnitude and risk assessment 34
2.4.2 Frequency (recurrence) of avalanche events .. 37
2.4.3 Magnitude of avalanche events ... 37
2.4.4 Intensity of avalanche impact ... 38
2.5 Morphological principles of avalanche evolution ... 39
2.5.1 Avalanche catchment area .. 39
2.5.2 Avalanche starting zone ... 41
2.5.3 Avalanche path .. 45
2.5.4 Avalanche runout zone (deposition zone) .. 47
2.6 Avalanche protection forest ... 48
2.6.1 Effects of vegetation and forest on avalanche formation 48
2.6.2 Effects of avalanches on trees and forests .. 52

3 Avalanche dynamics: models and impact ... 55
3.1 Principles of avalanche dynamics ... 55
3.1.1 Physical principles ... 55
3.1.1.1 General remarks .. 55
3.1.1.2 Characteristic criteria of avalanche movement ... 55
3.1.1.3 Avalanche velocity ... 55
3.1.1.4 Model laws of avalanche movement ... 57
3.1.1.5 Mathematical models for avalanche dynamics .. 58
3.1.1.6 Constitutive law ... 59
3.1.2 Dynamics of flow and powder snow avalanches ... 60
3.1.2.1 Avalanche release .. 60
3.1.2.2 Movement of flow avalanches .. 60
3.1.2.3 Movement of powder snow avalanches .. 60
3.1.2.4 Movement of mixed-motion avalanches .. 62
3.1.2.5 Movement of wet snow avalanches and slush flows ... 63
3.2 Numerical avalanche models and simulation .. 64
3.2.1 Application of avalanche models ... 64
3.2.2 Principles and data for avalanche modelling ... 65
3.2.3 Avalanche model overview: classification ... 66
3.2.4 Statistical-topographical avalanche models .. 67
3.2.4.1 Alpha-beta model ... 67
3.2.4.2 Other statistical models .. 68
3.2.5 Physical-dynamic avalanche models ... 69
3.2.5.1 Voellmy-Salm model ... 69
3.2.5.2 AVAL-1D .. 71
3.2.5.3 RAMMS ... 74
3.2.5.4 SamosAT ... 74
3.2.5.5 Application of avalanche models in engineering practice 77
3.3 Avalanche action on objects (obstacles) ... 78
3.3.1 Dynamic avalanche action ... 78
3.3.1.1 Principles .. 78

XIV Contents
4 Avalanche hazard assessment and planning of protection measures

4.1 Avalanche hazard (risk) assessment and mapping 91
4.1.1 Model of hazard assessment and risk concept 91
4.1.2 Avalanche hazards and risks: definitions and quantification 91
4.1.2.1 Avalanche hazards and hazard scenarios .. 91
4.1.2.2 Avalanche damage and risk .. 95
4.1.3 Methods of hazard assessment ... 97
4.1.4 Avalanche risk assessment ... 99
4.2 Mapping of avalanche hazards and risks ... 100
4.2.1 Overview ... 100
4.2.2 Hazard (indication) maps ... 102
4.2.3 Hazard zone plans ... 105
4.2.4 Risk maps .. 109
4.3 Planning of avalanche defense structures .. 109
4.3.1 Principles of planning .. 109
4.3.2 Objectives of avalanche defense .. 113
4.3.2.1 Principles of protection objectives .. 113
4.3.2.2 Quantitative and risk-based protection objectives 115
4.3.3 Sectorial protection concepts ... 117
4.3.3.1 Principles .. 117
4.3.3.2 Protection concept for settlement areas .. 118
4.3.3.3 Protection concepts for traffic routes and supply lines 119
4.3.3.4 Protection concepts for ski areas ... 121
4.3.4 Planning process for technical avalanche defense measures 121
4.3.4.1 General planning procedures in avalanche defense 121
4.3.4.2 Design of avalanche defense structures .. 124

5 Structural avalanche protection: defense systems and construction types ... 127
5.1 Principles of structural avalanche defense .. 127
5.2 Structural avalanche defense in the starting zone 127
5.2.1 Overview and classification .. 127
5.2.2 Snow supporting structures: construction types 130
5.2.2.1 Protection effect of snow supporting structures 130
5.2.2.2 Classification .. 130
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.2</td>
<td>Design snow height</td>
<td>180</td>
</tr>
<tr>
<td>6.2.2.1</td>
<td>Methodology</td>
<td>180</td>
</tr>
<tr>
<td>6.2.2.2</td>
<td>Extreme snow height in Switzerland and Austria</td>
<td>180</td>
</tr>
<tr>
<td>6.2.2.3</td>
<td>Extreme snow height in USA and Canada</td>
<td>182</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Position of protected objects</td>
<td>182</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Static systems for avalanche defense structures</td>
<td>183</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Actions on snow supporting structures</td>
<td>184</td>
</tr>
<tr>
<td>6.2.5.1</td>
<td>Overview and classification</td>
<td>184</td>
</tr>
<tr>
<td>6.2.5.2</td>
<td>Snow pressure</td>
<td>185</td>
</tr>
<tr>
<td>6.2.5.3</td>
<td>End-effect loads</td>
<td>189</td>
</tr>
<tr>
<td>6.2.5.4</td>
<td>Resulting snow pressure and load arrangement</td>
<td>190</td>
</tr>
<tr>
<td>6.2.5.5</td>
<td>Snow pressure on grate</td>
<td>192</td>
</tr>
<tr>
<td>6.2.5.6</td>
<td>Snow load on slim components (structures)</td>
<td>194</td>
</tr>
<tr>
<td>6.2.5.7</td>
<td>Lateral loads</td>
<td>195</td>
</tr>
<tr>
<td>6.2.5.8</td>
<td>Dead weight</td>
<td>195</td>
</tr>
<tr>
<td>6.2.5.9</td>
<td>Wind load</td>
<td>195</td>
</tr>
<tr>
<td>6.2.5.10</td>
<td>Other actions</td>
<td>195</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Layout and configuration of snow supporting structures in the starting area</td>
<td>196</td>
</tr>
<tr>
<td>6.2.6.1</td>
<td>General rules for layout</td>
<td>196</td>
</tr>
<tr>
<td>6.2.6.2</td>
<td>Slope inclination suitable for snow supporting structures</td>
<td>196</td>
</tr>
<tr>
<td>6.2.6.3</td>
<td>Vertical extension of defense area</td>
<td>196</td>
</tr>
<tr>
<td>6.2.6.4</td>
<td>Horizontal extension of defense area</td>
<td>197</td>
</tr>
<tr>
<td>6.2.6.5</td>
<td>Concepts for arrangement of snow supporting structures</td>
<td>197</td>
</tr>
<tr>
<td>6.2.6.6</td>
<td>Height of snow supporting structures</td>
<td>199</td>
</tr>
<tr>
<td>6.2.6.7</td>
<td>Distance between (rows of) structures in the line of slope</td>
<td>200</td>
</tr>
<tr>
<td>6.2.6.8</td>
<td>Lateral distance between structures</td>
<td>201</td>
</tr>
<tr>
<td>6.2.6.9</td>
<td>Combination of snow supporting structures with snow glide defense structures</td>
<td>203</td>
</tr>
<tr>
<td>6.2.7</td>
<td>Building materials for avalanche defense structures</td>
<td>204</td>
</tr>
<tr>
<td>6.2.7.1</td>
<td>General fundamentals of building materials</td>
<td>204</td>
</tr>
<tr>
<td>6.2.7.2</td>
<td>Construction steel</td>
<td>204</td>
</tr>
<tr>
<td>6.2.7.3</td>
<td>Construction wood</td>
<td>204</td>
</tr>
<tr>
<td>6.2.7.4</td>
<td>Fasteners and connecting means</td>
<td>205</td>
</tr>
<tr>
<td>6.2.7.5</td>
<td>Ropes and reinforcing steel</td>
<td>205</td>
</tr>
<tr>
<td>6.2.7.6</td>
<td>Anchor grout</td>
<td>206</td>
</tr>
<tr>
<td>6.2.8</td>
<td>Structure assessment and design</td>
<td>208</td>
</tr>
<tr>
<td>6.2.8.1</td>
<td>General fundamentals of structure assessment and design</td>
<td>208</td>
</tr>
<tr>
<td>6.2.8.2</td>
<td>Action combinations</td>
<td>208</td>
</tr>
<tr>
<td>6.2.8.3</td>
<td>Support reactions and internal forces</td>
<td>209</td>
</tr>
<tr>
<td>6.2.8.4</td>
<td>Dimensioning of supporting constructions of snow supporting structures in steel</td>
<td>212</td>
</tr>
<tr>
<td>6.2.8.5</td>
<td>Dimensioning of grates of snow supporting structures in steel</td>
<td>213</td>
</tr>
<tr>
<td>6.2.8.6</td>
<td>Dimensioning of snow supporting structures in wood</td>
<td>213</td>
</tr>
<tr>
<td>6.2.8.7</td>
<td>Dimensioning of snow nets</td>
<td>215</td>
</tr>
<tr>
<td>6.2.8.8</td>
<td>Dimensioning of snow rakes</td>
<td>217</td>
</tr>
</tbody>
</table>
6.2.8.9 Corrosion protection for steel structures above ground 218
6.2.9 Geotechnical design of the foundations of snow supporting structures ... 219
6.2.9.1 Principles of geotechnical design .. 219
6.2.9.2 Design of foundations of snow supporting structures 219
6.2.9.3 Design situations ... 220
6.2.9.4 Partial factors of safety for pile foundations .. 221
6.2.9.5 Design of foundations for supports ... 221
6.2.9.6 Design of girder foundations ... 224
6.2.9.7 Corrosion protection for foundations .. 228
6.2.9.8 Testing of micropiles .. 228
6.2.10 Design of snow supporting structures on permafrost sites 230
6.3 Design of snowdrift protection structures ... 233
6.3.1 Design of snowdrift fences and wind baffles 233
6.3.1.1 Principles of design ... 233
6.3.1.2 Structural systems of snowdrift fences and wind baffles 234
6.3.1.3 Action and action combinations .. 235
6.3.1.4 Construction principles ... 235
6.3.2 Design of wind roofs (jet roof).. 235
6.3.2.1 Principles of design ... 235
6.3.2.2 Structural systems ... 235
6.3.2.3 Action and action combinations .. 236
6.4 Design of avalanche catching, deflection and retarding structures 237
6.4.1 Determining of the required height of catching and deflection dams (classical approach) .. 237
6.4.2 Determining the required height of catching and deflection dams by a more physically based approach ... 237
6.4.2.1 General principles of design ... 237
6.4.2.2 Catching and deflection dams ... 239
6.4.2.3 Avalanche guiding dams ... 242
6.4.2.4 Storage capacity .. 242
6.4.2.5 Actions on avalanche deflection and retarding dams 243
6.4.3 Geotechnical design of avalanche deflection and retarding dams 244
6.4.3.1 Fundamentals of geotechnical dam design .. 244
6.4.3.2 Rules of dam construction ... 245
6.5 Design of avalanche breakers .. 247
6.5.1 General remarks .. 247
6.5.2 Actions on avalanche breaker and structural systems 247
6.5.3 Constructive design ... 248
6.6 Design of avalanche galleries (tunnels) ... 248
7 Construction work and maintenance of structural avalanche control 255
7.1 Construction work (avalanche defense structures) 255
7.1.1 Fundamentals of construction work in Alpine environments 255
7.1.1.1 Conditions on avalanche control construction sites 255
7.1.1.2 Demands for building methods and construction machines in avalanche control .. 255
7.1.2 Construction site facilities and infrastructure.. 255
7.1.2.1 Construction site facilities: overview and requirements .. 255
7.1.2.2 Social and office rooms, housing for workers ... 257
7.1.2.3 Storage and handling of construction material and equipment 258
7.1.2.4 Supply and disposal at construction zones ... 260
7.1.3 Transportation systems on avalanche defense construction sites 261
7.1.3.1 Principles of transportation ... 261
7.1.3.2 Transportation road ... 261
7.1.3.3 Material ropeway and cable cranes ... 265
7.1.3.4 Heavy transport helicopters .. 265
7.1.4 Special construction methods in avalanche defense in the starting zone 267
7.1.4.1 Principles of construction work in avalanche control .. 267
7.1.4.2 Construction of micropile foundations and drill technology .. 268
7.1.4.3 Construction of wire rope anchors .. 270
7.1.4.4 Construction of ground plate foundation ... 272
7.1.4.5 Construction of concrete foundation .. 273
7.1.4.6 Construction of micropile foundation in solid rock (rock anchor) 274
7.1.4.7 Mounting methods for snow supporting structures .. 274
7.1.5 Safety engineering in avalanche control ... 275
7.1.5.1 General principles of employee protection at construction zones in alpine environment .. 275
7.1.5.2 Preventive employee protection (prior start of construction) ... 276
7.1.5.3 Requirements for employees on avalanche control construction zones 276
7.1.5.4 Personal protective equipment (PPE) ... 276
7.1.5.5 Fall protection equipment and scaffolding .. 279
7.1.5.6 Safety regulation for helicopter transportation .. 281
7.2 Maintenance of avalanche defense structures ... 281
7.2.1 Principles of maintenance .. 281
7.2.2 Maintenance management and condition assessment ... 281
7.2.2.1 Lifecycle of avalanche defense structures ... 281
7.2.2.2 Functions and strategies of maintenance .. 282
7.2.2.3 Inspection and condition monitoring .. 284
7.2.3 Damage and functional defects of avalanche defense structures 284
7.2.3.1 Overview and classification ... 284
7.2.3.2 Causes for damages and functional deficits ... 285
7.2.3.3 Damage analysis and condition assessment .. 286
7.2.3.4 Damages at snow supporting structures .. 289
7.2.3.5 Damages at avalanche dams .. 289
7.2.3.6 Damage at avalanche galleries and tunnels ... 290
7.2.3.7 Damage to snowdrift structures ... 290
7.2.4 Maintenance measures for avalanche defense structures .. 292
7.2.4.1 Methods of maintenance ... 292
7.2.4.2 Methods of renovation .. 302
7.2.4.3 Urgency of maintenance measures .. 302
7.2.4.4 Renovation methods for avalanche walls .. 305
7.2.4.5 Renovation methods for snow supporting structures 306
7.2.4.6 Renovation methods for snow nets ... 308
7.2.4.7 Costs of maintenance and renovation .. 308

8 Building protection (direct protection) measures................................. 311
 8.1 Structural building protection measures .. 311
 8.1.1 Principles of building protection against avalanches 311
 8.1.2 Avalanche action on buildings .. 311
 8.1.3 Structural measures at the building .. 314
 8.1.3.1 Shape and orientation of the building ... 314
 8.1.3.2 Constructive building protection measures 314
 8.1.3.3 Building protection measures with temporary effect 317
 8.1.3.4 Design and commercial products for building protection against avalanches .. 318
 8.1.4 Structural measures in front of the building 319
 8.1.4.1 General remarks ... 319
 8.1.4.2 Avalanche splitting wedges ... 319
 8.1.4.3 Roof terrace .. 321
 8.1.4.4 Impact walls .. 321
 8.1.5 Building defense measures for other structures 321
 8.2 Safety concepts for buildings endangered by avalanches 323

9 Artificial release and monitoring technology for avalanches... 325
 9.1 Methods of temporary avalanche defense ... 325
 9.2 Artificial release of avalanches ... 325
 9.2.1 General remarks .. 325
 9.2.2 Fundamentals of artificial release of avalanches 326
 9.2.3 Effects of artificial release ... 327
 9.2.4 Methods of artificial avalanche release: overview 328
 9.2.5 Comparison of methods: effects and efficiency 328
 9.2.6 Safety requirements and risks of artificial avalanche release 330
 9.2.7 Construction and operation of selected artificial release systems 336
 9.2.7.1 Gazex® ... 336
 9.2.7.2 Wyssen Avalanche Tower LS12-5® ... 339
 9.2.7.3 Avalanche protection system Innauen-Schätti in the Scuol-Ftan-Sent ski area, Switzerland .. 342
 9.3 Avalanche monitoring technology ... 345
 9.3.1 Principles of avalanche monitoring .. 345
 9.3.2 Meteorological monitoring ... 347
 9.3.2.1 Fundamentals ... 347
 9.3.2.2 Automatic weather stations .. 348
 9.3.2.3 Weather radar .. 348
 9.3.3 Monitoring snow cover .. 350
 9.3.4 Monitoring snow mechanics ... 354
1 Introduction

Siegfried Sauermoser, Florian Rudolf-Miklau and Stefan Margreth

1.1 Avalanche hazards

1.1.1 Overview and terminology

Avalanches are defined as large masses of snow or ice that move rapidly down a mountainside or over a precipice. The term snow avalanche is more accurate to make the conceptual demarcation from other types of avalanches such as rock avalanches or mud flows. According to ONR 24 805, 3.34 [202], snow avalanches are characterized by rapid movement of snow masses that were triggered from the snow cover. Snow avalanches that cause human losses as well as severe property and environmental damage are classified as natural catastrophes.

Throughout history, avalanches have had a major impact on the development of settlements in mountain regions (Figure 1.1). This influence is obvious from the location and structure of historical villages and traffic routes. Typical toponyms like Lähn or Lavin indicate old avalanche paths and are probably derived from the Latin terms labi (gliding down) and labes (falling) [7]. For many centuries, humans were not able to protect themselves effectively from avalanche hazards and resorted to simplistic solutions such as avoiding areas at risk. Despite the sparse population in Alpine regions, major avalanche disasters with numerous victims occurred repeatedly in history, as people were not able to assess the risk of these infrequent but catastrophic events.

In the last century, increasing populations in the Alps (1870: 7.8 million; 2010: 13.6 million) in combination with growing demands for mobility and leisure activities in Alpine terrain have increased avalanche risk significantly. Traditionally, Alpine valleys were scarcely populated apart from mountain farms, whereas today there are a wide range of competing interests in land use such as settlement developments, traffic, trade and industry, tourism and recreation facilities. This has created progressive consumption of land and use of higher risk areas for building. Some Alpine valleys in well-developed regions are subject to urban sprawl and in areas where tourism is the only profitable economic branch, intensive development of higher elevation areas has occurred, especially for skiing. Though depopulation has been reported in infrastructure-poor mountain regions (mountain escape), the Alps will be subject to intensive land use in the future as well since mountains are a sustainable source of natural resources (timber, water, renewable energy and mining).

Increasing traffic density and volume of transportation have resulted in a growing demand for efficient and safe transit corridors across the Alps (e.g. Tenda, Fréjus, Mont Blanc tunnel, Simplon pass, Lötschberg tunnel, St. Gotthard, San Bernardino, Arlberg, Reschen pass, Brenner, Felbertauern, Tauern and Katschberg tunnel, Tauern railway Böckstein/Mallnitz, Gesäuse railway). Outdoor leisure activities and sports (mountaineering, mountain biking, skiing, hunting) have increased human activity in higher elevation areas. In the last decades, the majority of avalanche victims have been skiers off marked slopes as well as ski tourers and free riders.
Increased human impact is noticeable in the European Alps and can be expected in the future in other mountain regions around the world. Avalanche risk and safety expectations have increased significantly while the risk acceptance of a modern society is constantly decreasing. Consequently, the demand for technical avalanche protection in the Alps increased within a short time and prompted rapid development in defense technology. The diverse technological innovations included both new types of avalanche defense structures with permanent protection effects and high-tech systems with temporary protection effects, especially for monitoring and detection of descent or artificial release of avalanches. The establishment of the field of technical avalanche defense as a stand-alone engineering discipline shows the central role avalanches play in mountain regions.

1.1.2 Avalanche hazards: historical and geographical relevance

An avalanche hazard refers simply to a source of potential harm, and is a function of the likelihood of triggering and the destructive size of an avalanche. The different dimensions of avalanche hazards are expressed in the five-point European Avalanche Hazard Scale [79] (Table 4.1). Avalanche risk must relate to a specific element at risk, for example people, buildings, vehicles, or infrastructure. Avalanche risk is determined by the exposure of that element and its vulnerability to the avalanche hazard. Avalanche hazards are not necessarily related to catastrophic events. Most of the avalanche accidents causing loss of human life occur in unsecured areas where the people involved actually triggered the avalanche. These so-called tourist avalanches happen frequently but generally do not affect settlement areas, traffic routes or infrastructure and thus are not considered target areas for permanent technical defense structures (also for economic reasons). As avalanche size increases, the probability of occurrence decreases but settlements and traffic routes may also be affected. For example, a so-called hundred-year avalanche represents an event that occurs – from a statistical point of view – on average once every 100 years.

Fig. 1.1 Alpine living space, shaped by avalanches (© Sauermoser)
Snow avalanches can occur anywhere where sufficient snowfall occurs within a short time on slopes with an inclination of more than 30 degrees. Avalanches occur throughout the Alps and many other mountain ranges in the world including the Pyrenees, Apennines, Norwegian Fjordland, Iceland (Figure 1.2), Rocky Mountains, Andes, Japanese and New Zealand Alps, Elbrus mountains, Hindu Kusch, Pamir mountain range, Russian Altai and Baikal mountains, Chinese Tianshan or Himalayas (Figure 1.3). In ancient times, the Greek geographer Strabon (63 BC to 23 AC) documented avalanche events in the Caucasus Mountains in his scriptures ‘Geographica’. In Austria, more than 6000 avalanche paths have a potential impact on settlement areas [35] and countless other avalanches occur in undeveloped mountain areas or remote, seasonally used regions. In Switzerland, more than 20 000 dangerous avalanches are known. The capital of Alaska, Juneau, is an example of an urban area at high-risk from avalanches [60] (Figure 4.5).

1.2 Technical avalanche defense: classification

1.2.1 Classification scheme of defense measures and their effects

An avalanche hazard is not absolute, but is relative to an element at risk. Avalanche defense measures are also designed relative to a specific scenario, and several such measures are presented in this book. In countries where avalanche risk is considered substantial, avalanche defense should use a holistic approach that considers various relevant protection goals and possible measures.

Avalanche defense refers to any measure in the catchment area of an avalanche used to achieve the targeted protection goal [202], and is classified as follows [161]:

- Active defense measures prevent avalanches from starting or act directly on the flow process, and
- Passive defense measures mitigate the consequences of a potential avalanche hazard.
Active measures are appropriate to reduce the frequency of hazardous avalanches or directly decrease the intensity of the avalanche process. In contrast, passive measures reduce either the damage potential or the vulnerability of objects at risk.

Avalanche defense measures provide either permanent (constantly effective) or temporary (time-limited effect, adjusted to a specific situation) protection [222]. Table 1.1 gives an overview of the classification scheme of avalanche defense measures.

Another classification of avalanche defense measures uses the risk cycle of the natural hazard management [209] (Figure 1.4). According to [222], the hemisphere of precaution comprises prevention, preparation and preparedness; the hemisphere of response (to catastrophes) integrates intervention, assistance and restoration. Most of the measures presented in this book are among the sectors of prevention and preparation.

Holistic systems for avalanche defense have been established in most Alpine countries (Austria, Switzerland, France, Italy, Germany, Slovenia), as well as in other European countries (Norway, Iceland), furthermore in Canada, USA, Japan and New Zealand. Avalanche defense is generally a public service (task of the state), though the degree of responsibility and actual duties varies substantially. This holds true especially for the organization, financing and execution of technical avalanche defense. Furthermore, in other mountainous countries in Europe and around the globe, such as in Poland, Slovakia, Romania, Bulgaria, Spain, Great Britain, Russia, Turkey, China, Andean states, Himalaya and the Caucasus region, avalanche defense has gained in importance due to major events.

Fig. 1.3 Global overview of mountain regions with potential avalanche hazards (originally elaborated by Glazovszkaya [78]) (The map is only a rough presentation, as no exact survey was carried out)
Table 1.1 Classification scheme of avalanche defense measures

<table>
<thead>
<tr>
<th>Defense measure</th>
<th>Permanent effect</th>
<th>Temporary effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precautionary effect</td>
<td>Reducing the disposition for an event</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forest and bioengineering measures (protection forest, high-altitude afforestation)</td>
<td>Artificial release of avalanches</td>
</tr>
<tr>
<td></td>
<td>Avalanche defense structures: snow supporting structures, snowdrift control structures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acting directly on the avalanche process</td>
<td>Closure for roads</td>
</tr>
<tr>
<td></td>
<td>Avalanche defense structures: dams, breakers, tunnels, galleries</td>
<td>Evacuation (of buildings at acute risk)</td>
</tr>
<tr>
<td>Reaction to an event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precautionary effect</td>
<td>Legal measures (regulations, prohibitions)</td>
<td>Information (risk communication)</td>
</tr>
<tr>
<td></td>
<td>Hazard mapping</td>
<td>Avalanche monitoring and prediction</td>
</tr>
<tr>
<td></td>
<td>Planning measures (land use planning)</td>
<td>Avalanche commissions</td>
</tr>
<tr>
<td></td>
<td>Administrative measures (building permission, relocation of buildings at risk)</td>
<td>Avalanche warning service</td>
</tr>
<tr>
<td></td>
<td>Structural building (object) protection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catastrophe management plans</td>
<td></td>
</tr>
<tr>
<td>Reaction to an event</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.2.2 Permanent technical avalanche protection (defense structures)

In the relevant technical standard literature (e.g. Margreth [165], ONR 24805 [202]) the term *technical avalanche defense* is equated with structural (constructional) defense measures with permanent effects – in contrast to the technical avalanche defense measures with temporary effects (Section 1.2.3 and chapter 9). The protection effect of these measures is constant, that is independent of the actual avalanche risk or season.

Technical defense measures typically refer to avalanche defense structures, meaning constructed works (sometimes including mechanical and electronic components) and are termed *avalanche defense structures* in the engineering field (Figure 1.5 a and b).

According to [165], structural avalanche defense is based on one of two strategies:

– hinder initiation or propagation of an avalanche by stabilizing (support) the snow pack in the starting zone or by reducing snow drift (snow displacement by wind), or
– break, decelerate, retard, deflect or retain avalanches in motion (deflection or retarding structures).

Measures based on the first strategy are used in the starting zone of avalanches (Figure 1.5a), whereas measures based on the second are constructed in the avalanche path or runout zone (Figure 1.5b). Table 1.2 gives an overview of the classification and function of structural avalanche defense structures. A third group of measures includes structural building (object) protection, whereby the protection effect is defined for a single