
The railway sector is subject to varying normative and legal systems
across different countries. The CENELEC 50128 standard and its
international version IEC 62279 are necessary for the realization of
software applications within this sector.

This book is dedicated to the 2011 version of the CENELEC 50128
standard, which defines the implementation of techniques and methods
and focuses on management skills and the establishment of an
independent evaluation.

The authors stress the need for qualified tools, organization with
independence and the presence of an effective verification pole. The
construction of two types of software, software and parameterized so-
called generic software, are introduced. The involvement of people from
within the industry allows the authors to avoid the usual confidentiality
problems which can arise and thus enables them to supply new useful
information (photos, architecture plans, real examples, etc.).

By providing a real implementation guide to understanding the
fundamentals of the standard and the impacts on the activities to be
performed, this book helps to better prepare the compulsory phase of
independent evaluation.

Jean-Louis Boulanger is currently an Independent Safety Assessor (ISA)
in the railway domain focusing on software elements. He is a specialist
in software engineering (requirement engineering, semi-formal and
formal method, proof and model-checking). He also works as an expert
for the French notified body CERTIFER in the field of certification of
safety critical railway applications based on software (ERTMS, SCADA,
automatic subway, etc.). His research interests include requirements,
software verification and validation, traceability and RAMS with a
special focus on safety.

Z(7ib8e8-CBGDEB(www.iste.co.uk

CONTROL, SYSTEMS
AND INDUSTRIAL ENGINEERING SERIES

CENELEC 50128
and

IEC 62279 Standards

Jean-Louis Boulanger

J
e
a
n

-L
o

u
is B

o
u

la
n

g
e
r

C
E

N
E

L
E

C
 5

0
1

2
8

 a
n

d
 IE

C
 6

2
2

7
9

 S
ta

n
d

a
rd

s

9781848216341-Case.qxp_Layout 1 03/03/2015 12:22 Page 1

CENELEC 50128 and IEC 62279 Standards

CENELEC 50128 and
IEC 62279 Standards

Jean-Louis Boulanger

First published 2015 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2015
The rights of Jean-Louis Boulanger to be identified as the author of this work have been asserted by him
in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2015931031

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-84821-634-1

Contents

INTRODUCTION . xiii

CHAPTER 1. FROM THE SYSTEM TO THE SOFTWARE 1

1.1. Introduction . 1
1.2. Command/control system . 2
1.3. System . 6
1.4. Software application . 8

1.4.1. What is software? . 8
1.4.2. Different types of software . 9
1.4.3. The software application in
its proper context . 10

1.5. Conclusion . 11

CHAPTER 2. RAILWAY STANDARDS . 13

2.1. Introduction . 13
2.2. Generic standards . 14

2.2.1. Introduction . 14
2.2.2. Safety levels . 15

2.3. History between CENELEC and the IEC 16
2.4. CENELEC referential framework . 17

2.4.1. Introduction . 17
2.4.2. Description . 18
2.4.3. Implementation . 21
2.4.4. Software safety . 22
2.4.5. Safety versus availability . 22

2.5. EN 50155 standard . 23
2.6. CENELEC 50128 . 26

2.6.1. Introduction . 26

vi CENELEC 50128 and IEC 62279 Standards

2.6.2. SSIL management . 26
2.6.3. Comparison of 2001 and 2011 versions 28

2.7. Conclusion . 30

CHAPTER 3. RISK AND SAFETY INTEGRITY LEVEL 31

3.1. Introduction . 31
3.2. Basic definitions . 31
3.3. Safety enforcement . 37

3.3.1. What is safety? . 37
3.3.2. Safety management . 40
3.3.3. Safety integrity . 47
3.3.4. Determination of the SIL . 50
3.3.5. SIL table . 55
3.3.6. Allocation of SILs . 56
3.3.7. SIL management . 57
3.3.8. Software SIL. 58
3.3.9. Iterative process . 59
3.3.10. Identification of safety requirements 60

3.4. In IEC 61508 and IEC 61511 . 61
3.4.1. Risk graph . 62
3.4.2. LOPA . 64
3.4.3. Overview . 66

3.5. Conclusion . 66

CHAPTER 4. SOFTWARE ASSURANCE . 67

4.1. Introduction . 67
4.2. Prerequisites . 67
4.3. Quality assurance . 68

4.3.1. Introduction . 68
4.3.2. Quality assurance management . 69
4.3.3. Realization of a software application 73
4.3.4. Software quality assurance plan (SQAP) 75

4.4. Organization . 78
4.4.1. Typical organization . 78
4.4.2. Skill management . 80

4.5. Configuration management . 82
4.6. Safety assurance management . 84
4.7. Verification and validation . 86

4.7.1. Introduction . 86
4.7.2. Verification . 87
4.7.3. Validation . 103

Contents vii

4.8. Independent assessment . 104
4.9. Tool qualification . 104
4.10. Conclusion . 105
4.11. Appendix A: list of quality
documents to be produced . 106
4.12. Appendix B: structure of a
software quality assurance plan . 106

CHAPTER 5. REQUIREMENTS MANAGEMENT . 109

5.1. Introduction . 109
5.2. Requirements acquisition phase . 110

5.2.1. Introduction . 110
5.2.2. Requirements elicitation . 111
5.2.3. Process of analysis and documentation 119
5.2.4. Verification and validation of
the requirements . 126

5.3. Requirements specification . 129
5.3.1. Requirements characterization . 129
5.3.2. Characterization of requirements
specification . 135
5.3.3. Expression of requirements . 135
5.3.4. Requirements validation . 140

5.4. Requirements realization . 140
5.4.1. Process . 140
5.4.2. Verification . 141
5.4.3. Traceability . 143
5.4.4. Change management . 146

5.5. Requirements management . 150
5.5.1. Activities . 150
5.5.2. Two approaches . 151
5.5.3. Implementation of tools . 152

5.6. Conclusion . 154

CHAPTER 6. DATA PREPARATION . 155

6.1. Introduction . 155
6.2. Recap . 156
6.3. Issue . 156
6.4. Data-parameter-based system . 158

6.4.1. Introduction . 158
6.4.2. Characterization of data . 161

viii CENELEC 50128 and IEC 62279 Standards

6.4.3. Service inhibition . 162
6.4.4. Overview . 164

6.5. From the system to the software . 165
6.5.1. Need . 165
6.5.2. What the CENELEC framework does not say 167

6.6. Data preparation process . 169
6.6.1. Context . 169
6.6.2. Presentation of section 8 of the
CENELEC 50128:2011 standard . 170

6.7. Data preparation process . 174
6.7.1. Management of the data preparation process 174
6.7.2. Verification . 182
6.7.3. Specification phase . 182
6.7.4. Architecture phase . 186
6.7.5. Data production . 190
6.7.6. Integration of the application
and acceptance of the tests . 196
6.7.7. Validation and evaluation
of the application . 197
6.7.8. Procedure and tools for
preparation of the application . 197
6.7.9. Development of generic software . 198

6.8. Conclusion . 199
6.9. Appendix: documentation to be produced 199

CHAPTER 7. GENERIC APPLICATION . 201

7.1. Introduction . 201
7.2. Software application realization process 201
7.3. Realization of a generic application . 203

7.3.1. Specification phase . 203
7.3.2. Architecture and component design phase 213
7.3.3. Component design phase . 236
7.3.4. Coding phase . 242
7.3.5. Execution of component tests . 243
7.3.6. Software integration phase . 246
7.3.7. Overall software testing phase . 247

7.4. Some feedback on past experience . 249
7.5. Conclusion . 250
7.6. Appendix A: the programming language “Ada” 251
7.7. Appendix B: the programming language “C” 253

7.7.1. Introduction . 253

Contents ix

7.7.2. The difficulty with C . 253
7.7.3. MISRA-C . 254
7.7.4. Example of a rule . 255

7.8. Appendix C: introduction to
object-oriented languages . 255
7.9. Appendix D: documentation
needing to be produced. 258

CHAPTER 8. MODELING AND FORMALIZATION 261

8.1. Introduction . 261
8.2. Modeling . 261

8.2.1. Objectives . 261
8.2.2. Different types of modeling . 263
8.2.3. Model . 264

8.3. Use of formal techniques and formal methods 265
8.3.1. Definitions . 265
8.3.2. UML . 268

8.4. Brief introduction to formal methods . 269
8.4.1. Recap . 269
8.4.2. Usage in the railway domain . 270
8.4.3. Summary . 276

8.5. Implementation of formal methods . 279
8.5.1. Conventional processes . 279
8.5.2. Process including formal methods . 280
8.5.3. Issues . 282

8.6. Maintenance of the software application 284
8.7. Conclusion . 285

CHAPTER 9. TOOL QUALIFICATION . 287

9.1. Introduction . 287
9.2. Concept of qualification . 288

9.2.1. Issue . 288
9.2.2. CENELEC 50128:2001 . 288
9.2.3. DO-178 . 291
9.2.4. IEC 61508 . 292
9.2.5. ISO 26262 . 293

9.3. CENELEC 50128:2011 . 293
9.3.1. Introduction . 293
9.3.2. Qualification file . 294

x CENELEC 50128 and IEC 62279 Standards

9.3.3. Qualification process . 295
9.3.4. Implementation of the qualification process 297

9.4. Fitness for purpose . 305
9.4.1. Design method . 305
9.4.2. In case of incompatibility . 305
9.4.3. Code generation . 306

9.5. Version management . 306
9.5.1. Identification of versions . 306
9.5.2. Bug/defect analysis . 307
9.5.3. Changing versions . 307

9.6. Qualification process . 307
9.6.1. Qualification file . 307
9.6.2. Ultimately . 308
9.6.3. Qualification of non-commercial tools 308

9.7. Conclusion . 308

CHAPTER 10. MAINTENANCE AND DEPLOYMENT 309

10.1. Introduction . 309
10.2. Requirements . 309

10.2.1. Fault management . 309
10.2.2. Managing changes . 310

10.3. Deployment . 312
10.3.1. Issue . 312
10.3.2. Implementation . 313
10.3.3. In reality . 314

10.4. Software maintenance . 315
10.4.1. Issue . 315
10.4.2. Implementation . 315

10.5. Product line . 316
10.6. Conclusion . 318
10.7. Appendix: documentation
needing to be produced. 319

CHAPTER 11. ASSESSMENT AND CERTIFICATION 321

11.1. Introduction . 321
11.2. Evaluation . 321

11.2.1. Principles . 321
11.2.2. CENELEC 50128:2011 . 324

11.3. Cross-acceptance . 325
11.4. Certification . 326

11.4.1. Product certification . 326

Contents xi

11.4.2. Software certification . 327
11.4.3. Evolution management . 327

11.5. Conclusion . 328
11.6. Appendix: documentation needing to be produced 328

CONCLUSION . 329

BIBLIOGRAPHY . 331

GLOSSARY . 343

INDEX . 351

Introduction

I.1. Objective

Railways are subject to both normative and legal frameworks (laws,
decrees, regulations, etc.) which differ from one country to another. At the
European level, the legal framework includes European and national texts. It
should be noted that this normative and legislatory framework is fairly new
(the earliest published standards date from the mid-1990s, and the earliest
laws passed from 2004). Figure I.1 presents the main standards which apply
to the building of a railway system.

Figure I.1. Normative context

Système complet

Sous-système Signalisation

Equipement

Hardware

50126

50129

50159

Train

Equipement

Hardware Logiciel

50155

Logiciel

50128

Complete system

Signalling subsystem

Equipment

Hardware Software Software

Equipment

xiv CENELEC 50128 and IEC 62279 Standards

As Figure I.1 illustrates, the domain of railways is divided into two parts:
applications relating to signaling and applications onboard the trains. In fact,
it is necessary to add a third family of applications – “Miscellaneous”: this
category would include means of energy management, the systems that run
travelators and escalators, information systems, applications for management
of the auxiliary systems (e.g. tunnel ventilation, fire detection, etc.) – indeed
anything at all which can be connected to the railway system. The auxiliary
systems are no less important than the primary ones. The fire-detection and
tunnel-ventilation system is a system connected to the domain which could
prevent a tunnel from filling with smoke in an evacuation situation. Thus,
this system has a bearing on safety.

The subdivision of the normative framework stems from the fact that,
originally, safety in railway systems was based on signaling (changing the
state of the signals depending on the presence or absence of trains on the
track), and the train driver was responsible for respecting the commands
shown to him by the signals.

When software was first used, it rendered the principles of signaling more
flexible (the transmission of signaling information to the driver’s cab as a
report, virtual division of the track, etc.). The second step involved installing
software on board the trains to handle non-safety-related information and to
develop specific, small functions. The need to keep weight and costs
under control led manufacturers to replace the copper hardwired systems
and relays with software (TCMS – Train Control/Management Systems,
for instance). In addition, the need to evolve quickly (without having
to replace the equipment) and innovations (such as the permanent-
magnet motor) led to the use of software for classic pieces of equipment,
such as the driver’s joystick, the traction control system, the braking
system, etc.

The CENELEC 50126, 50128, 50129, 50159 and 50155 standards are
applicable throughout Europe, but increasingly, they are being used beyond
Europe as well. Additionally, the CENELEC standards are mirrored on the
international scene by the IEC standards1, as shown by Table I.1.

1 “IEC” stands for International Electrotechnical Commission. For further information, see:
www.iec.ch/.

Introduction xv

This book presents the 2011 version of CENELEC2 50128 standard
[CEN 11a] and its implementation. In Chapter 13, we shall give a detailed
breakdown of the differences between CENELEC 50128:2011 and its IEC
equivalent: 62279.

CENELEC IEC Comments

50126:1999 62278:2002 Same

50129:2003 62425:2007 Same

50128:2001 62279:2002
Identical with the exception of the first
page

50128:2011 62279:2014-draft

The IEC draft contains notable
differences in relation to the CENELEC
document (e.g. additional constraints for
certification of tools, etc.)

50159-1
50159-2

62280-1:2002
62280-2:2002

Same

50159:2011 62280:2014 Same

50155 60571
Identical, except for the fact that the IEC
standard contains additional explanations

Table I.1. Breakdown of CENELEC and IEC standards

CENELEC 50128:2011 identifies a process for creating software for
railway applications, and identifies the resources which need to be mobilized
in order to achieve the set level of assurance. It introduces new requirements
such as separation between the generic software and the settings data,
certification of the tools, the need to document and the need to stay abreast
of maintenance and the rollout of new versions of the software.

We are going to present this new version of the standard, but above all,
we shall give references to the fundamental reading necessary to put the
standard into practice.

I.2. Reminder

Safety of railway applications was originally based on the management of
signaling. With automated systems such as the metro (see Line 14 of the

2 “CENELEC” stands for Comité Européen de Normalisation ELECtrotechnique (European
Commission for Electrotechnical Standardization). For further information, see:
www.cenelec.eu/.

xvi CENELEC 50128 and IEC 62279 Standards

Paris metro3 and/or the VAL (Véhicule Automatique Léger – Lightweight
Automated Vehicle)4 in Charles de Gaulle Airport), software is used to
enhance safety management. The 2001 version of CENELEC 50128
[CEN 01a] was written to define a context by which to manage the safety of
the software used. This version of the standard benefited from the advent of
numerous software-based systems.

Figure I.2. The VAL at CdG Airport, standing at the platform5

Since the release of this version, the use of software has expanded to all
parts of the railway industry (driver support, driver joystick, door
management, traction management, management of sensor settings, tunnel
ventilation management system, etc.), and it has become necessary to take
new problems into account, such as maintenance and deployment. The
maintenance of software goes above and beyond simple correction of
anomalies, to the handling of evolution of a range of equipment, different
versions of which may be used by different operators. Hence, it is necessary
to take maintenance measures which take account of the versions employed
and a rollout process which enables us to guarantee the systems will work
properly after new versions are rolled out.

3 The design and approval of the SAET-METEOR (developed by MATRA-transport – now
SIEMENS – for the RATP, see [MAT 98]), brought into operation in 1998, greatly
contributed to the formulation of the 2001 version 2001 of CENELEC 50128.
4 The first VAL began operating in Lille in 1983. Today, it is used in Taipei and Toulouse,
Rennes and Turin (since January 2006). With regard to the rollout of the VAL, at least 119km
of track have been laid worldwide, and over 830 carriages are currently in service or under
construction. The VAL at CDG combines VAL technology and additional digital equipment
based on the B method [ABR 96].
5 Photo taken by Jean-Louis Boulanger.

Introduction xvii

The creation of a software application is based on people and on the use
of complex tools. In relation to the first point, the new version of the
standard places emphasis on the management of skills and responsibilities.
On the second point, the tools can have an impact on the executable content
(code generators, compilers, etc.) and/or on the verification (test
environment, tool for checking programming rules, etc.), so it is necessary to
qualify and/or certify the tools that are used. It should be noted that this
notion of qualification is one which has been introduced in the newly-
updated set of standards (IEC 61508 [IEC 08], ISO 26262 [ISO 11],
CENELEC 50128 [CEN 11a], etc.).

I.3. Overview

We have given a brief presentation of the CENELEC 50128 standard and
have begun to introduce the changes which were made to it in the 2011
version. Thus, in the remaining chapters of this book, we shall present the
2011 version of the CENELEC 50128 standard and the principles of its
implementation.

The chapters of this book are presented as follows:

– Chapter 1: software in the system;

– Chapter 2: history of the CENELEC framework and structure of the
50128 standard;

– Chapter 3: definitions in the system and allocation to the software
packages;

– Chapter 4: quality assurance on the software (quality management,
organization management, checking and validation, etc.). Application of
Chapter 6 of the CENELEC 50128 standard;

– Chapter 5: requirement management;

– Chapter 6: the specific application and data-based settings.
Implementation of Chapter 8 of the CENELEC 50128 standard;

– Chapter 7: development of the generic application. Implementation of
Chapter 7 of the CENELEC 50128 standard;

xviii CENELEC 50128 and IEC 62279 Standards

– Chapter 8: model, modeling and formalization;

– Chapter 9: certification of tools;

– Chapter 10: maintenance and rollout. Implementation of Chapter 9 of
the CENELEC 50128 standard;

– Chapter 11: independent evaluation;

– Conclusion.

1

From the System to the Software

1.1. Introduction

The automation of numerous command systems (in railways, the
aeronautics, automotive, nuclear industries, etc.) and/or process control
systems (production, etc.), and the replacement of logical or analog systems
involving little interaction by highly-integrated systems, have led to a
considerable expansion of the domain of functional safety, taking account of
the features and peculiarities of computer systems.

Dependability relates to applications for which it is crucial to ensure a
continuous good level of service (reliability), because human lives are at
stake (transport, nuclear energy, etc.), because of the high level of
investment which would be lost were the calculation to go wrong (space,
chemical production process, etc.), or indeed because of the cost of the
problems that could be caused by failure (e.g. in the banking process,
reliability of the transport network, etc.). It should be noted that for several
years, account has been taken of the environmental impacts (e.g. with
accidental spills of chemical products into the environment, impact on
ecosystems, recycling, etc.).

Since the very beginning of research into such systems, the problems
linked to validation of those systems have been at the heart of designers’
concerns: it is useful to prove the mechanisms to react to the occurrence of
failures are well designed, to check that design (by means of simulations, tests,
evidence, etc.) and convincingly estimate projected, meaningful values
measuring the performances of the functional safety devices.

2 CENELEC 50128 and IEC 62279 Standards

The difficulty then lies in accurately identifying the various actors
involved in the process (users, operators, managers, maintenance personnel,
service providers, assessors, authorities, etc.), the different elements in the
system, the interactions between those elements, the interactions with the
users and the factors which have an impact on the operational safety,
ultimately with identification of the electronic and/or programmable
elements.

The aim of this first chapter is to offer an examination of the software in
the context in which it is used, which is a system, and recap on the links and
the constraints which need to be taken into account in creating software.

1.2. Command/control system

Figure 1.11 shows an example of a railway system. The Operation
Control Center (OCC – photo a) controls the whole of the line and passes
operational commands to the trains and to the signaling management system
(photo c shows a manual operation control center).

Figure 1.1. The system in its environment2

1 The picture shows an old-generation operating control center (OCC); new OCCs are stored
in PCs and have developed from a physical technology (TCO – optical control view) to
display by a video projector.
2 Photos taken by Jean-Louis Boulanger.

From the System to the Software 3

The operation control center3 sends commands to the ground via a set of
relays (photo d shows an example of a room containing the relays linked to
the signaling system). In response to the commands, the ground equipment
adopts the desired behavior (in photo e, we can see maneuver signals).

Figure 1.1 demonstrates the complexity associated with the concrete
system, and highlights the point that a complex system is based not on one
piece of software, but on many. Each of these software programs is associated
with safety objectives which likely differ from one program to another.

The software involved in supervision does not have as much impact on
people’s safety as does the software relating to automated control of the trains.
For this reason, in the context of systems requiring certification (aeronautics,
railways, the nuclear sector, systems based on programmable electronics, etc.),
we assign a given level of safety to each software application.4

This level of safety is associated with a scale, ranging from “non-critical”
to “highly critical”. The concept of safety assurance levels and the scales
associated therein will be presented in Chapters 2 and 3.

Figure 1.2. The system in its environment

Figure 1.2 highlights the fact that the system being constructed is closely
linked with an environment which responds to the commands issued by the

3 Figure 1.1 shows a manual operating control center. However, these have now become
computerized, and are referred to as PMIs ([BOU 10a – Chapter 5]); PIPCs and PAINGs
([BOU 10a – Chapter 4]).
4 For instance, in the field of aeronautics, the level of safety is called the Design Assurance
Level; in railways, we speak of the Safety Integrity Level (SIL); and in the automobile sector
we have the Automotive Safety Integrity Level (ASIL).

Système

Environnement

Entrées

Sorties

System

Input

Output

Environment

4 CENELEC 50128 and IEC 62279 Standards

system. It is therefore necessary to acquire a view of the state of the process
to be controlled and to have a means of command which is capable of
relaying the commands to the environment. The environment may be
composed of physical elements, but as a general rule, there are interactions
with human parties (operators, users, maintenance personnel, etc.).

During the requirements analysis phase, it is essential to clearly identify
all the actors (operators, maintenance personnel, customers, etc.) and
identify all the devices which interact with the system. The requirements
analysis phase is essential, but can still give rise to numerous omissions and
misunderstandings.

Figure 1.3. Example of modeling of the system in its environment

Figure 1.3 presents an example of the modeling of a system to control a
level crossing. This system can control the intersection of at least one road
with a railway track. This system interacts with various actors (both human

From the System to the Software 5

and machine): an OCC (as shown in the Figure 1.1), the road users (trucks,
cars, etc.), railway users and operators in charge of operation and/or
maintenance.

We have chosen to construct a class diagram which models the fact that
the decentralized level-crossing management system using a communication
system (DRBCS) comprises a level crossing which is itself made up of a
railway and a roadway.

The important point in Figure 1.3 lies in identifying the actors which
interact with the management system, including the road users, the trains, the
OCC and especially the maintenance operators or other personnel (whom the
model identifies as “special people”).

It is crucial to identify all the actors involved at system level; otherwise
there is a risk of forgetting actions – e.g. maintenance activities – but it is
also possible to overlook disturbances or malfunctions. We can point to the
classic example5 of the efficiency of a Wi-Fi network, which may correlate
to the density of auxiliary networks connected to the system.

Hereinafter, we shall not discuss how to deal with the human factor,
because whilst the human factor is an essential one, it does not directly relate
to the critical software-based equipment, except for:

– the activities of creation of the software application – hence the need to
formalize the skills and responsibilities of the people in charge of the
software, as indicated in Chapter 5 of the standard;

– the activities of maintenance and rollout, which are dealt with by
Chapter 9 of CENELEC 50128:2011 [CEN 11a].

As regards the identification of the actors involved, it is more usual to
speak of identification of the stakeholders; for further information, see
Chapter 11 of [BOU 14c].

5 The use of so-called “open” networks (see the standards [CEN 01a] and [CEN 11a]) such as
Wi-Fi is attended by a certain number of difficulties, such as network densification (the
number of private networks is constantly increasing) and/or interference caused by nearby
equipment. It should be noted that, for a very long time, the issue of open networks has not been
approached from the standpoint of functional safety, because it relates to aspects such as
confidentiality, intrusion, etc., which are covered by the term “security”.

6 CENELEC 50128 and IEC 62279 Standards

1.3. System

Our aim in this section is to lay down the vocabulary relating to the
creation of a software-based device. To begin with, we must remember that a
software application is directly linked to a device, and that without hardware
architecture, there can be no software. Indeed, the validation of a program
(see Chapter 5) requires the hardware architecture, and the results are
applicable only to that particular hardware. For this reason, the first
definitions we shall give relate to the concept of a system and of a software-
based system.

DEFINITION 1.1 (System).– A system is a set of elements interacting with one
another, which is organized in such a way as to achieve one or more
predetermined results.

The “organized” part of Definition 1.1 can be seen in the system’s
organization into different levels, as illustrated by Figure 1.4.

Figure 1.4. From the system to the software

Figure 1.4 offers a hierarchical view of the system. This is the view
which is used in the railway domain. Hence, a railway line is viewed
as a system, which is divided into a number of subsystems: the
signaling control subsystem, the passenger transfer subsystem, etc. The
signaling control subsystem, for its part, is divided into a number of devices,
or classes of equipment: onboard equipment, ground equipment and line
equipment.

Système

Sous-système 1 Sous-système 2

Equipement 1 Equipement 3Equipement 2

Logiciel Matériel

System

Subsystem 1 Subsystem 2

Equipment 1 Equipment 2 Equipment 3

Software Hardware

From the System to the Software 7

A system performs several functions. A system function can be
subdivided into a variety of subsystems, with each subsystem performing
functions which are subfunctions of the whole system’s functions. At system
level, this representation needs to be accompanied by models which illustrate
the interactions between the functions, as shown by the example given in
Figure 1.5.

Figure 1.5. Example of the subdivision of a system

Figure 1.6. Example of distribution6

6 The example of a subsystem presented is the control system “SAET” used on the
“METEOR” line (the rapid-transit East/West Line 14 (“METEOR” is a backronym for this)
on the Paris Metro). For further information, see Chapter 2 of [BOU 12].

1

F1

1

F2

1

F3

I1I1

I2I2

O2O2

O1O1

I3I3I3

I1

I2
F1

F2

F3

1
1

1

O1

O2

PA Section PA Section PA Section

Tapis de transmission

PA Embarque

message

message

PCCPA LigneLine AP

Transmission matrix

message

message

OCC

Section AP Section AP Section AP

Onboard AP

8 CENELEC 50128 and IEC 62279 Standards

Thus, a subsystem hosts a variety of functions, which can then be divided
between several different pieces of equipment. A piece of equipment is not a
functional element in itself; it must be joined by other equipment in order to
perform a subsystem-level function.

In terms of a railway system, the difficulty lies in the fact that a train is
home to many system functions, and therefore that it contains equipment
which contributes to these different functions. For example, the installation
of an auto-pilot subsystem involves installing devices on the ground, which
communicate with an onboard component on the train, as shown by
Figure 1.6.

DEFINITION 1.2 (Software-based system).– Elements of the system may be
totally or partially software-based.

Figure 1.7 shows that a system is a structured entity (comprising
computer systems, processes and use contexts) which must form an
organized, coherent whole. Hereinafter, we shall examine the software
applications which are found in the computer/automated system component.

In this chapter, we have shown that a system based on programmable
electronic equipment is a complex object, which needs to be carefully
analyzed in each of its component parts.

1.4. Software application

1.4.1. What is software?

In the context of this chapter, the so-called “software” element is a set of
computation/processing elements which are executed on a physical hardware
architecture so that the system, as a whole, can render the services associated
with a device (see Figure 1.4).

Later on in this book, we shall look at the software aspects, so it is
necessary, at this point, to define exactly what software is – see
Definition 1.3. This definition is slightly different from the one given by ISO
90003:2004 [ISO 04a].

From the System to the Software 9

DEFINITION 1.3 (Software).– Set of programs, processes and rules, and
possibly documentation as well, relating to the performance of a set of
operations on the data.

Definition 1.3 does not differentiate between the means (the methods,
processes, tools, etc.) used to create the software application, the products
created by its execution (documents, analytical results, models, sources, test
scenarios, test results, specific tools, etc.) and the software application itself.

This definition is generally associated with the concept of a software
application. The concept of software itself is associated with that of
executable files.

Figure 1.7. System and interaction

1.4.2. Different types of software

Definition 1.3 shows what the concept of software involves, but it should
be noted that there are a variety of different types of software:

– operational software: this term refers to any software delivered to an
external customer as part of a program or a product. Test arrays for external
usage fall into that category;

Contexte

Logiciels

Matériels

Logiciels

Matériels

équipement 1 équipement 2

équipement 3

Logiciels

Matériels

Système
Informatique/automatique

Actuateurs

Capteurs

Processus Environnement

Procédure/instruction d’utilisation

Maintenance

Lien avec d’autre système

.......

Computerized/automated
system

Processes

Software

Hardware

equipment 1 equipment 2

Software

Hardware

equipment 3

Software

Hardware

Sensors

Actuators

Context

Environment

Procedure/usage instruction

Maintenance

Links with other systems

...

10 CENELEC 50128 and IEC 62279 Standards

– demo: a demonstrator (demo) is a piece of software used by an external
customer to help refine their expression of their needs and measure the level
of service which could potentially be delivered. These programs are not
intended for operational use;

– development tool: a development tool is an internal software
application, which is not delivered to an external customer, designed to help
development in the broadest sense (editor, compilation chain, etc.), including
at the test stage and integration stage;

– model: a model is an internal program for study, not delivered to any
external parties, which serves to check a theory, an algorithm or the
feasibility of a technique (e.g. by simulation), without the objective of a result
or of completeness.

1.4.3. The software application in its proper context

In spite of the long-standing monolithic view, we feel it is important to
look at a software application as a set of components (see Definition 1.4),
which interact to process a set of data. Thus, a component may be a part of
the software application, a reused part, a library, a commercial off-the-shelf
(COTS7 – see Definition 1.5) component, etc.

DEFINITION 1.4 (Component).– A component is an element of software
which performs a set of predefined services; these services (or tasks)
conform to a clear set of requirements; a component has clear interfaces
and is managed in configuration as a separate element in its own right.

DEFINITION 1.5 (Commercial off-the-shelf – COTS).– A software product
which is available to buy and use without carrying out development
activities.

As Figure 1.8 shows, a software application generally uses an abstraction
of the hardware architecture and of its operating system by way of a
base layer known as the “base software”. In principle, the base software
should be written in low-level programming languages such as an assembly
language and/or C [KER 88]. It is used to encapsulate the services of the

7 COTS are products that are commercially available and can be bought “as is” (without
specification, V&V elements, etc.).

