Essential Manual of 24 Hour Blood Pressure Management
For Tomoko
Essential Manual of 24 Hour Blood Pressure Management
From Morning to Nocturnal Hypertension

Kazuomi Kario MD, PhD, FACC, FACP, FAHA, FESC

Professor and Chairman, Department of Cardiovascular Medicine
Professor and Chairman, Department of Sleep and Circadian Cardiology
Jichi Medical University School of Medicine, Tochigi, Japan

Staff Visiting Professor of Medicine, UCL Institute of Cardiovascular Science
University College London, UK

WILEY Blackwell
Author biography, viii
Preface, x
Acknowledgments, xi

1 First, focusing on “morning hypertension”, 1
 What is the “perfect 24-hour blood pressure control”?, 1
 Definition of “morning hypertension”, 4
 How to assess “morning hypertension”, 5
 Home BP monitoring, 7
 Ambulatory BP Monitoring, 9
 Feasibility of controlling morning hypertension, 12
 Subtypes of morning hypertension, 14

2 Morning surge in blood pressure, 15
 Definition of MBPS, 15
 Cardiovascular events with MBPS, 16
 Organ damage with MBPS, 19
 Hypertensive heart disease, 20
 Vascular disease and inflammation, 21
 Silent cerebrovascular disease, 22
 Chronic kidney disease, 24
 Determinants of MBPS, 25
 Mechanism of morning risk, 28
 Hemostatic abnormality and MBPS, 29
 Vascular mechanism of exaggerated MBPS, 31

3 Nocturnal hypertension, 35
 Circadian rhythm of BP, 35
 Non-dipper/risers of nocturnal BP, 35
 Definition and risk of nocturnal hypertension, 38
 Mechanism of nocturnal hypertension, 43
 Associated conditions 44
 Diabetes, 45
 Chronic kidney disease, 47
Sleep apnea syndrome, 48
Extreme dipper—another type of disrupted circadian BP rhythm, 48

4 What is systemic hemodynamic atherothrombotic syndrome?, 50
A typical case of SHATS, 50
Clinical relevance of SHATS, 52
Pathological target of SHATS, 54
Mechanism of vicious cycle of SHATS, 57

5 Home blood pressure variability, 61
Maximum home SBP, 61
SD of morning SBP, 62
Morning orthostatic hypertension, 64

6 Development of information-technology-based new home blood pressure variability monitoring system, 67
Disaster cardiovascular prevention network, 67
Cutting-edge of HBPM, 71
 Basic nocturnal BP monitoring at home (Medinote), 71
 “Thermosensitive hypertension” detecting home BP device, 74
 Trigger nocturnal BP monitoring, 75
 IT-based trigger nocturnal pressure monitoring system, 81
Detection and management of OSAS using new IHOPE-TNP, 82

7 Home blood-pressure-monitoring-guided morning hypertension control, 88
Non-specific treatment, 88
Specific treatment, 89

8 Blood-pressure-lowering characteristics of antihypertensive drugs, 91
Diuretics, 91
Calcium channel blockers, 91
 Amlodipine, 92
 Nifedipine, 94
 Cilnidipine, 95
 Azelnidipine, 96
Angiotensin-converting enzyme inhibitors, 96
Angiotensin-receptor blockers, 98
 Telmisartan, 98
 Candesartan, 98
 Olmesartan, 99
 Azilsartan, 103
Contents

Alpha-adrenergic blockers and beta-adrenergic blockers, 104
RAS inhibitor-based combination, 106

9 Home and ambulatory blood-pressure-profile-based combination strategy, 109
First-line therapy, 109
Second-line therapy, 109
 Arterial stiffness type, 109
 Volume retention type, 110
Third-line therapy, 110

10 Management of resistant hypertension, 111
Evaluation of resistant hypertension, 111
Fourth-line therapy, 111
Circadian medication, 114

11 Era of renal denervation, 115
Evidence of renal denervation, 115
Hypothesis of “perfect 24-hour BP control” by renal denervation, 116

12 Latest evidence of controlling morning hypertension: the HONEST study, 118
Conclusion and perspectives, 122
References, 123
Index, 135
Author biography

Dr. Kazuomi Kario, MD, FACC, FACP, FAHA, FESC, graduated from Jichi Medical School in 1986. He is currently Professor and Chairman of Cardiovascular Medicine, and Professor of the Department of Sleep and Circadian Cardiology, Jichi Medical University School of Medicine, Japan, and is Staff Visiting Professor, Institute of Cardiovascular Science, University College London, UK. Dr. Kario and his team were the first to demonstrate “morning surge” in blood pressure (BP) as an independent risk factor for cardiovascular disease in 2003 [1, 2]. He first used “morning hypertension” with the definition of morning BP >135/85 mmHg regardless of clinic BP and stressed its clinical relevance in his book, *Clinician’s Manual on Early Morning Risk Management in Hypertension* in 2004 (Science Press, London, UK, 2004) [3]. He has recently proposed a novel disease entity, systemic hemodynamic atherothrombotic syndrome (SHATS), which is characterized by synergistic risk of exaggerated hemodynamic stress (exaggerated variability of BP and blood flow) and vascular disease, not only for advancing organ damage but also for triggering cardiovascular events [4].

His research includes the development of new technology-based BP monitoring such as “IT-based home nocturnal BP monitoring” and “hypoxia-triggered home sleep BP monitoring (TSP)” to clarify the clinical relevance of 24-hour BP control [5, 6]. He is the principal investigator of several clinical studies, such as Japan Morning Surge-Home Blood Pressure (J-HOP) study, Japan Ambulatory BP Monitoring (JAMP) study, Country-based Ambulatory BP Registry in Asia 2010 (CARE Asia), and Sleep BP and disordered breathing in REsistant hypertension And cardiovascular Disease (SPREAD), and the Home BP measurement with Olmesartan Naive patients to Establish Standard Target blood pressure (HONEST) study, the largest prospective observational study involving >20 000 patients receiving angiotensin receptor blocker (ARB)-based antihypertensive treatment for 2 years [7].

He has served as Editor-in-Chief of *Current Hypertension Reviews* and is the past Executive Editor of *Hypertension Research*. He is an editorial board member of more than 15 international journals, including *Hypertension, Journal of Hypertension, Circulation Journal, Journal of Clinical Hypertension, Journal of the American Society*
of Hypertension, American Journal of Hypertension, Blood Pressure Monitoring, Current Hypertension Reports, and Current Cardiology Reviews. Dr. Kario has published more than 600 academic papers during his distinguished career.

References

The essential benefit of the management of hypertension is derived from blood pressure (BP) lowering per se, indicating the importance of BP throughout 24 hours. Recent guidelines stressed the importance of home BP for the diagnosis and management of hypertension.

It is well known that cardiovascular events occur more frequently in the morning; BP levels have been shown to increase during the period from night to early morning. In recent years, clinical research using ambulatory blood pressure monitoring (ABPM) or home BP monitoring (HBPM) has clarified that morning BP and BP surge are more closely related to the cardiovascular risk than clinic BP. Also, in hypertensive patients treated with antihypertensive medication, even patients whose clinic BP is well controlled, morning BP level prior to taking medication frequently remains high.

In addition, nocturnal hypertension, frequently found in high-risk hypertensives with diabetes, chronic kidney disease (CKD), and sleep apnea syndrome (SAS), are closely associated with organ damage and risk of cardiovascular events. We have recently developed an information technology (IT)-based home nocturnal BP pressure monitoring system (ITNP) [1]. This may be useful for assessing the risk during sleep in high-risk patients.

In this Essential Manual, I would like to show the recent evidence on “morning hypertension” and “nocturnal hypertension,” the technology which will support the home BP-guided individual approach. I believe the “perfect 24-hour BP control” by changing the dose, the class, and timing of administration of antihypertensive drugs will achieve the most effective cardiovascular and renal protection. I hope this book will provide good practical advice for the treatment of hypertension on a day-to-day basis.

Reference

Acknowledgments

I would particularly like to thank the three academic fathers of my research, Kazuyuki Shimada, Takefumi Matsuo, and the late Thomas G. Pickering, who continuously supported me. I would also like to thank other senior researchers in this field and my colleagues who provided many helpful academic comments and criticism on the contents of this book. They include Bryan Williams, Gianfranco Parati, George Stergiou, Jiguang Wang, Satoshi Hoshide, Kazuo Eguchi, Yoshio Matsui, Yuichiro Yano, Joji Ishikawa, Michiaki Nagai, Tomoyuki Kabutoya, Mitsunori Sugiyama, Yusuke Ishikawa, Toshikazu Shiga, and Mitsuo Kuwabara. And my particular thanks are due to Ayako Okura, Editorial coordinator in the Department of Cardiovascular Medicine, Jichi Medical University School of Medicine, Yosuke Sato, Wiley Publishing Japan K.K. and the UK editors of Wiley, without whom this book would not have been possible.

Kazuomi Kario, MD, PhD, FACC, FACP, FAHA, FESC
CHAPTER 1

First, focusing on “morning hypertension”

The morning is the most important period for cardiovascular diseases [1, 2]. Cardiovascular events occur most frequently in the morning just after awakening, at the time of the peak ambulatory blood pressure (BP) (Figure 1.1) [2]. Exaggerated morning BP surge (MBPS) and morning hypertension are a risk for cardiovascular events (Figure 1.2), and are associated with advanced organ damage (Figure 1.3) [3–7]. Morning BP level is more closely associated with organ damage to brain, heart, and kidney, and the risk of cardiovascular and cerebrovascular events (Figure 1.4) and disability in the elderly than clinic BP both in hypertensive patients and community-based normotensive populations [8, 9]. Finally, recent evidence demonstrates that uncontrolled morning hypertension on medication is a strong predictor of cardiovascular events [10].

What is the “perfect 24-hour blood pressure control”?

The management of “morning hypertension” is the most effective first step to achieve “perfect 24-hour BP control” [1]. The majority of the benefit of antihypertensive treatment is derived from BP control per se. There is robust evidence that indicates BP control throughout 24 hours is essentially important for lowering the risk of organ damage and cardiovascular events. However, not only strict reduction of the 24-hour BP level (amount of 24-hour BP lowering), but also restoring disrupted circadian BP rhythms, and reducing exaggerated BP variability (quality of 24-hour BP lowering), are required to achieve “perfect 24-hour BP control” (Figure 1.5) [11].

Recent guidelines such as the Japanese Society of Hypertension (JSH2014) Guidelines [12], European Society of Hypertension/European Society of Cardiology (ESH/ESC2013) Guidelines [13], and NICE 2011 Guidelines (UK) [14] recommend the practical use of the out-of-office BP for the diagnosis and management of hypertension. Clinically, two methods are available to measure our BP in clinical practice. One is ambulatory BP monitoring (ABPM), and the other is home BP monitoring (HBPM) (Figure 1.6). Figure 1.7 demonstrates the different thresholds of clinic, home, and ambulatory BPs for the definition of hypertension [11–13].
Figure 1.1 Onset time of cardiovascular events. Source: Muller et al. 1989 [2].

Masked hypertension is defined as normotension for office BP and hypertension for out-of-office BP, while white-coat hypertension is defined as normotension for out-of-office BP and hypertension for office BP [15]. There are three subtypes of masked hypertension, namely morning hypertension, daytime (stress-induced) hypertension, and nocturnal hypertension (Figure 1.8). Among these masked hypertension subtypes, only morning hypertension could be definitively detected by the conventional measurement of HBPM.

Figure 1.2 Morning BP surge and stroke risk in hypertension (matching for age and 24-hour systolic BP). Source: Kario et al. 2003 [3].