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1
INTRODUCTION

Unique among disciplines, physics condenses the limitlessly complex behavior of
nature into a small set of underlying principles. Once these are clearly understood
and supplemented with often superficial domain knowledge, any scientific or engi-
neering problem can be succinctly analyzed and solved. Accordingly, the study of
physics leads to unsurpassed satisfaction and fulfillment.

This book summarizes intermediate-, college-, and university-level physics and its
associated mathematics, identifying basic formulas and concepts that should be under-
stood and memorized. It can be employed to supplement courses, as a reference text or
as review material for the GRE and graduate comprehensive exams.

Since physics incorporates broad areas of science and engineering, many treat-
ments overemphasize technical details and problems that require time-consuming
mathematical manipulations. The reader then often loses sight of fundamental issues,
leading to gaps in comprehension that widen as more advanced material is introduced.
This book accordingly focuses exclusively on core material relevant to practical prob-
lem solving. Fine details of the subject can later be assimilated rapidly, effectively
placing leaves on the branches formed by the underlying concepts.

Mathematics and physics constitute the language of science. Hence, as with any
spoken language, they must be learned through repetition and memorization. The cen-
tral results and equations indicated in this book are therefore indicated by shaded text.
These should be rederived, transcribed into a notebook or review cards with a sum-
mary of their derivation and memorized. Problems from any source should be solved
in conjunction with this book; however, undertaking time-consuming problems
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without recourse to worked solutions that indicate optimal calculational procedures is
not recommended.

Finally, we wish to thank our many inspiring teachers, whose numerous insights
guided our approach, in particular Paul Bamberg, Alan Blair, and Sam Treiman, and,
above all, our father and grandfather, George Yevick, whose boundless love of phys-
ics inspired generations of students.
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PROBLEM SOLVING

Problem solving, especially on examinations, should habitually follow the procedures
below.

2.1 ANALYSIS

1. Problems are very often misread or answered incompletely. Accordingly, circle
the words in the problem that describe the required results and underline the
specified input data. After completing the calculation, insure that the quantities
evaluated in fact correspond to those circled.

2. Write down a summary of the problem in your own words as concisely as
possible.

3. Draw a diagram of the physical situation that suggests the general properties
of the solution. Annotate the diagram as the solution progresses. Always draw

diagrams that accentuate the difference between variables, e.g., when drawing

triangles, be sure that its angles are markedly unequal.

4. Briefly contrast different solution methods and summarize on the examination
paper the simplest of these (especially if partial credit is given).

5. Solve the problem, proceeding in small steps. Do not perform twomathematical

manipulations in a single line. Align equal signs on subsequent lines and check
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each line of the calculation against the previous line immediately after writing

it down. Being careful and organized inevitably saves time.

6. Reconsider periodically if you are employing the simplest solution method. If

mathematics becomes involved, backtrack and search for an error or a different

approach.

7. Verify the dimensions of your answer and that its magnitude is physically

reasonable.

8. Insert your answer into the initial equations that define the problem and check

that it yields the correct solution.

9. If necessary and time permits, solve the problem a second time with a different
method.

2.2 TEST-TAKING TECHNIQUES

Strategies for improving examination performance include:

1. For morning examinations, 1–3 weeks before the examination, start the day
two or more hours before the examination time.

2. Devise a plan of studying well before the examination that includes several
review cycles.

3. Outline on paper and review cards in your own words the required material.
Carry the cards with you and read them throughout the day when unoccupied.

4. To become aware of optimal solution procedures, solve a variety of problems
in books that provide worked solutions and rederive the examples in this or
another textbook. Limit the time spent on each problem in accordance with
the importance of the topic.

5. Obtain or design your own practice exams and take these under simulated test
conditions.

6. In the day preceding a major examination, at most, briefly review notes—
studies have demonstrated that last-minute studying does not on average
improve grades.

7. Be aware of the examination rules in advance. On multiple choice exams,
determining how many answers must be eliminated before selecting one of
the remaining choices is statistically beneficial.

8. If allowed, take high-energy food to the exam.

9. Arrive early at the examination location to familiarize yourself with the test
environment.

10. First, read the entire examination and then solve the problems in order of

difficulty.
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11. Maintain awareness of the problem objective; sometimes, a solution can be
worked backward from this knowledge.

12. If a calculation proves more complex than expected, either outline your solu-

tion method or address a different problem and return to the calculation later,

possibly with a different perspective.

13. For multiple choice questions, insure that the solutions are placed correctly on
the answer sheet. Write the number of the problem and the answer on a piece
of paper and transfer this information onto the answer sheet only at the end of
the exam. Retain the paper in case of grading error.

14. On multiple choice tests, examine the possible choices before solving the

problem. Eliminate choices with incorrect dimensions and those that lack

physical meaning. Those remaining often indicate the important features of
the solution and possibly may even reveal the correct answer.

15. Maintain an even composure, possibly through short stretching or controlled
breathing exercises.

2.2.1 Dimensional Analysis

Results can be partially verified through dimensional analysis. Dimensions such as those
of force, [MD/T2], are here distinguished by square brackets, where, e.g., D indicates
length, T time,M mass, and Q charge. Quantities that are added, subtracted, or equated

must possess identical dimensions. For example, a = v/t is potentially valid since the
right-hand side dimension of this expression is the product [D/T][1/T], which agrees with
that of the left-hand side. Similarly, the argument of a transcendental function (a function

that can be expressed as an infinite power series), such as an exponential or harmonic

function or of polynomials such as f(x) = x + x2, must be dimensionless; otherwise, dif-
ferent powers would possess different dimensions and could therefore not be summed.

While the dimensions of important physical quantities should be memorized, the
dimensions of any quantity can be deduced from an equation expressing this quantity
in terms of variables with known dimensions. Thus, e.g., F =ma implies that [F] = [M]
[D/T2] = [MD/T2]. Quantities with involved dimensions are often expressed in terms
of other standard variables such as voltage.

Example

From Q = CV, the units of capacitance can be expressed as [Q/V], with V repre-
senting volts. Subsequently, from V = IR with I = dQ/dt, the dimensions of, e.g.,
t = 1/RC can be verified.
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3
SCIENTIFIC PROGRAMMING

This text contains basic physics programs written in the Octave scientific program-
ming language that is freely available from http://www.gnu.org/software/octave/
index.html with documentation at www.octave.org. Default selections can be chosen
during setup. Octave incorporates many features of the commercial MATLAB® lan-
guage and facilitates rapid and compact coding (for a more extensive introduction,
refer to A Short Course in Computational Science and Engineering: C++, Java and
Octave Numerical Programming with Free Software Tools, by David Yevick
Copyright © 2012 David Yevick). Some of the material in the following text is
reprinted with permission from Cambridge University Press.

3.1 LANGUAGE FUNDAMENTALS

A few important general programming concepts as applied to Octave are first sum-
marized below:

1. A program consists primarily of statements that result from terminating a valid
expression not followed by the continuation character … (three lower dots), a
carriage return, or a semicolon.

2. An expression can be formed from one or more subexpressions linked by
operators such as + or *.

Fundamental Math and Physics for Scientists and Engineers, First Edition.
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3. Operators possess different levels of precedence, e.g., in 2/4 + 3, the division
operation possesses a higher precedence and is therefore evaluated before addi-
tion. In expressions involving two or more operators with the same precedence
level, such as division and multiplication, the operations are typically evaluated
from left to right, e.g., 2/4 * 3 equals (2/4) * 3.

4. The parenthesis operator, which evaluates the expression that it encloses, is
assigned to the highest precedence level. This eliminates errors generated by
incorrect use of precedence or associativity.

5. Certain style conventions, while not required, enhance clarity and readability:

a. Variables and function names should be composed of one or more descrip-
tive words. The initial letter should be uncapitalized, while the first letter of
each subsequent word should be capitalized as in outputVelocity.

b. Spaces should be placed to the right and left of binary operators, which act
on the expressions (operands) to their left and right, as in 3 + 4, but no space
should be employed in unary operator such as the negative sign in −3 + 4.
Spaces are preferentially be inserted after commas as in computeVelo-
city( 3, 4 ) and within parentheses except where these indicate indices.

c. Indentation should be employed to indicate when a group of inner statements
is under the logical control of an outer statement such as in

if ( firstVariable == 0 )
secondVariable = 5;

end

d. Any part of a line located to the right of the symbol % constitutes a comment
that typically documents the program. Statements that form a logical unit
should be preceded by one or more comment lines and surrounded by blank
lines. Statement lines that introduce input variables should end with a com-
ment describing the variables.

3.1.1 Octave Programming

Running Octave: Starting Octave opens a command window into which statements
can be entered interactively. Alternatively, a program in the directory programs
in partition C: is created by first entering cd C:\programs into the command win-
dow, pressing the enter key, and then entering the command edit. Statements are
then typed into the program editor, the file is saved by selecting Save from the button
or menu bar as a MATrix LABoratory file such as myFile.m (the .m extension is
appended automatically by the editor), and the program is then run by typing myFile
into the command window. The program can also be activated by including the
statement myFile; within another program. To list the files in the current directory,
enter dir into the Octave command window.

Help Commands: Typing help commandName yields a description of the
command commandName. To find all commands related to a word subject, type
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lookfor subject. Entering doc or doc topic brings up, respectively, a com-
plete help document and a description of the language feature topic.

Input and Output: A value of a variable G can be entered into a program (.m file)
from the keyboard by including the line G = input( ‘user prompt’ ). The state-
ment format long e sets the output style to display all 15 floating-point number
significant digits, after which format short e reverts to the default 5 output digits.

Constants and Complex Numbers: Some important constants are i and j, which
both equal

ffiffiffiffiffiffiffi
−1

p
, e, and pi. However, if a variable assignment such as i = 3; is

encountered in an Octave program, i ceases to be identified with the imaginary unit
until the command clear i is issued. Imaginary numbers can be manipulated with
the functions real( ), imag( ), conj( ), and norm( ), and imaginary values are
automatically returned by standard functions such as exp( ), sin( ), and sinh( )
for imaginary arguments.

Arrays and Matrices: A symbol A can represent a scalar, row, or column vector or
matrix of any dimension. Row vectors are constructed either by

vR = [ 1 2 3 4 ];

or

vR = [ 1, 2, 3, 4 ];

The corresponding column vector can similarly be entered in any of the following
three ways:

vC = [ 1
2
3
4 ];

vC = [ 1; 2; 3; 4 ];
vC = [ 1 2 3 4 ].’;

Here .’ indicates transpose, while ’ instead implements the Hermitian (complex con-
jugate) transpose.

A 2 × 2 matrix

mRC=
1 2
3 4

� �

can be constructed by, e.g., mRC = [ 1 2; 3 4 ]; after which mRC(1, 2) returns
(MRC)12, here the value 2. Subsequently, size(mRC) yields a vector containing
the row and column dimensions ofmRC, while length( mRC ) returns the maximum
of these values. Here, we introduce the convention of appending R, C, or RC to the
variable name to respectively identify row vectors, column vectors, and matrices.
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Basic Manipulations: A value n is raised to the power m by n^m. The remainder
of n/m is denoted rem( n, m ) and is positive or zero for n > 0 and negative or zero
for n < 0. The function mod( n, m ) returns n modulus m, which is always positive,
while ceil( ), floor( ), and fix( ) round floating-point numbers to the next
larger integer, smaller integer, and nearest integer closer to zero, respectively.

Vector and Matrix Operations: Two vectors or matrices of the same dimension can
be added or subtracted. Multiplying a matrix or vector by a scalar, c, multiplies each
element by c. Additionally, eye( n, n ) is the n × n unit or identity matrix with ones
along the main diagonal and zeros elsewhere, while ones( n, m ) and zeros( n,
m )are n ×m matrices with all elements one or zeros so that

2+mRC=2*ones 2, 2ð Þ +mRC=
3 4
5 6

� �

and

2*eye 2, 2ð Þ +mRC=
3 2
3 6

� �

Further, mRC * mRC, or equivalently mRC^2, multiplies mRC by itself, while

mRC: * mRC=mRC:^2=
1 4
9 16

� �

implements component-by-component multiplication. Other arithmetic operations
function analogously so that the (i, j) element of M ./ N is Mij/Nij. Functions such
as cos( M ) return a matrix composed of the cosines of each element in M.

Solving Linear Equation Systems: The solution of the linear equation system
xR * mRC = yR is xR= yR / mRC, while mRC * xC = yC is solved by xC = mRC \ yC.
The inverse of a matrix mRC is represented by inv( mRC ). The eigenvalues of a
matrix are obtained through eigenValues = eig( mRC ), while both the eigenva-
lues and eigenvectors are returned through [ eigenValues, eigenVectors ] =
eig( mRC ).

Random Number Generation: A single random number between 0 and 1 is gener-
ated by rand, while rand( m, n ) returns a m × n matrix with random entries. The
same random sequence can be generated each time a program is run by including
rand( 'state', 0 ) before the first call to rand.

Control Logic and Iteration: The logical operators in octave are ==, <, <=, >, >=, ~=
(not equal) and the and, or, and not operators—&, |, and ~, respectively. Any nonzero
value is taken to represent a logical “true” value, while a zero value corresponds to
a logical “false” as can be seen by evaluating, e.g., 3 & 4, which produces the output
1. Thus,

if ( S == 2 )
xxx

elseif ( S == 3 )
yyy
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else
zzz

end

executes the statements denoted by xxx if the logical statement S == 2 is true, yyy if
S == 3, and zzz otherwise. The for loop

for loop = 10 : -1 : 0;
vR(loop) = sin(loop * pi / 10 );

end;

yields the arrayvR = [sin( π)sin(9π/10)…sin( π/10)0], while 1 : 10
yields an array with elements from 1 to 10 in unit increments. Mistakenly replacing
colons by commas or semicolons results in severe and often difficult to detect errors.
If a break statement is encountered within a for loop, control is passed to the
statement immediately following the end statement. An alternative to the for loop
is the while (logical condition) … statements … end construct.

Vectorized Iterators: A vectorized iterator such as vR = sin( pi: -pi/10:
-1.e-4 ), which yields, generates, or manipulates a vector far more rapidly than the
corresponding for loop. linspace( s1, s2, n ) and logspace( s1, s2, n )
produce n equally/logarithmically spaced points from s1 to s2. An isolated colon
employed as an index iterates through the elements associated with the index
so that MRC(:, 1) = V(:); places the elements of the row or column vector V into
the first column of MRC.

Files and Function Files: A function that returns variables output1, output2
… is called [ output1, output2, … ] = myFunction( input1, input2, … )
and normally resides in a separate file myFunction.m in the current directory, the
first line of which must read function [ aOutput1, aOutput2, … ] =
myFunction( aInput1, aInput2, … ). Variables defined (created) inside a
function are inaccessible in the remainder of the program once the function terminates
(unless global statements are present), while only the argument variables and
variables local to the function are visible from within the function. A function can
accept other functions as an arguments either (for Octave functions) with the
syntax fmin( 'functionname', a, b ) or through a function handle (pointer)
as fmin( @functionname, a, b ).

Built-In Functions: Some common functions are the discrete forward and inverse
Fourier transforms, fft( ) and ifft( ) and mean( ), sum( ), min( ), max( ),
and sort( ). Data is interpolated by y1 = interp1( x, y, x1, 'method' ),
where 'method' is 'linear' (the default), 'spline', or 'cubic'; x and y are
the input x- and y-coordinate vectors; and x1 contains the x-coordinate(s) of the
point(s) at which interpolated values are desired. The function roots( [ 1 3 5 ] )
returns the roots of the polynomial x2 + 3x + 5.

Graphic Operations: plot( vY1 ) generates a simple line plot of the values in the
row or column vector vY1, while plot( vX1, vY1, vX2, vY2, … ) creates a sin-
gle plot with lines given by the multiple (x, y) data sets. Hence, plot( C, 'g.' ),
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where C is a complex vector, graphs the real against the imaginary part of C in green
with point marker style. Logarithmic graphs are plotted with semilogy( ),
semilogx( ), or loglog( ) in place of plot( ). Three-dimensional grid and
contour plots with nContours contour levels are created with mesh( mRC ) or
mesh( vX, vY, mRC ) and contour( mRC ) or contour( vX, vY, mRC,
nContours ) where vX and vY are row or column vectors that contain the x and
y positions of the grid points along the axes. The commands hold on and hold
off retain graphs so that additional curves can be overlaid. Subsequently, axis
defaults can be overridden with axis( [ xmin xmax ymin ymax ] ), while axis
labels are implemented with xlabel( 'xtext' ) and ylabel( 'ytext' ) and
the plot title is specified by title( 'title text' ). The command print
( 'outputFile.eps', '-deps' ) or, e.g., print( 'outputFile.
pdf', '-dpdf' ) yields, respectively, encapsulated postscript or .pdf files of
the current plot window in the file outputFile.dat or outputFile.pdf
(help print displays all options).

Memory Management: User-defined variable or function names hide preexisting or
built-in variable and function names, e.g., if the program defines a variable or function
length or length( ), the Octave function length( ) becomes inaccessible.
Additionally, if the second time a program is executed a smaller array is assigned
to an variable, the larger memory space will still be reserved by the variable causing
errors when, e.g., its length or magnitude is computed. Accordingly, each program
should begin with clear all to remove all preexisting assignments (a single con-
struct M is destroyed through clear M).

Structures: To associate different variables with a single entity (structure) name,
a dot is placed after the name as in

Spring1.position = 0;
Spring1.velocity = 1;
Spring1.position = Spring1.position + deltaTime * k/m *

Spring1.velocity

Variables pertaining to one entity can then be segregated from those, such as
Spring2.position, describing a different object. The names of structures are
conventionally capitalized.
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4
ELEMENTARY MATHEMATICS

The following treatment of algebra and geometry focuses on often neglected aspects.

4.1 ALGEBRA

While arithmetic concerns direct problems such as evaluating y = 2x + 5 for x = 3,
algebra addresses arithmetical inverse problems, such as the determination of x given
y = 11 above. Such generalizations of division can be highly involved depending on
the complexity of the direct equation.

4.1.1 Equation Manipulation

Since both sides of an equation evaluate to the same quantity, they can be added to,
subtracted from, or multiplied or divided by any number or expression. Therefore,

a

b
=
c

d
ð4.1.1Þ

can be simplified through cross multiplication, e.g., multiplication of both sides by
bd to yield

ad = bc ð4.1.2Þ
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Similarly, the left hand of one equation can be multiplied or divided by the left-hand
side of a second equation if the right-hand sides of the two equations are similarly
manipulated (as the right and left sides of each equation by definition represent the
same value).

Example

Equating the quotients of the right- and left-hand sides of the following two
equations

3y x + 1ð Þ= 4
4 x + 1ð Þ= 2 ð4.1.3Þ

results in 3y/4 = 2.

4.1.2 Linear Equation Systems

An algebraic equation is linear if all variables in the equation only enter to first order
(e.g., as x and y but not xy). At least N linear equations are required to uniquely deter-
mine the values of N variables. The standard procedure for solving such a system first
reduces the system to a “tridiagonal form” through repeated implementation of a small
number of basic operations.

Example

To solve,

x+ y = 3

2x + 3y= 7
ð4.1.4Þ

for x and y, the first equation can be recast as x = 3 − y, which yields a single equa-
tion for y after substitution into the second equation. Alternatively, multiplying the
first equation by two results in

2x + 2y= 6

2x + 3y= 7
ð4.1.5Þ

Subtracting the first equation from the second equation then gives

2x + 2y= 6

y = 1
ð4.1.6Þ

The inverted pyramidal form is termed an upper triangular linear equation system
and can be solved by back-substituting the solution for y from the second equation
into the first equation, which then solved for x.
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A set of equations can be redundant in that one or more equations of the set can
be generated by summing the remaining equations with appropriate coefficients. If
the number of independent equations is less or greater than N, infinitely many or
zero solutions exist, respectively. Nonlinear equation systems can sometimes be
linearized through substitution of new variables formed from nonlinear combina-
tions of the original variables. Thus, defining w = x2, z = y3 recasts

x2 + 3y3 = 4

2x2 + y3 = 3
ð4.1.7Þ

into the linear equations w + 3z = 4, 2w + z = 3.

4.1.3 Factoring

The inverse problem to polynomial multiplication is termed factoring. That is, multi-
plication and addition yield

ax+ bð Þ cx + dð Þ= acx2 + bc+ adð Þx + bd ð4.1.8Þ
which is reversed by factoring the right-hand side into the left-hand product of two lesser
degree polynomials. For quadratic (second-order) equations, the quadratic formula
states that the roots (solutions) of ax2 + bx + c = 0 are

x1,2 =
−b ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−4ac

p

2a
ð4.1.9Þ

implying that the polynomial ax2 + bx + c can be factored as (x − x1)(x − x2).
Equation (4.1.9) is derived by first completing the square according to

ax2 + bx+ c= a x2 +
bx

a

0
@

1
A+ c

= a x2 +
bx

a
+

b2

4a2

0
@

1
A−

b2

4a
+ c

= a x+
b

2a

0
@

1
A
2

−
b2−4ac

4a

ð4.1.10Þ

Multiplying N terms of the form (x − λi) yields

x−λ1ð Þ x−λ2ð Þ… x−λNð Þ = xN + xN−1
X
i

λi + x
N−2
X
i, j
i 6¼j

λiλj +…+
Y
i

λi ð4.1.11Þ
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