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We cannot solve our problems
with the same thinking

we used when we created them.

Albert Einstein

Eppur si muove

Galileo Galilei
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Preface

This book is an illustration of the adage collected by Thomas Fuller in
Gnomologia (1732, Adage 560): All things are difficult, before they are easy and
cited by John Aitchison (1986, Chapter 3). It has been a long way to arrive at this
point, and there is still a long and not always easy way to go in the light of the
insights presented here. Therefore, we dedicate this work to all those researchers
who are not mainstream and have to struggle swimming against the tide.
These pages are based on lecture notes originally prepared as support to a short

course on compositional data analysis. The first version of the notes dates back
to the year 2000. Their aim was to transmit the basic concepts and skills for sim-
ple applications, thus setting the premises for more advanced projects. The notes
were updated over the years, reflecting the evolution of our knowledge about the
geometry of the sample space of compositional data. The recognition of the role
of the sample space and its algebraic-geometric structure has been essential in this
process. This book reflects the state of the art at the beginning of the year 2014.
Its aim is still to introduce the reader into the basic concepts underlying compo-
sitional data analysis, but it goes far beyond an introductory text, as it includes
advanced geometrical and statistical modeling. One should also be aware that the
theory presented here is a field of active research. Therefore, the learning process
can just start with this book, and a study of the latest contributions presented at
meetings and as articles in journals is strongly recommended.
The book relies heavily on the monograph “The Statistical Analysis of

Compositional Data” by John Aitchison (1986) and on posterior fundamental
developments that complement the theory developed there, mainly those
by Aitchison (1997), Barceló-Vidal et al. (2001), Billheimer et al. (2001),
Pawlowsky-Glahn and Egozcue (2001, 2002), Aitchison et al. (2002), Egozcue
et al. (2003), Pawlowsky-Glahn (2003), Egozcue and Pawlowsky-Glahn (2005),
and Mateu-Figueras et al. (2011). Specific literature for other aspects of com-
positional analysis is given in the corresponding chapters. Chapter 1 gives a
brief overview of the history of these developments and presents some everyday
examples to illustrate the need of compositional data analysis. Chapter 2
defines compositions and their characteristics and introduces their sample space,
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the simplex. Zeros and other irregular components are addressed in Section 2.3.
On the basis of these considerations, Chapter 3 presents the Aitchison geometry
of the simplex, while Chapter 4 gathers several ways to represent compositional
data within this geometry. These four chapters form the algebraic-geometric
body of the book, the backbone of the rest of the material.
Chapter 5 deals with exploratory analysis techniques adapted to compositions.

Chapter 6 covers some distribution models for random compositions, as well
as some required elements of probability theory. In particular, the latter chapter
includes the normal distribution on the simplex, essential for the following two
chapters. They are devoted to advanced statistical modeling: Chapter 7 provides
some tools for testing compositional hypotheses (numerically and graphically),
while Chapter 8 focuses on linear models, including regression, analysis of vari-
ance, and discriminant analysis. The last two chapters give an overview of what
lies beyond this book: Chapter 9 outlines several compositional models besides
the linear model, while the epilogue (Chapter 10) summarizes the ongoing and
open aspects of research, as well as further topics, too specific to deserve longer
attention in a general-purpose book.
Readers should take into account that, for a thorough understanding of com-

positional data analysis, a good knowledge in standard univariate statistics, basic
linear algebra, and calculus, complemented with an introduction to applied multi-
variate statistical analysis, is a must. The specific subjects of interest in multivari-
ate statistics, developed under the assumptions that the sample space is the real
space with the usual Euclidean geometry, can be learned in parallel from stan-
dard textbooks, for instance, Krzanowski (1988) and Krzanowski and Marriott
(1994) (in English), Fahrmeir and Hamerle (1984) (in German), or Peña (2002)
(in Spanish). Thus, the intended audience goes from advanced students in applied
sciences to practitioners, although the original lecture notes proved to be useful
for statisticians andmathematicians as well. Newcomers to the fieldmay find spe-
cially useful to start with Chapters 1–3, then read the first five sections of Chapter
4 and switch to Chapters 5 and 7 before finishing up Chapter 4. Applied practi-
tioners already familiar with the basics of compositional data analysis should
have a look at the notation and concepts in Chapters 4 and 6, before passing to
the modeling Chapters 7–9. This book includes an extensive list of references,
two appendices with practical recipes and some basic elements of random vari-
ables, a list of the symbols used in the book, and two indices; an author index
and a general index. In the latter, pages in boldface indicate the point where the
corresponding concept is defined.
Concerning notation, it is important to note that, to conform to the standard

praxis of registering multivariate observations as a matrix where each row is
an observation or data point and each column is a variate, vectors will be con-
sidered as row vectors (denoted by square brackets) to make the transfer from
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theoretical concepts to practical computations easier. Furthermore, as a general
rule, theoretical parameters will be denoted by either Latin or Greek letters and
their estimators by the same letters with a hat.
Throughout the book, examples are introduced to illustrate the concepts pre-

sented. The end of each example is indicated with a diamond suit (♢).
Most chapters end with a list of exercises. They are formulated in such a way

that many can be solved using an appropriate software. CoDaPack is a user
friendly, cross-platform, freeware to facilitate this task, which can be downloaded
from the web. Details about this package can be found in Thió-Henestrosa and
Martín-Fernández (2005) or Thió-Henestrosa et al. (2005). Those interested in
working with R (or S-plus) may use the packages “compositions” by Boogaart
and Tolosana-Delgado (2005, 2013) in general or “robCompositions” by Templ
et al. (2011) for robust compositional data analysis, as well as their common
graphical user interface “compositionsGUI” by Eichler et al. (2013).

Vera Pawlowsky-Glahn
Juan José Egozcue

Raimon Tolosana-Delgado
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1

Introduction

Compositional data describe parts of some whole. They are commonly presented
as vectors of proportions, percentages, concentrations, or frequencies. As propor-
tions are expressed as real numbers, one is tempted to interpret, or even analyze,
them as real multivariate data. This practice can lead to paradoxes and/or misin-
terpretations, some of them well known even a century ago, but mostly forgotten
and neglected over the years. Some simple examples illustrate the anomalous
behavior of proportions when analyzed without taking into account the special
characteristics of compositional data.

Example 1.1 (Intervals covering negative proportions).
Daily measurements of an air pollutant are reported as 3 ± 5 μg∕m3. The given
interval of concentration covers a nonsensical range of concentrations that
includes negative values. It is probably generated by an average of concentra-
tions which contain some values much higher than 3 μg∕m3. For instance, the
following is a set of rounded random percentages: 1, 1, 2, 3, 4, 4, 7, 13, 29, 37.
Their mean is 10.1%, while their standard deviation is 12.7%. Thus a typical
2s-interval for the mean value would be an interval covering negative propor-
tions, namely, (−15.3%; 35.5%). A frequent procedure is to cut this interval at
zero, but then the question arises on what happens to the probability assigned to
the eliminated part of the interval, (−15.3%; 0%), and to the probability assigned
to the retained part, (0%; 35.5%). ♢

Modeling and Analysis of Compositional Data, First Edition.
Vera Pawlowsky-Glahn, Juan José Egozcue and Raimon Tolosana-Delgado.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Example 1.2 (Small proportions: Are they important?).
Frequently, when some components or parts of a composition are very small,
they are eliminated, with the argument that they are negligible. In such a case, it
is important to think about the salt in a soup. Consider a soup that is perfectly
seasoned to your taste, and imagine somebody adds to the soup the same amount
of salt you used, thinking that it was not yet seasoned. Probably, doubling the
amount of salt will spoil it completely. To our understanding, this is a perfect
example on how important a small proportion can be and why a relative scale
gives you better information in this case than an absolute one. Sometimes, small
proportions are added to other parts, for example, salt and other spices, but that
leads to a loss of information, making the recipe insufficiently specified. ♢

Example 1.3 (Reporting changes in proportions).
In the 1998 election to the German Bundestag, the German Liberal Party (FDP)
obtained 6.2% of the votes. Eleven years later, in the 2009 elections, they obtained
a share of 14.6%. This could be reported as an increment of 8.4 percentage points.
We are more used to reading that FDP increased its proportion of votes a 135%
(6.2 + 6.2 × 135∕100 = 14.6). In the following election, just 4 years later, the
party decreased its votes by a significant 67%, but still half of the increment
that occurred between 1998 and 2009. Nevertheless, that meant that the FDP
was not anymore represented in the Bundestag, because its share (14.6 − 14.6 ×
67∕100 = 4.8) dropped below the threshold of 5% required by the German elec-
toral law. How can it be that increasing 135% and decreasing 67% gives a negative
balance? Perhaps this is a bad way of reporting changes in proportions (data
extracted from Wikipedia (2014)).
Reporting increments of shares in differences of percentage points have also

disappointing properties, as the relative scale of proportions is ignored. In fact,
an increment of 8.4 percentage points represents a very important change from
the 1998 result of FDP (6.2%). It would be not so important if the previous 1998
result were, for instance, 30%. ♢

Example 1.4 (The scale of proportions).
In a given year, the annual proportion of rainy days in a desert region is 0.1%,
and near a mountain range it is 20.0%. Some years later, these proportions have
changed to 0.2% and 20.1%, respectively. To summarize the situation, one can
assert that the rainy days in both regions have increased by 0.1%. Such a statement
suggests the idea of a homogeneous change in the two different regions, ignoring
that the rainy days in the desert have been doubled, while in the mountain range
the proportion is almost the same. Using the increment of ratios typical of election
results or economic reports, the rainy days would have increased a critical 100%
in the desert, and a slightly relevant 5% in the mountains.
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Furthermore, if some analysis of the evolution of the rainy days is made in
both regions, it should be guaranteed that equivalent results are obtained if the
nonrainy days are analyzed. In the desert region, the annual proportion of non-
rainy days has changed from 99.9% to 99.8% and near the mountain range from
80.0% to 79.9%. That represents that nonrainy days have decreased, respectively,
0.001% and 0.00125%, which suggests almost no difference between the moun-
tain and the desert. How can it then be that rainy days change so dramatically
in the desert and nonrainy days do not change at all? A proper analysis should
assure that no paradoxical results are obtained when analyzing one type of days
and its complementary. ♢

Example 1.5 (The Simpson’s paradox).
The lectures on statistics started very early this morning. Students (men and
women) are divided into two classrooms. Some of them arrived on time and
some of them were late. Academia was interested in knowing about punctuality
according to the gender of the students. Therefore, data were collected this
morning during the statistics lectures. The data set is reported in Table 1.1. The
paradoxical result is that, for both classrooms, the proportion of women arriving
on time is greater than that of men. On the contrary, if the individuals of both
classrooms are joined in a single population, the proportion of punctual men
is larger than that of the women. This kind of paradoxical results are known as
Simpson’s paradox (Simpson, 1951; Julious and Mullee, 1994; Zee Ma, 2009).
The paradox can be viewed from different points of view. The simplest one, the
arithmetic perspective, is to look at the way in which proportions are aggregated:
to find the proportion of on-time women in the joint population, the per class-
room proportions a1∕W1, a2∕W2 are averaged as (a1 + a2)∕(W1 +W2), where ai
is the number of on-time women in the classroom i and Wi is the corresponding

Table 1.1 Number of students of two classrooms, arriving on time and being
late, classified by gender. Proportions are reported under the number of
students. The largest proportion of arriving on-time men and women are in
boldface for easy comparison.

Classroom 1 Classroom 2 Total

On time Late On time Late On time Late
Men 53 9 12 6 65 15

0.855 0.145 0.667 0.333 0.813 0.188
Women 20 2 50 18 70 20

0.909 0.091 0.735 0.265 0.778 0.222
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total of women. This kind of average is ill-behaved for proportions as shown by
Simpson’s paradox.
A second point of view is to look at the total proportion of on-time women as

a mean value of this proportion in the two classrooms. Each classroom is treated
as a sample individual and (a1 + a2)∕(W1 +W2) is taken as the sample mean of
the proportions. The paradoxical result suggests that mean values of proportions
should be redefined carefully to get consistent results. ♢

Example 1.6 (Spurious correlation).
The Spanish Government publishes the number of affiliations to the Social
Security on a monthly basis, which is classified into the following categories
depending on the type of company: agricultural, industrial, construction, and ser-
vice. The 144 data, corresponding to a monthly series going from 1997 to 2008,
were downloaded from the corresponding web site (Gobierno de España, 2014).
A version, prepared for processing, is available in (www.wiley.com/go/glahn
/practical). First, to obtain proportions between the different types of company,
the data were normalized to add to 1 in the full composition comprising the
four categories. Then, the correlation matrix was computed (see Table 1.2).
Next, to analyze the behavior of the companies excluding construction, a
subcomposition of three categories was obtained, suppressing the category
construction and converting the three-part vector to proportions, so that the
three components add up to 1. Again, the correlation matrix was computed (see
Table 1.3). When analyzing correlations in the full composition with four parts
and the subcomposition with three parts, the correlation between the proportion
of agricultural and industrial companies only changed slightly, actually from
−0.9808 to −0.9887, whereas the correlation between the service companies and
either agricultural or industrial companies changed dramatically, from 0.1699
to 0.9863 in the first case and from −0.0723 to −0.9999 in the second. This is a
typical effect when analyzing a set of parts adding up to a constant, or a subset
of the same parts, closed to any constant.

Table 1.2 Correlation of proportion of affiliations to social security in Spain
according to the type of company (four-part composition: agricultural,
industrial, construction, and service).

Agricultural Industrial Construction Service

Agricultural 1.0000 −0.9808 0.9201 0.1699
Industrial −0.9808 1.0000 −0.9663 −0.0723
Construction 0.9201 −0.9663 1.0000 −0.1867
Service 0.1699 −0.0723 −0.1867 1.0000

http://www.wiley.com/go/glahn/practical
http://www.wiley.com/go/glahn/practical
http://www.wiley.com/go/glahn/practical
http://www.wiley.com/go/glahn/practical
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Table 1.3 Correlation of proportion of affiliations to social
security in Spain according to the type of company (three-part
subcomposition: agricultural, industrial, and service).

Agricultural Industrial Service

Agricultural 1.0000 −0.9887 0.9863
Industrial −0.9887 1.0000 −0.9999
Service 0.9863 −0.9999 1.0000

The problem of spurious correlation is sometimes circumvented by avoiding
the closure when considering a subcomposition. This is equivalent to say: the per-
centages of agricultural, industrial, construction, and service affiliates constitute a
composition as the percentages add to 100%; to overcome the compositional intri-
cacies, we can remove one component, for example, service, so that the remaining
percentages do not add to 100%. This way, the correlationmatrix between the per-
centages of agricultural, industrial, and construction affiliates are exactly those
reported in Table 1.2 in the first three columns and rows. However, a new question
arises: what would happen if we start with two additional categories of affiliation
closed to 100%? ♢

The awareness of problems related to the statistical analysis of compositional
data dates back to a paper by Karl Pearson (1897) the title of which began sig-
nificantly with the words “On a form of spurious correlation ... ”. Since then, as
stated in Aitchison and Egozcue (2005), the way to deal with this type of data
has gone through roughly four phases, which can be summarized as follows:

Phase I: 1897–1960

Karl Pearson, in his paper on spurious correlations, pointed out the problems
arising from the use of standard statistical methods with proportions. But his
warnings were ignored until around 1960, despite the fact that a compositional
vector – with components the parts of some whole – is usually subject to a
constant-sum constraint.

Phase II: 1960–1980

Around 1960, the geologist Felix Chayes (1960) took up the problem and warned
against the application of standard multivariate analysis to compositional data.
He tried to separate what he called the real from the spurious correlation, in
an attempt to avoid the closure problem, expressed mainly as a negative bias
induced by the constant-sum constraint. Important contributions in geological
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applications were made, among others, by Sarmanov and Vistelius (1959), and
Mosimann (1962) which drew the attention of biologists. However, as pointed out
by Aitchison and Egozcue (2005), distortion of standard multivariate techniques
when applied to compositional data was the main goal of study.

Phase III: 1980–2000

Aitchison, in the 1980s, realized that compositions provide information about rel-
ative, not absolute, values of parts or components. Consequently, every statement
about a composition can be stated in terms of ratios of components (Aitchison,
1981, 1982, 1983, 1984). The facts that logratios are easier to handle mathe-
matically than ratios, and that a logratio transformation provides a one-to-one
mapping onto a real space, led to the advocacy of a methodology based on a vari-
ety of logratio transformations. These transformations allowed the use of standard
unconstrained multivariate statistics applied to transformed data, with inferences
translatable back into compositional statements. But they were, not without dif-
ficulties, derived from the fact that the usual Euclidean geometry and measure
were implicitly assumed for the sample space of compositional data.
This phase deserves special attention because transform techniques have been

very popular and successful over more than a century; from the Galton-McAlister
introduction of the logarithmic transformation for positive data, through variance-
stabilizing transformations for sound analysis of variance, to the general
Box–Cox transformation (Box and Cox, 1964) and the implied transformations
in generalized linear modeling. The logratio transformation principle is based
on the fact that there is a one-to-one correspondence between compositional
vectors and associated logratio vectors, so that any statement about compositions
can be reformulated in terms of logratios, and vice versa. The advantage is
that the problem of a constrained sample space, the simplex, is removed. Data
are projected into multivariate real space, opening up all available standard
multivariate techniques. The original transformations were principally the
additive logratio transformation (Aitchison, 1986, p. 113) and the centered
logratio transformation (Aitchison, 1986, p. 79). The logratio transformation
methodology seemed to be accepted by the statistical community; see, for
example, the discussion of Aitchison (1982).

Phase IV: 2000–present

Around 2000, several scientists realized independently that the internal simplicial
operation of perturbation, the external operation of powering, and the simpli-
cial metric define a metric vector space (indeed a Hilbert space) (Billheimer
et al., 1997, 2001, Pawlowsky-Glahn and Egozcue, 2001). The recognition of


