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Preface

PURPOSE OF THIS BOOK

Why yet another book on linear models? Over the years, a multitude of books have
already been written about this well-traveled topic, many of which provide more
comprehensive presentations of linear modeling than this one attempts. My book is
intended to present an overview of the key ideas and foundational results of linear
and generalized linear models. I believe this overview approach will be useful for
students who lack the time in their program for a more detailed study of the topic.
This situation is increasingly common in Statistics and Biostatistics departments. As
courses are added on recent influential developments (such as “big data,” statistical
learning, Monte Carlo methods, and application areas such as genetics and finance),
programs struggle to keep room in their curriculum for courses that have traditionally
been at the core of the field. Many departments no longer devote an entire year or
more to courses about linear modeling.

Books such as those by Dobson and Barnett (2008), Fox (2008), and Madsen
and Thyregod (2011) present fine overviews of both linear and generalized linear
models. By contrast, my book has more emphasis on the theoretical foundations—
showing how linear model fitting projects the data onto a model vector subspace
and how orthogonal decompositions of the data yield information about effects,
deriving likelihood equations and likelihood-based inference, and providing extensive
references for historical developments and new methodology. In doing so, my book
has less emphasis than some other books on practical issues of data analysis, such as
model selection and checking. However, each chapter contains at least one section
that applies the models presented in that chapter to a dataset, using R software. The
book is not intended to be a primer on R software or on the myriad details relevant to
statistical practice, however, so these examples are relatively simple ones that merely
convey the basic concepts and spirit of model building.

The presentation of linear models for continuous responses in Chapters 1–3 has a
geometrical rather than an algebraic emphasis. More comprehensive books on linear
models that use a geometrical approach are the ones by Christensen (2011) and by

xi



xii PREFACE

Seber and Lee (2003). The presentation of generalized linear models in Chapters 4–
9 includes several sections that focus on discrete data. Some of this significantly
abbreviates material from my book, Categorical Data Analysis (3rd ed., John Wiley
& Sons , 2013). Broader overviews of generalized linear modeling include the classic
book by McCullagh and Nelder (1989) and the more recent book by Aitkin et al.
(2009). An excellent book on statistical modeling in an even more general sense is
by Davison (2003).

USE AS A TEXTBOOK

This book can serve as a textbook for a one-semester or two-quarter course on linear
and generalized linear models. It is intended for graduate students in the first or
second year of Statistics and Biostatistics programs. It also can serve programs with
a heavy focus on statistical modeling, such as econometrics and operations research.
The book also should be useful to students in the social, biological, and environmental
sciences who choose Statistics as their minor area of concentration.

As a prerequisite, the reader should be familiar with basic theory of statistics,
such as presented by Casella and Berger (2001). Although not mandatory, it will
be helpful if readers have at least some background in applied statistical modeling,
including linear regression and ANOVA. I also assume some linear algebra back-
ground. In this book, I recall and briefly review fundamental statistical theory and
matrix algebra results where they are used. This contrasts with the approach in many
books on linear models of having several chapters on matrix algebra and distribu-
tion theory before presenting the main results on linear models. Readers wanting
to improve their knowledge of matrix algebra can find on the Web (e.g., with a
Google search of “review of matrix algebra”) overviews that provide more than
enough background for reading this book. Also helpful as background for Chapters
1–3 on linear models are online lectures, such as the MIT linear algebra lectures
by G. Strang at http://ocw.mit.edu/courses/mathematics on topics such
as vector spaces, column space and null space, independence and a basis, inverses,
orthogonality, projections and least squares, eigenvalues and eigenvectors, and sym-
metric and idempotent matrices. By not including separate chapters on matrix algebra
and distribution theory, I hope instructors will be able to cover most of the book in a
single semester or in a pair of quarters.

Each chapter contains exercises for students to practice and extend the theory
and methods and also to help assimilate the material by analyzing data. Com-
plete data files for the text examples and exercises are available at the text website,
http://www.stat.ufl.edu/~aa/glm/data/. Appendix A contains supplemen-
tary data analysis exercises that are not tied to any particular chapter. Appendix B
contains solution outlines and hints for some of the exercises.

I emphasize that this book is not intended to be a complete overview of linear and
generalized linear modeling. Some important classes of models are beyond its scope;
examples are transition (e.g., Markov) models and survival (time-to-event) models. I
intend merely for the book to be an overview of the foundations of this subject—that
is, core material that should be part of the background of any statistical scientist. I

http://ocw.mit.edu/courses/mathematics
http://www.stat.ufl.edu/~aa/glm/data/
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invite readers to use it as a stepping stone to reading more specialized books that
focus on recent advances and extensions of the models presented here.
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C H A P T E R 1

Introduction to Linear and Generalized
Linear Models

This is a book about linear models and generalized linear models. As the names
suggest, the linear model is a special case of the generalized linear model. In this first
chapter, we define generalized linear models, and in doing so we also introduce the
linear model.

Chapters 2 and 3 focus on the linear model. Chapter 2 introduces the least squares
method for fitting the model, and Chapter 3 presents statistical inference under the
assumption of a normal distribution for the response variable. Chapter 4 presents
analogous model-fitting and inferential results for the generalized linear model. This
generalization enables us to model non-normal responses, such as categorical data
and count data.

The remainder of the book presents the most important generalized linear models.
Chapter 5 focuses on models that assume a binomial distribution for the response
variable. These apply to binary data, such as “success” and “failure” for possible
outcomes in a medical trial or “favor” and “oppose” for possible responses in a
sample survey. Chapter 6 extends the models to multicategory responses, assuming
a multinomial distribution. Chapter 7 introduces models that assume a Poisson or
negative binomial distribution for the response variable. These apply to count data,
such as observations in a health survey on the number of respondent visits in the
past year to a doctor. Chapter 8 presents ways of weakening distributional assump-
tions in generalized linear models, introducing quasi-likelihood methods that merely
focus on the mean and variance of the response distribution. Chapters 1–8 assume
independent observations. Chapter 9 generalizes the models further to permit corre-
lated observations, such as in handling multivariate responses. Chapters 1–9 use the
traditional frequentist approach to statistical inference, assuming probability distri-
butions for the response variables but treating model parameters as fixed, unknown
values. Chapter 10 presents the Bayesian approach for linear models and generalized
linear models, which treats the model parameters as random variables having their

Foundations of Linear and Generalized Linear Models, First Edition. Alan Agresti.
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2 INTRODUCTION TO LINEAR AND GENERALIZED LINEAR MODELS

own distributions. The final chapter introduces extensions of the models that handle
more complex situations, such as high-dimensional settings in which models have
enormous numbers of parameters.

1.1 COMPONENTS OF A GENERALIZED LINEAR MODEL

The ordinary linear regression model uses linearity to describe the relationship
between the mean of the response variable and a set of explanatory variables,
with inference assuming that the response distribution is normal. Generalized linear
models (GLMs) extend standard linear regression models to encompass non-normal
response distributions and possibly nonlinear functions of the mean. They have three
components.

� Random component: This specifies the response variable y and its probability
distribution. The observations1 y = (y1,… , yn)T on that distribution are treated
as independent.

� Linear predictor: For a parameter vector 𝜷 = (𝛽1, 𝛽2,… , 𝛽p)T and a n × p model
matrix X that contains values of p explanatory variables for the n observations,
the linear predictor is X𝜷.

� Link function: This is a function g applied to each component of E(y) that relates
it to the linear predictor,

g[E(y)] = X𝜷.

Next we present more detail about each component of a GLM.

1.1.1 Random Component of a GLM

The random component of a GLM consists of a response variable y with independent
observations (y1,… , yn) having probability density or mass function for a distribu-
tion in the exponential family. In Chapter 4 we review this family of distributions,
which has several appealing properties. For example,

∑
i yi is a sufficient statistic

for its parameter, and regularity conditions (such as differentiation passing under an
integral sign) are satisfied for derivations of properties such as optimal large-sample
performance of maximum likelihood (ML) estimators.

By restricting GLMs to exponential family distributions, we obtain general expres-
sions for the model likelihood equations, the asymptotic distributions of estimators
for model parameters, and an algorithm for fitting the models. For now, it suffices
to say that the distributions most commonly used in Statistics, such as the normal,
binomial, and Poisson, are exponential family distributions.

1The superscript T on a vector or matrix denotes the transpose; for example, here y is a column
vector. Our notation makes no distinction between random variables and their observed values; this
is generally clear from the context.
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1.1.2 Linear Predictor of a GLM

For observation i, i = 1,… , n, let xij denote the value of explanatory variable xj,
j = 1,… , p. Let xi = (xi1,… , xip). Usually, we set xi1 = 1 or let the first variable
have index 0 with xi0 = 1, so it serves as the coefficient of an intercept term in the
model. The linear predictor of a GLM relates parameters {𝜂i} pertaining to {E(yi)}
to the explanatory variables x1,… , xp using a linear combination of them,

𝜂i =
p∑

j=1

𝛽jxij, i = 1,… , n.

The labeling of
∑p

j=1 𝛽jxij as a linear predictor reflects that this expression is linear
in the parameters. The explanatory variables themselves can be nonlinear functions
of underlying variables, such as an interaction term (e.g., xi3 = xi1xi2) or a quadratic
term (e.g., xi2 = x2

i1).
In matrix form, we express the linear predictor as

𝜼 = X𝜷,

where 𝜼 = (𝜂1,… , 𝜂n)T, 𝜷 is the p × 1 column vector of model parameters, and X
is the n × p matrix of explanatory variable values {xij}. The matrix X is called the
model matrix. In experimental studies, it is also often called the design matrix. It has
n rows, one for each observation, and p columns, one for each parameter in 𝜷. In
practice, usually p ≤ n, the goal of model parsimony being to summarize the data
using a considerably smaller number of parameters.

GLMs treat yi as random and xi as fixed. Because of this, the linear predictor is
sometimes called the systematic component. In practice xi is itself often random, such
as in sample surveys and other observational studies. In this book, we condition on its
observed values in conducting statistical inference about effects of the explanatory
variables.

1.1.3 Link Function of a GLM

The third component of a GLM, the link function, connects the random component
with the linear predictor. Let 𝜇i = E(yi), i = 1,… , n. The GLM links 𝜂i to 𝜇i by
𝜂i = g(𝜇i), where the link function g(⋅) is a monotonic, differentiable function. Thus,
g links 𝜇i to explanatory variables through the formula:

g(𝜇i) =
p∑

j=1

𝛽jxij, i = 1,… , n. (1.1)

In the exponential family representation of a distribution, a certain parameter
serves as its natural parameter. This parameter is the mean for a normal distribution,
the log of the odds for a binomial distribution, and the log of the mean for a Poisson
distribution. The link function g that transforms 𝜇i to the natural parameter is called
the canonical link. This link function, which equates the natural parameter with the
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linear predictor, generates the most commonly used GLMs. Certain simplifications
result when the GLM uses the canonical link function. For example, the model
has a concave log-likelihood function and simple sufficient statistics and likelihood
equations.

1.1.4 A GLM with Identity Link Function is a “Linear Model”

The link function g(𝜇i) = 𝜇i is called the identity link function. It has 𝜂i = 𝜇i. A
GLM that uses the identity link function is called a linear model. It equates the linear
predictor to the mean itself. This GLM has

𝜇i =
p∑

j=1

𝛽jxij, i = 1,… , n.

The standard version of this, which we refer to as the ordinary linear model, assumes
that the observations have constant variance, called homoscedasticity. An alternative
way to express the ordinary linear model is

yi =
p∑

j=1

𝛽jxij + 𝜖i,

where the “error term” 𝜖i has E(𝜖i) = 0 and var(𝜖i) = 𝜎2, i = 1,… , n. This is natural
for the identity link and normal responses but not for most GLMs.

In summary, ordinary linear models equate the linear predictor directly to the
mean of a response variable y and assume constant variance for that response. The
normal linear model also assumes normality. By contrast, a GLM is an extension that
equates the linear predictor to a link-function-transformed mean of y, and assumes a
distribution for y that need not be normal but is in the exponential family. We next
illustrate the three components of a GLM by introducing three of the most important
GLMs.

1.1.5 GLMs for Normal, Binomial, and Poisson Responses

The class of GLMs includes models for continuous response variables. Most impor-
tant are ordinary normal linear models. Such models assume a normal distribution
for the random component, yi ∼ N(𝜇i, 𝜎

2) for i = 1, ..., n. The natural parameter for a
normal distribution is the mean. So, the canonical link function for a normal GLM is
the identity link, and the GLM is then merely a linear model. In particular, standard
regression and analysis of variance (ANOVA) models are GLMs assuming a normal
random component and using the identity link function. Chapter 3 develops statistical
inference for such normal linear models. Chapter 2 presents model fitting for linear
models and shows this does not require the normality assumption.

Many response variables are binary. We represent the “success” and “failure” out-
comes, such as “favor” and “oppose” responses to a survey question about legalizing



COMPONENTS OF A GENERALIZED LINEAR MODEL 5

same-sex marriage, by 1 and 0. A Bernoulli trial for observation i has probabilities
P(yi = 1) = 𝜋i and P(yi = 0) = 1 − 𝜋i, for which 𝜇i = 𝜋i. This is the special case of
the binomial distribution with the number of trials ni = 1. The natural parameter for
the binomial distribution is log[𝜇i∕(1 − 𝜇i)]. This is the log odds of response outcome
1, the so-called logit of 𝜇i. The logit is the canonical link function for binary random
components. GLMs using the logit link have the form:

log
(

𝜇i

1 − 𝜇i

)
=

p∑
j=1

𝛽jxij, i = 1,… , n.

They are called logistic regression models, or sometimes simply logit models. Chapter
5 presents such models. Chapter 6 introduces generalized logit models for multino-
mial random components, for handling categorical response variables that have more
than two outcome categories.

Some response variables have counts as their possible outcomes. In a criminal
justice study, for instance, each observation might be the number of times a person
has been arrested. Counts also occur as entries in contingency tables. The simplest
probability distribution for count data is the Poisson. It has natural parameter log𝜇i,
so the canonical link function is the log link, 𝜂i = log𝜇i. The model using this link
function is

log𝜇i =
p∑

j=1

𝛽jxij, i = 1,… , n.

Presented in Chapter 7, it is called a Poisson loglinear model. We will see there that
a more flexible model for count data assumes a negative binomial distribution for yi.

Table 1.1 lists some GLMs presented in Chapters 2–7. Chapter 4 presents basic
results for GLMs, such as likelihood equations, ways of finding the ML estimates,
and large-sample distributions for the ML estimators.

1.1.6 Advantages of GLMs versus Transforming the Data

A traditional way to model data, introduced long before GLMs, transforms y so that
it has approximately a normal conditional distribution with constant variance. Then,
the least squares fitting method and subsequent inference for ordinary normal linear

Table 1.1 Important Generalized Linear Models for Statistical Analysis

Random Component Link Function Model Chapters

Normal Identity Regression 2 and 3
Analysis of variance 2 and 3

Exponential family Any Generalized linear model 4
Binomial Logit Logistic regression 5
Multinomial Generalized logits Multinomial response 6
Poisson Log Loglinear 7

Chapter 4 presents an overview of GLMs, and the other chapters present special cases.
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models presented in the next two chapters are applicable on the transformed scale.
For example, with count data that have a Poisson distribution, the distribution is
skewed to the right with variance equal to the mean, but

√
y has a more nearly normal

distribution with variance approximately equal to 1/4. For most data, however, it is
challenging to find a transformation that provides both approximate normality and
constant variance. The best transformation to achieve normality typically differs from
the best transformation to achieve constant variance.

With GLMs, by contrast, the choice of link function is separate from the choice
of random component. If a link function is useful in the sense that a linear model
with the explanatory variables is plausible for that link, it is not necessary that it
also stabilizes variance or produces normality. This is because the fitting process
maximizes the likelihood for the choice of probability distribution for y, and that
choice is not restricted to normality.

Let g denote a function, such as the log function, that is a link function in the
GLM approach or a transformation function in the transformed-data approach. An
advantage of the GLM formulation is that the model parameters describe g[E(yi)],
rather than E[g(yi)] as in the transformed-data approach. With the GLM approach,
those parameters also describe effects of explanatory variables on E(yi), after applying
the inverse function for g. Such effects are usually more relevant than effects of
explanatory variables on E[g(yi)]. For example, with g as the log function, a GLM
with log[E(yi)] = 𝛽0 + 𝛽1xi1 translates to an exponential model for the mean, E(yi) =
exp(𝛽0 + 𝛽1xi1), but the transformed-data model2 E[log(yi)] = 𝛽0 + 𝛽1xi1 does not
translate to exact information about E(yi) or the effect of xi1 on E(yi). Also, the
preferred transform is often not defined on the boundary of the sample space, such
as the log transform with a count or a proportion of zero.

GLMs provide a unified theory of modeling that encompasses the most important
models for continuous and discrete response variables. Models studied in this text
are GLMs with normal, binomial, or Poisson random component, or with extended
versions of these distributions such as the multinomial and negative binomial, or
multivariate extensions of GLMs. The ML parameter estimates are computed with
an algorithm that iteratively uses a weighted version of least squares. The same
algorithm applies to the entire exponential family of response distributions, for any
choice of link function.

1.2 QUANTITATIVE/QUALITATIVE EXPLANATORY VARIABLES
AND INTERPRETING EFFECTS

So far we have learned that a GLM consists of a random component that identifies the
response variable and its distribution, a linear predictor that specifies the explanatory
variables, and a link function that connects them. We now take a closer look at the
form of the linear predictor.

2We are not stating that a model for log-transformed data is never relevant; modeling the mean on
the original scale may be misleading when the response distribution is very highly skewed and has
many outliers.
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1.2.1 Quantitative and Qualitative Variables in Linear Predictors

Explanatory variables in a GLM can be

� quantitative, such as in simple linear regression models.
� qualitative factors, such as in analysis of variance (ANOVA) models.
� mixed, such as an interaction term that is the product of a quantitative explana-

tory variable and a qualitative factor.

For example, suppose observation i measures an individual’s annual income yi,
number of years of job experience xi1, and gender xi2 (1 = female, 0 = male). The
linear model with linear predictor

𝜇i = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 + 𝛽3xi1xi2

has quantitative xi1, qualitative xi2, and mixed xi3 = xi1xi2 for an interaction term.
As Figure 1.1 illustrates, this model corresponds to straight lines 𝜇i = 𝛽0 + 𝛽1xi1 for
males and 𝜇i = (𝛽0 + 𝛽2) + (𝛽1 + 𝛽3)xi1 for females. With an interaction term relating
two variables, the effect of one variable changes according to the level of the other.
For example, with this model, the effect of job experience on mean annual income
has slope 𝛽1 for males and 𝛽1 + 𝛽3 for females. The special case, 𝛽3 = 0, of a lack
of interaction corresponds to parallel lines relating mean income to job experience
for females and males. The further special case also having 𝛽2 = 0 corresponds to
identical lines for females and males. When we use the model to compare mean
incomes for females and males while accounting for the number of years of job
experience as a covariate, it is called an analysis of covariance model.

M
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e

Slope β1 (Males)

Job experience

Slope β1 + β3 (Females)

β0 + β2

β0

Figure 1.1 Portrayal of linear predictor with quantitative and qualitative explanatory
variables.
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A quantitative explanatory variable x is represented by a single 𝛽x term in the
linear predictor and a single column in the model matrix X. A qualitative explanatory
variable having c categories can be represented by c − 1 indicator variables and terms
in the linear predictor and c − 1 columns in the model matrix X. The R software uses
as default the “first-category-baseline” parameterization, which constructs indicators
for categories 2,… , c. Their parameter coefficients provide contrasts with category
1. For example, suppose racial–ethnic status is an explanatory variable with c = 3
categories, (black, Hispanic, white). A model relating mean income to racial–ethnic
status could use

𝜇i = 𝛽0 + 𝛽1xi1 + 𝛽2xi2

with xi1 = 1 for Hispanics and 0 otherwise, xi2 = 1 for whites and 0 otherwise, and
xi1 = xi2 = 0 for blacks. Then 𝛽1 is the difference between the mean income for His-
panics and the mean income for blacks, 𝛽2 is the difference between the mean income
for whites and the mean income for blacks, and 𝛽1 − 𝛽2 is the difference between the
mean income for Hispanics and the mean income for whites. Some other software,
such as SAS, uses an alternative “last-category-baseline” default parameterization,
which constructs indicators for categories 1,… , c − 1. Its parameters then provide
contrasts with category c. All such possible choices are equivalent, in terms of having
the same model fit.

Shorthand notation can represent terms (variables and their coefficients) in symbols
used for linear predictors. A quantitative effect 𝛽x is denoted by X, and a qualitative
effect is denoted by a letter near the beginning of the alphabet, such as A or B.
An interaction is represented3 by a product of such terms, such as A.B or A.X. The
period represents forming component-wise product vectors of constituent columns
from the model matrix. The crossing operator A*B denotes A + B + A.B. Nesting of
categories of B within categories of A (e.g., factor A is states, and factor B is counties
within those states) is represented by A∕B = A + A.B, or sometimes by A + B(A).
An intercept term is represented by 1, but this is usually assumed to be in the model
unless specified otherwise. Table 1.2 illustrates some simple types of linear predictors
and lists the names of normal linear models that equate the mean of the response
distribution to that linear predictor.

Table 1.2 Types of Linear Predictors for Normal Linear Models

Linear Predictor Name of Model

X1 + X2 + X3 +⋯ Multiple regression
A One-way ANOVA
A + B Two-way ANOVA, no interaction
A + B + A.B Two-way ANOVA, interaction
A + X or A + X + A.X Analysis of covariance

3In R, a colon is used, such as A:B.
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1.2.2 Interval, Nominal, and Ordinal Variables

Quantitative variables are said to be measured on an interval scale, because numerical
intervals separate levels on the scale. They are sometimes called interval variables.
A qualitative variable, as represented in a model by a set of indicator variables,
has categories that are treated as unordered. Such a categorical variable is called a
nominal variable.

By contrast, a categorical variable whose categories have a natural ordering is
referred to as ordinal. For example, attained education might be measured with the cat-
egories (<high school, high school graduate, college graduate, postgraduate degree).
Ordinal explanatory variables can be treated as qualitative by ignoring the ordering
and using a set of indicator variables. Alternatively, they can be treated as quantita-
tive by assigning monotone scores to the categories and using a single 𝛽x term in the
linear predictor. This is often done when we expect E(y) to progressively increase, or
progressively decrease, as we move in order across those ordered categories.

1.2.3 Interpreting Effects in Linear Models

How do we interpret the 𝛽 coefficients in the linear predictors of GLMs? Suppose
the response variable is a college student’s math achievement test score yi, and we
fit the linear model having xi1 = the student’s number of years of math education as
an explanatory variable, 𝜇i = 𝛽0 + 𝛽1xi1. Since 𝛽1 is the slope of a straight line, we
might say, “If the model holds, a one-year increase in math education corresponds
to a change of 𝛽1 in the expected math achievement test score.” However, this may
suggest the inappropriate causal conclusion that if a student attains another year of
math education, her or his math achievement test score is expected to change by 𝛽1.
To validly make such a conclusion, we would need to conduct an experiment that adds
a year of math education for each student and then observes the results. Otherwise,
a higher mean test score at a higher math education level (if 𝛽1 > 0) could at least
partly reflect the correlation of several other variables with both test score and math
education level, such as parents’ attained educational levels, the student’s IQ, GPA,
number of years of science courses, etc. Here is a more appropriate interpretation:
If the model holds, when we compare the subpopulation of students having a certain
number of years of math education with the subpopulation having one fewer year of
math education, the difference in the means of their math achievement test scores is 𝛽1.

Now suppose the model adds xi2 = age of student and xi3 = mother’s number of
years of math education,

𝜇i = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 + 𝛽3xi3.

Since 𝛽1 = 𝜕𝜇i∕𝜕xi1, we might say, “The difference between the mean math achieve-
ment test score of a subpopulation of students having a certain number of years of
math education and a subpopulation having one fewer year of math education equals
𝛽1, when we keep constant the student’s age and the mother’s math education.”
Controlling variables is possible in designed experiments. But it is unnatural and
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possibly inconsistent with the data for many observational studies to envision increas-
ing one explanatory variable while keeping all the others fixed. For example, x1 and
x2 are likely to be positively correlated, so increases in x1 naturally tend to occur
with increases in x2. In some datasets, one might not even observe a 1-unit range in
an explanatory variable when the other explanatory variables are all held constant.
A better interpretation is this: “The difference between the mean math achievement
test score of a subpopulation of students having a certain number of years of math
education and a subpopulation having one fewer year equals 𝛽1, when both subpop-
ulations have the same value for 𝛽2xi2 + 𝛽3xi3.” More concisely we might say, “The
effect of the number of years of math education on the mean math achievement test
score equals 𝛽1, adjusting4 for student’s age and mother’s math education.” When the
model also has a qualitative factor, such as xi4 = gender (1 = female, 0 = male), then
𝛽4 is the difference between the mean math achievement test scores for female and
male students, adjusting for the other explanatory variables in the model. Analogous
interpretations apply to GLMs for a link-transformed mean.

The effect 𝛽1 in the equation with a sole explanatory variable is usually not the
same as 𝛽1 in the equation with multiple explanatory variables, because of factors
such as confounding. The effect of x1 on E(y) will usually differ if we ignore other
variables than if we adjust for them, especially in observational studies containing
“lurking variables” that are associated both with y and with x1. To highlight such
a distinction, it is sometimes helpful to use different notation5 for the model with
multiple explanatory variables, such as

𝜇i = 𝛽0 + 𝛽y1⋅23
xi1 + 𝛽y2⋅13

xi2 + 𝛽y3⋅12
xi3,

where 𝛽yj⋅k𝓁 denotes the effect of xj on y after adjusting for xk and x𝓁 .
Some other caveats: In practice, such interpretations use an estimated linear pre-

dictor, so we replace “mean” by “estimated mean.” Depending on the units of mea-
surement, an effect may be more relevant when expressed with changes other than one
unit. When an explanatory variable also occurs in an interaction, then its effect should
be summarized separately at different levels of the interacting variable. Finally, for
GLMs with nonidentity link function, interpretation is more difficult because 𝛽j refers
to the effect on g(𝜇i) rather than 𝜇i. In later chapters we will present interpretations
for various link functions.

1.3 MODEL MATRICES AND MODEL VECTOR SPACES

For the data vector y with 𝝁 = E(y), consider the GLM 𝜼 = X𝜷 with link function
g and transformed mean values 𝜼 = g(𝝁). For this GLM, y, 𝝁, and 𝜼 are points in
n-dimensional Euclidean space, denoted by ℝn.

4For linear models, Section 2.5.6 gives a technical definition of adjusting, based on removing effects
of x2 and x3 by regressing both y and x1 on them.
5Yule (1907) introduced such notation in a landmark article on regression modeling.
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1.3.1 Model Matrices Induce Model Vector Spaces

Geometrically, model matrices of GLMs naturally induce vector spaces that deter-
mine the possible 𝝁 for a model. Recall that a vector space S is such that if u and v
are elements in S, then so are u + v and cu for any constant c.

For a particular n × p model matrix X, the values of X𝜷 for all possible vectors 𝜷
of model parameters generate a vector space that is a linear subspace of ℝn. For all
possible 𝜷, 𝜼 = X𝜷 traces out the vector space spanned by the columns of X, that is,
the set of all possible linear combinations of the columns of X. This is the column
space of X, which we denote by C(X),

C(X) = {𝜼 : there is a 𝜷 such that 𝜼 = X𝜷}.

In the context of GLMs, we refer to the vector space C(X) as the model space. The
𝜼, and hence the 𝝁, that are possible for a particular GLM are determined by the
columns of X.

Two models with model matrices Xa and Xb are equivalent if C(Xa) = C(Xb). The
matrices Xa and Xb could be different because of a change of units of an explanatory
variable (e.g., pounds to kilograms), or a change in the way of specifying indicator
variables for a qualitative predictor. On the other hand, if the model with model
matrix Xa is a special case of the model with model matrix Xb, for example, with Xa
obtained by deleting one or more of the columns of Xb, then the model space C(Xa)
is a vector subspace of the model space C(Xb).

1.3.2 Dimension of Model Space Equals Rank of Model Matrix

Recall that the rank of a matrix X is the number of vectors in a basis for C(X), which
is a set of linearly independent vectors whose linear combinations generate C(X).
Equivalently, the rank is the number of linearly independent columns (or rows) of
X. The dimension of the model space C(X) of 𝜼 values, denoted by dim[C(X)], is
defined to be the rank of X. In all but the final chapter of this book, we assume p ≤ n,
so the model space has dimension no greater than p. We say that X has full rank when
rank(X) = p.

When X has less than full rank, the columns of X are linearly dependent, with
any one column being a linear combination of the other columns. That is, there exist
linear combinations of the columns that yield the 0 vector. There are then nonzero
p × 1 vectors 𝜻 such that X𝜻 = 0. Such vectors make up the null space of the model
matrix,

N(X) = {𝜻 : X𝜻 = 0}.

When X has full rank, then dim[N(X)] = 0. Then, no nonzero combinations of
the columns of X yield 0, and N(X) consists solely of the p × 1 zero vector, 0 =
(0, 0,… , 0)T. Generally,

dim[C(X)] + dim[N(X)] = p.
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When X has less than full rank, we will see that the model parameters 𝜷 are not
well defined. Then there is said to be aliasing of the parameters. In one way this can
happen, called extrinsic aliasing, an anomaly of the data causes the linear dependence,
such as when the values for one predictor are a linear combination of values for the
other predictors (i.e., perfect collinearity). Another way, called intrinsic aliasing,
arises when the linear predictor contains inherent redundancies, such as when (in
addition to the usual intercept term) we use an indicator variable for each category of
a qualitative predictor. The following example illustrates.

1.3.3 Example: The One-Way Layout

Many research studies have the central goal of comparing response distributions for
different groups, such as comparing life-length distributions of lung cancer patients
under two treatments, comparing mean crop yields for three fertilizers, or comparing
mean incomes on the first job for graduating students with various majors. For c
groups of independent observations, let yij denote response observation j in group i,
for i = 1,… , c and j = 1,… , ni. This data structure is called the one-way layout.

We regard the groups as c categories of a qualitative factor. For 𝜇ij = E(yij), the
GLM has linear predictor,

g(𝜇ij) = 𝛽0 + 𝛽i.

Let𝜇i denote the common value of {𝜇ij, j = 1,… , ni}, for i = 1,… , c. For the identity
link function and an assumption of normality for the random component, this model
is the basis of the one-way ANOVA significance test of H0: 𝜇1 = ⋯ = 𝜇c, which we
develop in Section 3.2. This hypothesis corresponds to the special case of the model
in which 𝛽1 = ⋯ = 𝛽c.

Let y = (y11,… , y1n1
,… , yc1,… , ycnc

)T and 𝜷 = (𝛽0, 𝛽1,… , 𝛽c)T. Let 1ni
denote

the ni × 1 column vector consisting of ni entries of 1, and likewise for 0ni
. For the one-

way layout, the model matrix X for the linear predictor X𝜷 in the GLM expression
g(𝝁) = X𝜷 that represents g(𝜇ij) = 𝛽0 + 𝛽i is

X =
⎛⎜⎜⎜⎝

1n1
1n1

0n1
⋯ 0n1

1n2
0n2

1n2
⋯ 0n2

⋮ ⋮ ⋮ ⋱ ⋮
1nc

0nc
0nc

⋯ 1nc

⎞⎟⎟⎟⎠
.

This matrix has dimension n × p with n = n1 +⋯ + nc and p = c + 1.
Equivalently, this parameterization corresponds to indexing the observations as yh

for h = 1,… , n, defining indicator variables xhi = 1 when observation h is in group
i and xhi = 0 otherwise, for i = 1,… , c, and expressing the linear predictor for the
link function g applied to E(yh) = 𝜇h as

g(𝜇h) = 𝛽0 + 𝛽1xh1 +⋯ + 𝛽cxhc.

In either case, the indicator variables whose coefficients are {𝛽1,… , 𝛽c} add up to
the vector 1n. That vector, which is the first column of X, has coefficient that is
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the intercept term 𝛽0. The columns of X are linearly dependent, because columns
2 through c + 1 add up to column 1. Here 𝛽0 is intrinsically aliased with

∑c
i=1 𝛽i.

The parameter 𝛽0 is marginal to {𝛽1,… , 𝛽c}, in the sense that the column space for
the coefficient of 𝛽0 in the model lies wholly in the column space for the vector
coefficients of {𝛽1,… , 𝛽c}. So, 𝛽0 is redundant in any explanation of the structure of
the linear predictor.

Because of the linear dependence of the columns of X, this matrix does not have full
rank. But we can achieve full rank merely by dropping one column of X, because we
need only c − 1 indicators to represent a c-category explanatory variable. This model
with one less parameter has the same column space for the reduced model matrix.

1.4 IDENTIFIABILITY AND ESTIMABILITY

In the one-way layout example, let d denote any constant. Suppose we transform the
parameters 𝜷 to a new set,

𝜷∗ = (𝛽∗0 , 𝛽∗1 ,… , 𝛽∗c )T = (𝛽0 + d, 𝛽1 − d,… , 𝛽c − d)T.

The linear predictor with this new set of parameters is

g(𝜇ij) = 𝛽∗0 + 𝛽∗i = (𝛽0 + d) + (𝛽i − d) = 𝛽0 + 𝛽i.

That is, the linear predictor X𝜷 for g(𝝁) is exactly the same, for any value of d. So,
for the model as specified with c + 1 parameters, the parameter values are not unique.

1.4.1 Identifiability of GLM Model Parameters

For this model, because the value for 𝜷 is not unique, we cannot estimate 𝜷 uniquely
even if we have an infinite amount of data. Whether we assume normality or some
other distribution for y, the likelihood equations have infinitely many solutions. When
the model matrix is not of full rank, 𝜷 is not identifiable.

Definition. For a GLM with linear predictor X𝜷, the parameter vector 𝜷 is identifi-
able if whenever 𝜷∗ ≠ 𝜷, then X𝜷∗ ≠ X𝜷.

Equivalently, 𝜷 is identifiable if X𝜷∗ = X𝜷 implies that 𝜷∗ = 𝜷, so this definition
tells us that if we know g(𝝁) = X𝜷 (and hence if we know 𝝁 satisfying the model),
then we can also determine 𝜷.

For the parameterization just given for the one-way layout, 𝜷 is not identifiable,
because 𝜷 = (𝛽0, 𝛽1,… , 𝛽c)T and 𝜷∗ = (𝛽0 + d, 𝛽1 − d,… , 𝛽c − d)T do not have dif-
ferent linear predictor values. In such cases, we can obtain identifiability and eliminate
the intrinsic aliasing among the parameters by redefining the linear predictor with
fewer parameters. Then, different 𝜷 values have different linear predictor values X𝜷,
and estimation of 𝜷 is possible.
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For the one-way layout, we can either drop a parameter or add a linear constraint.
That is, in g(𝜇ij) = 𝛽0 + 𝛽i, we might set 𝛽1 = 0 or 𝛽c = 0 or

∑
i 𝛽i = 0 or

∑
i ni𝛽i = 0.

With the first-category-baseline constraint 𝛽1 = 0, we express the model as g(𝝁) = X𝜷
with

X𝜷 =

⎛⎜⎜⎜⎜⎜⎝

1n1
0n1

0n1
⋯ 0n1

1n2
1n2

0n2
⋯ 0n2

1n3
0n3

1n3
⋯ 0n3

⋮ ⋮ ⋮ ⋱ ⋮
1nc

0nc
0nc

⋯ 1nc

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎝
𝛽0
𝛽2
⋮
𝛽c

⎞⎟⎟⎟⎠
.

When used with the identity link function, this expression states that𝜇1 = 𝛽0 (from the
first n1 rows of X), and for i > 1, 𝜇i = 𝛽0 + 𝛽i (from the ni rows of X in set i). Thus,
the model parameters then represent 𝛽0 = 𝜇1 and {𝛽i = 𝜇i − 𝜇1}. Under the last-
category-baseline constraint 𝛽c = 0, the parameters are 𝛽0 = 𝜇c and {𝛽i = 𝜇i − 𝜇c}.
Under the constraint

∑
i ni𝛽i = 0, the parameters are 𝛽0 = 𝜇̄ and {𝛽i = 𝜇i − 𝜇̄}, where

𝜇̄ = (
∑

i ni𝜇i)∕n.
A slightly more general definition of identifiability refers instead to linear combi-

nations𝓵T𝜷 of parameters. It states that𝓵T𝜷 is identifiable if whenever𝓵T𝜷∗ ≠ 𝓵T𝜷,
then X𝜷∗ ≠ X𝜷. This definition permits a subset of the terms in 𝜷 to be identifiable,
rather than treating the entire 𝜷 as identifiable or nonidentifiable. For example, sup-
pose we extend the model for the one-way layout to include a quantitative explanatory
variable taking value xij for observation j in group i, yielding the analysis of covariance
model

g(𝜇ij) = 𝛽0 + 𝛽i + 𝛾xij.

Then, without a constraint on {𝛽i} or 𝛽0, according to this definition {𝛽i} and 𝛽0 are
not identifiable, but 𝛾 is identifiable. Here, taking 𝓵T𝜷 = 𝛾 , different values of 𝓵T𝜷

yield different values of X𝜷.

1.4.2 Estimability in Linear Models

In a non-full-rank model specification, some quantities are unaffected by the parame-
ter nonidentifiability and can be estimated. In a linear model, the adjective estimable
refers to certain quantities that can be estimated in an unbiased manner.

Definition. In a linear model E(y) = X𝜷, the quantity 𝓵T𝜷 is estimable if there exist
coefficients a such that E(aTy) = 𝓵T𝜷.

That is, some linear combination of the observations estimates 𝓵T𝜷 unbiasedly.
We show now that if 𝓵T𝜷 can be expressed as a linear combination of means, it

is estimable. Recall that xi denotes row i of the model matrix X, corresponding to
observation yi, for which E(yi) = xi𝜷. Letting 𝓵T = xi and taking a to be identically 0
except for a 1 in position i, we have E(aTy) = E(yi) = xi𝜷 = 𝓵T𝜷 for all 𝜷. So E(yi) =


