ALTERNATIVE RESPIRATORY PATHWAYS IN HIGHER PLANTS

Edited by
Kapuganti Jagadis Gupta,
Luis A.J. Mur and Bhagyalakshmi Neelwarne

External signals like abiotic or biotic stress factors

Peroxisomes

Plastid signals

Plastid

Photosynthesis

Retrograde signals

Mitochondria

Oxidative phosphorylation

Signal amplification

- Change in membrane fluidity
- Change in ionic status
- ROS generation
- Inhibition of ATP synthesis
- Altered C fixation and photosynthesis
- Photolytic derivative synthesis
- Hypervariable response

Differential gene expression

Nucleus

AOX gene families

Altered stress response

Focus for transgenic approach

WILEY Blackwell
Alternative respiratory pathways in higher plants
Alternative respiratory pathways in higher plants

EDITED BY

Kapuganti Jagadis Gupta
Department of Plant Sciences
University of Oxford
Oxford, UK

Luis A.J. Mur
Institute of Biological Environmental and Rural Science
Aberystwyth University
Aberystwyth, UK

Bhagyalakshmi Neelwarne
Plant Cell and Biotechnology Department
CSIR-Central Food Technological Research Institute
Mysore, India

WILEY Blackwell
Contents

List of contributors, ix
Preface, xiii

Section A: Physiology of plant respiration and involvement of alternative oxidase

1 Integrating classical and alternative respiratory pathways, 3
Kapuganti Jagadis Gupta, Bhagyalakshmi Neelwarne and Luis A.J. Mur

2 Non-coupled pathways of plant mitochondrial electron transport and the maintenance of photorespiratory flux, 21
Abir U. Igamberdiev and Natalia V. Bykova

3 Taxonomic distribution of alternative oxidase in plants, 43
Allison E. McDonald

4 Alternative pathways and phosphate and nitrogen nutrition, 53
Anna M. Rychter and Bożena Szal

5 Structural elucidation of the alternative oxidase reveals insights into the catalytic cycle and regulation of activity, 75
Catherine Elliott, Mary S. Albury, Luke Young, Ben May and Anthony L. Moore

6 The role of alternative respiratory proteins in nitric oxide metabolism by plant mitochondria, 95
Ione Salgado and Halley Caixeta Oliveira

7 Control of mitochondrial metabolism through functional and spatial integration of mitochondria, 115
Samir Sharma

8 Modes of electron transport chain function during stress: Does alternative oxidase respiration aid in balancing cellular energy metabolism during drought stress and recovery?, 157
Greg C. Vanlerberghe, Jia Wang, Marina Cvetkovska and Keshav Dahal

9 Regulation of cytochrome and alternative pathways under light and osmotic stress, 185
Padmanabh Dwivedi

10 Alternative respiratory pathway in ripening fruits, 201
Bhagyalakshmi Neelwarne
Contents

11 Respiratory pathways in bulky tissues and storage organs, 221
 Wu-Sheng Liang

Section B: From AOX diversity to functional marker development

Birgit Arnholdt-Schmitt

Introduction, 235

12 Exploring AOX gene diversity, 239

12.1 Natural AOX gene diversity, 241
 Hélia G. Cardoso, Amaia Nogales, António Miguel Frederico, Jan T. Svensson,
 Elisete Santos Macedo, Vera Valadas and Birgit Arnholdt-Schmitt

12.2 AOX gene diversity in Arabidopsis ecotypes, 255
 José Hélio Costa and Jan T. Svensson

12.3 Artificial intelligence for the detection of AOX functional markers, 261
 Paulo Quaresma, Teresa Gonçalves, Salvador Abreu, José Hélio Costa,
 Kaveh Mashayekhi, Birgit Arnholdt-Schmitt and Jan T. Svensson

12.4 Evolution of AOX genes across kingdoms and the challenge of classification, 267
 Allison E. McDonald, José Hélio Costa, Tânia Nobre, Dirce Fernandes de Melo
 and Birgit Arnholdt-Schmitt

13 Towards exploitation of AOX gene diversity in plant breeding, 273

13.1 Functional marker development from AOX genes requires deep phenotyping and individualized diagnosis, 275
 Amaia Nogales, Carlos Noceda, Carla Ragonezi, Hélia G. Cardoso, Maria
 Doroteia Campos, Antonio Miguel Frederico, Debabrata Sircar, Sarma Rajeev
 Kumar, Alexios Polidoros, Augusto Peixe and Birgit Arnholdt-Schmitt

13.2 AOX gene diversity can affect DNA methylation and genome organization relevant for functional marker development, 281
 Carlos Noceda, Jan T. Svensson, Amaia Nogales and Birgit Arnholdt-Schmitt

13.3 Gene technology applied for AOX functionality studies, 287
 Sarma Rajeev Kumar and Ramalingam Sathishkumar

14 AOX goes risk: A way to application, 299

14.1 AOX diversity studies stimulate novel tool development for phenotyping: calorespirometry, 301
 Birgit Arnholdt-Schmitt, Lee D. Hansen, Amaia Nogales
 and Luz Muñoz-Sanhueza
14.2 AOX gene diversity in arbuscular mycorrhizal fungi (AMF) products: a special challenge, 305
Louis Mercy, Jan T. Svensson, Eva Lucic, Hélia G. Cardoso, Amaia Nogales, Matthias Döring, Jens Jurgeleit, Caroline Schneider and Birgit Arnholdt-Schmitt

14.3 Can AOX gene diversity mark herbal tea quality? A proposal, 311
Michail Orfanoudakis, Evangelia Sinapidou and Birgit Arnholdt-Schmitt

14.4 AOX in parasitic nematodes: a matter of lifestyle?, 315
Vera Valadas, Margarida Espada, Tânia Nobre, Manuel Mota and Birgit Arnholdt-Schmitt

14.5 Bacterial AOX: a provocative lack of interest!, 319
Cláudia Vicente, José Hélio Costa and Birgit Arnholdt-Schmitt

General conclusion, 323

References, 325

Section C: Protocols
15 Technical protocol for mitochondria isolation for different studies, 347
Renate Horn

16 Simultaneous isolation of root and leaf mitochondria from Arabidopsis, 359
Kapuganti Jagadis Gupta and Ralph Ewald

Index, 367
List of contributors

Salvador Abreu
Department of Computer Science, Universidade de Évora, Évora, Portugal

Mary S. Albury
Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, UK

Birgit Arnholdt-Schmitt
EU Marie Curie Chair, ICAAM, Universidade de Évora, Évora, Portugal

Natalia V. Bykova
Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada

Maria Doroteia Campos
EU Marie Curie Chair, ICAAM, Universidade de Évora, Évora, Portugal

Hélia G. Cardoso
EU Marie Curie Chair, ICAAM, Universidade de Évora, Évora, Portugal

José Hélio Costa
Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, Brazil

Marina Cvetkovska
Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto

Scarborough, Toronto, Ontario, Canada

Keshav Dahal
Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto
Scarborough, Toronto, Ontario, Canada

Matthias Döring
INOQ GmbH, Solkau, Schnega, Germany

Padmanabh Dwivedi
Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India

Catherine Elliott
Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, UK

Margarida Espada
NemaLab-ICAAM, Departamento de Biologia, Universidade de Évora, Évora, Portugal

Ralph Ewald
Institut für Biowissenschaften, Abteilung Pflanzengenetik, Universität Rostock, Rostock, Germany
António Miguel Frederico
EU Marie Curie Chair, ICAAM, Universidade de Évora, Évora, Portugal

Teresa Gonçalves
Department of Computer Science, University of Évora, Évora, Portugal

Kapuganti Jagadis Gupta
Department of Plant Sciences, University of Oxford, Oxford, UK
Current address: National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, India

Lee D. Hansen
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA

Renate Horn
Institut für Biowissenschaften, Abteilung Pflanzenzüchtung, Universität Rostock, Rostock, Germany

Abir U. Igamberdiev
Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada

Jens Jurgeleit
INOQ GmbH, Solkau, Schnega, Germany

Sarma Rajeev Kumar
Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India

Wu-Sheng Liang
Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China

Eva Lucic
INOQ GmbH, Solkau, Schnega, Germany

Allison E. McDonald
Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada

Kaveh Mashayekhi
BioTalentum Ltd, Budapest, Hungary

Ben May
Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, UK

Dirce Fernandes de Melo
Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil

Louis Mercy
INOQ GmbH, Solkau, Schnega, Germany

Anthony L. Moore
Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, UK

Manuel Mota
NemaLab-ICAAM, Departamento de Biologia, Universidade de Évora, Évora, Portugal
Luz Muñoz-Sanhueza
EU Marie Curie Chair, ICAAM, Universidade de Évora, Évora, Portugal
Current address:
Department of Plant and Environmental Sciences (IPM), Norwegian University of Life Sciences, Ás, Norway

Luis A.J. Mur
Institute of Biological, Environmental and Rural Science, Aberystwyth University, Aberystwyth, UK

Bhagyalakshmi Neelwarne
Plant Cell and Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, India

Tânia Nobre
EU Marie Curie Chair, ICAAM, Universidade de Évora, Évora, Portugal

Carlos Noceda
EU Marie Curie Chair, ICAAM, Universidade de Évora, Évora, Portugal
Current address:
Prometeo Project (SENESCYT), CIBE (ESPOL), Guayaquil, Ecuador

Amaia Nogales
EU Marie Curie Chair, ICAAM, Universidade de Évora, Évora, Portugal

Halley Caixeta Oliveira
Departamento de Biologia Animal e Vegetal, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil

Michail Orfanoudakis
Department of Forestry and Management of the Environment and Natural Resources, Forest Soil Lab, Democritus University of Thrace, Orestiada, Greece

Augusto Peixe
Melhoramento e Biotecnologia Vegetal, ICAAM, Universidade de Évora, Évora, Portugal

Alexios Polidoros
Department of Genetics and Plant Breeding, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece

Paulo Quaresma
Department of Computer Science, University of Évora, Évora, Portugal

Carla Ragonezi
EU Marie Curie Chair, ICAAM, Universidade de Évora, Évora, Portugal

Anna M. Rychter
Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland

Ione Salgado
Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil

Elisete Santos Macedo
EU Marie Curie Chair, ICAAM, Universidade de Évora, Évora, Portugal
Ramalingam Sathishkumar
Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India

Caroline Schneider
INOQ GmbH, Solkau, Schnega, Germany

Samir Sharma
Department of Biochemistry, University of Lucknow, Lucknow, India

Evangelia Sinapidou
Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece

Debabrata Sircar
Biotechnology Department, Indian Institute of Technology Roorkee, Uttarakhand, India

Jan T. Svensson
EU Marie Curie Chair, ICAAM, Universidade de Évora, Évora, Portugal
Current address: Nordic Genetic Resource Center, Alnarp, Sweden

Bożena Szal
Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland

Vera Valadas
EU Marie Curie Chair, ICAAM, Universidade de Évora, Évora, Portugal

Greg C. Vanlerberghe
Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario, Canada

Cláudia Vicente
NemaLab-ICAAM, Departamento de Biologia, Universidade de Évora, Évora, Portugal

Jia Wang
Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario, Canada

Luke Young
Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, UK
Respiration is a crucial biochemical process found in all living organisms for meeting their energy demands. A cell adapts to its surroundings and dynamically caters to the energy needs of a wide array of functions. Thus, cells have evolved mechanisms to ingeniously ‘switch on’ and ‘switch off’ the different steps of respiratory mechanisms. Among the biochemical processes involved in respiration, three major highly conserved ‘classical’ pathways are involved; glycolysis, where energy is generated by breaking down glucose; the tricarboxylic acid (TCA) cycle, where the energy is generated in a form that can be used in cellular biochemical reactions; and electron transfer through an electron transport chain to form reducing equivalents leading to the generation ATP. Additionally, plant cells can regulate respiration in a manner deviating from fundamental and generic pathways via so-called alternative respiratory pathways (ARP), which form the focus of this book. While alternative modes of respiration occur in parallel to normal respiration, different sets of regulatory mechanisms are involved in the regulation of genes encoding for the proteins that are involved in alternative pathways. Understanding the regulation of these genes is an important theme in ARP research. Thus, the means through which alternative respiratory processes are regulated to help maintain classical respiration under various stresses or during discrete developmental or ecological conditions, features prominently in ARP publications. Linked to such research are attempts to predict the responses to climate change – changes in temperature, gases, physical vibrations, light, cosmic energy and so on. Even at the shortest and smallest scales, the plant’s immediate environment directly influences in planta physiological processes – via processes such as respiration – which are ultimately regulated at the genetic level. As a result, on longer and larger spatiotemporal scales, such environmental effects bring about changes in the distribution of plant species and ecosystems. Such changes will in turn also impact on the climate through the exchange of energy and gases among the flora and fauna around them. Equally, a failure to understand and respond to the impacts of climate change on respiration in crops will compromise yield, perturbing food security. Aware of these facts, plant physiologists have focused their research into each aspect of these interactions. A great deal of research has recently been published on how plants display different modes of respiration in different organs by switching over to ARP and on what set of parameters regulate alternative oxidases. To highlight the contribution of ARP to these fundamentally important topics we have brought together scientists with global reputations in the field to
produce what we consider to be an important book with relevance to ecology, plant biodiversity and crop production.

This book therefore considers both classical and alternative respiratory pathways in diverse plant species and in different organs of the same plant at different times of its life cycle. Another driving principle has been to consider the potential applications of this knowledge to plant science and agriculture. The sixteen chapters are split into three sections: the first shows how plant respiratory mechanism have developed to thrive by cleverly rationing cellular energy under differing circumstances, while the second section highlights the application of ARP in plant breeding. The book wraps up the third and final section with the description of important protocols that will be useful for newer researchers.

Within Section A, Chapter 1 introduces readers to the basic principles and the principal difference between classic respiration and the alternative respiratory mechanisms. Complex regulatory mechanisms are described indicating the possibility of not only switching from glycolysis to fermentative metabolism but also the utilization of ARP to maintain substrate oxidation while minimizing the production of ATP. Equally, new insights are indicated on how ATP generation can be maintained under hypoxia. Chapter 2 describes the uncoupling pathways of plant mitochondrial electron transport and the mechanisms variously evolved to maintain the energy flux. How the regulatory proteins – the alternative oxidases – are distributed among the plant kingdom is brought into focus in Chapter 3.

Chapters 4 to 9 deal with alternative respiration under endogenous biochemical perturbations that occur due to certain signal molecules and exogenous stress, as well as how mitochondrial metabolism is regulated and cellular energy is balanced. Chapters 10 and 11 specifically address certain issues related to horticultural commodities – ARP in fruit ripening and in bulky storage tissues.

Section B contains subsections 12 to 14 – a package of 12 chapters – that consider how the molecular information on alternative oxidases may be developed as functional markers in plant breeding programmes. In-depth information is provided by the most renowned experts in the field, discussing how alternative oxidase genes also serve to develop phenotyping tools based on calorespirometry. Since alternative respiratory pathways play a role in the generation of heat during flower blooming and fruit ripening – where heat is needed for emitting volatiles – it serves as an excellent tool for calorespirometric measurements of metabolic heat rates and carbon dioxide rates of respiring tissues as functions of temperature. This enables the rapid responses of plant metabolic events to temperature fluctuations to be determined and, therefore, plant adaptability to environmental conditions to be deduced. Investigating such responses often involves cumbersome and expensive experiments which may be avoided by opting for methods such as calorespirometry. This area has great potential for projecting the effects of global warming on the plant kingdom as a whole and for predicting the geographical distribution of different crops and plant species.
Section C, which includes Chapters 15 and 16, provides updated protocols that describe the steps involved in the isolation of mitochondria for different studies, written by the most experienced workers in the field.

This book, with its breadth of information from the classical understanding of plant respiratory mechanisms to the highly specialized physiological changes that occur in plants during ARP, is expected to find a large readership among life science students and researchers in plant science.

Reputed scientists from nine different countries have contributed to this book and to whom we editors are extremely grateful. We owe our heartfelt gratitude to the internal editors and book publishing staff of John Wiley & Sons, Ltd. for their continuous support and timely advice during the course of the preparation of this volume.

K.J. Gupta, L.A.J. Mur and B. Neelwarne
SECTION A

Physiology of plant respiration and involvement of alternative oxidase

Contents

1 Integrating classical and alternative respiratory pathways, 3
Kapuganti Jagadis Gupta, Bhagyalakshmi Neelwarne and Luis A.J. Mur

2 Non-coupled pathways of plant mitochondrial electron transport and the maintenance of photorespiratory flux, 21
Abir U. Igamberdiev and Natalia V. Bykova

3 Taxonomic distribution of alternative oxidase in plants, 43
Allison E. McDonald

4 Alternative pathways and phosphate and nitrogen nutrition, 53
Anna M. Rychter and Bożena Szal

5 Structural elucidation of the alternative oxidase reveals insights into the catalytic cycle and regulation of activity, 75
Catherine Elliott, Mary S. Albury, Luke Young, Ben May and Anthony L. Moore

6 The role of alternative respiratory proteins in nitric oxide metabolism by plant mitochondria, 95
Ione Salgado and Halley Caixeta Oliveira

7 Control of mitochondrial metabolism through functional and spatial integration of mitochondria, 115
Samir Sharma

8 Modes of electron transport chain function during stress: Does alternative oxidase respiration aid in balancing cellular energy metabolism during drought stress and recovery?, 157
Greg C. Vanlerberghe, Jia Wang, Marina Cvetkovska and Keshav Dahal

9 Regulation of cytochrome and alternative pathways under light and osmotic stress, 185
Padmanabh Dwivedi
Physiology of plant respiration and involvement of alternative oxidase

10 Alternative respiratory pathway in ripening fruits, 201
 Bhagyalakshmi Neelwarne

11 Respiratory pathways in bulky tissues and storage organs, 221
 Wu-Sheng Liang
Introduction

Respiratory pathways are vital for plant carbon and energy metabolism, which is the main use of most assimilated carbohydrates. Most respiratory pathways are very well established, the prominent being glycolysis in cytosol and the tricarboxylic acid (TCA) cycle, which occurs in the matrix of mitochondria coupled with the electron transport chain (ETC) which functions along the inner mitochondrial membrane. Some glycolytic enzymes also associate with the mitochondrial membrane and dynamically support substrate channelling (Giegé et al., 2003; Graham et al., 2007). Despite cross-kingdom commonalities in glycolysis and the TCA cycle, the regulation of respiration is relatively poorly understood (Fernie et al., 2004) which reflects the complexity of respiratory pathways. In plants this complexity encompasses the only possibility of switching from glycolysis to fermentative metabolism but the utilization of alternative pathways in plants allows the maintenance of substrate oxidation while minimizing the production of ATP. Equally, new insights have suggested how ATP generation can be maintained under hypoxia. With this overview, this chapter will integrate such alternative respiratory pathways with components of the classical oxidative-phosphorylative pathways.

Mitochondrial electron transport generates ATP by using the reducing equivalents derived through the operation of the TCA-cycle. The classic operation of the ETC pathway involves the transport of electrons from such as NAD(P)H or succinate to oxygen via four integral membrane oxidoreductase complexes: NADH dehydrogenase (complex I), succinate dehydrogenase (complex II), cytochrome c reductase (complex III), cytochrome c oxidase (complex IV or COX), linked to a mobile electron transfer protein (cytochrome c) and ATP synthase complex (complex V). In complex V, the active extrusion of protons from the inner membrane space to the matrix leads to the generation of ATP (Boekema...
Physiology of plant respiration and involvement of alternative oxidase

Apart from this classical operation of the ETC, mitochondrial complexes interact to form so-called super-complexes or respirosomes (Boekema and Braun, 2007). Complex I, II and IV are involved in the formation of super-complexes with different degrees and configurations. It may be that the formation of super-complexes represents a regulatory mechanism that controls the passage of electrons through the ETC (Eubel et al., 2003). Super-complex formation helps in increasing the stability of individual complexes, in the dense packing of complexes in the membrane and in fine tuning energy metabolism and ATP synthesis (Ramírez-Aguilar et al., 2011).

Currently most research on alternative electron transfer is focused on non-phosphorylating bypass mechanisms: a second oxidase – the alternative oxidase (AOX), an external NAD(P)H dehydrogenases in the first part of ETC, and also plant uncoupling mitochondrial proteins (PUCPs).

Alternative oxidase (AOX)

AOX is located in the inner mitochondrial membrane of all plants and fungi and a limited number of protists. AOX also appears to be present in several prokaryotes and even some animal systems (Chaudhuri and Hill, 1996; McDonald, 2008; McDonald and Vanlerberghe, 2006). Two forms of AOX are present in dicot plants (AOX1 and AOX2) while in monocots there is only one AOX (AOX1) (Considine et al., 2002; Karpova et al., 2002).
AOX are homodimeric proteins orientated towards the inner mitochondrial matrix. AOX diverts electrons from the main respiratory chain at the ubiquinone pool and mediates the four-electron reduction of oxygen to water (Figure 1.1). In comparison to electron transfer by the cytochrome chain (complex III and IV), AOX does not pump H⁺, therefore transfer of electrons by AOX does not create a transmembrane potential, and the decline in free energy between ubiquinol and oxygen is dissipated and mostly released as heat (Vanlerberghe et al., 1999). The diversion of electrons to the AOX pathway can reduce ATP generation by up to 60% (Rasmussen et al., 2008). The AOX ATP dissipatory pathway plays an important role when the ETC is inhibited by various stress conditions. ETC inhibition increases NADH/NAD⁺ and ATP/ADP ratios and as a consequence the TCA cycle could slow down. In addition to the energetic consequences of this, the number of carbon skeletons being produced will also be limited as the export of citrate supports nitrogen assimilation. Against this, AOX contributes to the maintenance of electron flow and the production of reducing equivalents to help maintain the TCA cycle. Indeed, AOX activation occurs in direct response to stress. A feature of all stress conditions is an increase in the production of reactive oxygen species (ROS): a process that can occur from the over-reduction of cytochrome components through the disruption of the ETC. In response to this, ROS or ROS-induced signals such as salicylic acid, act to induce the transcription of AOX (Vanlerberghe and McIntosh, 1997; Mackenzie and McIntosh, 1999) as also suggested from the observation that the addition of antioxidants leads to the suppression of AOX (Maxwell et al., 2002).

Oxygen, AOX and COX

Once induced by ROS, AOX may function as a negative feedback mechanism to suppress ROS production; a feature that we have named oxygen homeostasis (Gupta et al., 2009). This feedback mechanism is a consequence of large differences in O₂ affinities of the classical and alternative respiratory pathways. The K_m of COX is approximately 0.1 μmol but in AOX it is between 10 and 20 μmol (although the study by Millar et al., 1993 suggested a 10-fold higher AOX affinity for O₂). Given these affinities, COX will maintain respiration whilst AOX reduces the O₂ concentration, thereby decreasing the production of ROS inside the mitochondrion (Puntarulo and Cederbaum, 1988; Skutnik and Rychter, 2009). This is supported by the observations of Ribas-Carbo et al. (1995) who used an oxygen isotope discrimination technique to show that the inhibition of AOX by its inhibitor salicylhydroxamic acid (SHAM) did not lead to a decrease in total respiratory rates. This mechanism would be an exception to the ‘energy over flow’ model proposed by Lambers (1982), who suggested that in certain situations (e.g. excess carbohydrate), non-phosphorylating alternative pathways might contribute significantly to total respiration. Oxygen homeostasis could be of especial relevance in situations where different plant
tissues are subjected to fluctuating O$_2$ concentration due to diffusion gradients, and more so under environmental conditions such as flooding (Rolletschek et al., 2002; Bailey-Serres and Chang, 2005; Schmälzlin et al., 2005; Bailey-Serres and Voesenek, 2008; Rasmusson et al., 2008).

The electron partitioning model of Ribas-Carbo et al. (1995) suggests that COX and AOX compete for electron and electron passage but this must be influenced by the stress response of each pathway and particularly if exposed to low partial pressures of O$_2$ (P$_{O_2}$). In a study undertaken by the senior author’s group, root slices of several species were incubated in a sealed cuvette and the respiratory rate of the tissue was measured until total oxygen was depleted in the vial. Until a partial pressure of 4% P$_{O_2}$, the decrease in respiratory rate correlated linearly with O$_2$ concentration; however, at <4% P$_{O_2}$ level, the respiratory oxygen consumption rate slowed, taking a longer time to consume oxygen, indicating that a more slowly respiring plant would promote survival under the latter condition (Zabalza et al., 2009). This unique phenomenon has been named as the ‘adaptive response of plant respiration (ARPR) to hypoxia’. To determine which among the respiratory pathways could be influencing ARPR, each pathway was selectively inhibited in hydroponically grown pea using either KCN (an inhibitor for COX) or SHAM (an inhibitor for AOX). When AOX was the only electron acceptor, O$_2$ consumption continued without any alteration until all the oxygen was depleted, but when AOX was inhibited, ARPR was still observed. Thus, the COX pathway was found to be responsible for ARPR (Zabalza et al., 2009). Clearly, ARPR is not a consequence of differentially responsive O$_2$ affinities of the terminal oxidases (see earlier) as it occurs at P$_{O_2}$ above the K$_m$ of both oxidases. The decline in respiration could not be explained by a depletion of carbohydrates, as respiratory substrates, since when the same root material was immediately reused in experiments, ARPR was still observed. Moreover, oxygen diffusion through the tissue was not limiting at low P$_{O_2}$ because ARPR was also observed with in single-celled organism Chlamydomonas which has a diameter approximately 20 μm (Gupta et al., 2009). The lower P$_{O_2}$ was not in itself limiting respiratory rates as respiration could be elevated by the prior addition of 10 mM pyruvate prior to assessing ARPR. Taken together, these observations point towards the most likely scenario of the existence of an oxygen sensing mechanism that regulates the rate of mitochondrial oxygen consumption at low P$_{O_2}$.

Pyruvate kinases, classical respiratory metabolism and AOX

Pyruvate kinase (PK; EC 2.7.1.40) plays a critical role in glycolytic pathway catalyzing the terminal reaction of the glycolytic pathway by converting ADP and phosphoenolpyruvate (PEP) to ATP and pyruvate. As pyruvate regulates both glycolysis and the TCA cycle (Pilkis and Granner, 1992; Teusink et al., 2000), PK represents a crucial respiratory regulatory node. PK exists as tissue-specific isozymes that exhibit significant differences in their physical and kinetic properties.
Integrating classical and alternative respiratory pathways (reviewed by Plaxton and Podesta, 2006). This reflects the presence of different PK isozymes in the cytosolic and plastidial compartments in plants; designated as PKc and PKp forms respectively (Plaxton, 1996; Givan, 1999). Transgenic tobacco plants which were deficient in PKc were used to demonstrate its role in regulating development via modulation of carbon sink-source relationships (Knowles et al., 1998; Grodzinski et al., 1999). PKc lines exhibited delayed shoot and flower development and this was correlated with poor export of previously fixed \(^{14}\)CO\(_2\) from leaves in the ‘night-time’ phase of a light-dark cycle but increased \(^{14}\)CO\(_2\) release from respiration (Grodzinski et al., 1999). Conversely, in another study with Arabidopsis seeds, PKp has been shown to play an important role in fatty acid biosynthesis (Andre and Benning, 2007; Andre et al., 2007).

PKs also exist as tissue specific isozymes (Turner et al., 2005). The subtle respiratory regulation that these differences in PK isoforms affords is well-illustrated by a classic study of PKc repression and activation in castor seed endosperm (Podesta and Plaxton, 1991). In castor seeds, during aerobic conditions, the allosteric inhibition of endosperm PKc facilitated larger gluconeogenic conversion of stored triacylglycerides to hexose-phosphates assisting in germination. However, under low oxygen PKc became active in order to compensate for ATP depletion that occurs due to hypoxic stress (Podesta and Plaxton, 1991).

A key study also used a transgenic approach to provide greater insight into the role of PKc in carbon metabolism through the coordinated regulation of glycolysis, the TCA cycle, the mitochondrial ETC and also AOX in potato tuber (Oliver et al., 2008). A role for PKc in these respiratory pathways was implied from a series of observations. Firstly, pyruvate addition experiments showed an effect on glycolytic flux and the consequences that altered the dynamics of mitochondrial ETC (Zabalza et al., 2009). The link to AOX was suggested when an increase in AOX activity was seen after pyruvate was added to isolated mitochondria (Millar et al., 2003). This AOX effect was then explained through the interaction of pyruvate to cysteine residue of AOX (Umbach et al., 2006).

Transgenic potato tubers with decreased in PKc levels were generated through an RNA interference (RNAi) gene silencing approach, among which three lines were selected, lines PKC-25, 6 and 15 – where PK activity was reduced to ~40%, 37% and 29% respectively (Oliver et al., 2008). As expected, lowering PKc expression led to a higher PEP to pyruvate ratio in actively growing tubers. This decrease in pyruvate levels correlated with a decrease in the various organic acids involved in the TCA cycle and there was also a decrease in the level of total protein in the tubers. \([^{14}\text{C}]\)Glc labelling and feeding experiments showed a slight decrease in carbon partitioning towards organic acid and protein synthesis upon decrease in PKc levels. These results clearly demonstrated that PKc plays a very important role in the regulation of the levels of organic acids in tubers and partitioning the carbon toward the TCA cycle but interestingly total respiration and TCA cycle flux did not alter. One reason could be that residual pyruvate levels are probably enough to maintain the respiratory activity in these tubers. Equally,
other enzymes that generate pyruvate such as PKp, PEPC, or PEP phosphatase could be compensating for the loss in PKc. Alternatively; there could be a compensatory change in electron transport through the COX pathway, which is in line with the electron partition model (Ribas-Carbo et al., 1995). This would imply that respiratory metabolism has a high homeostatic ability allowing considerable flexibility in response to changes in metabolite and transcript levels (Nunes-Nesi et al., 2005, 2007; Studart-Guimarães et al., 2007).

The potato RNAi lines also exhibited a suppression of AOX-dependent respiration which could be reversed by external feeding of pyruvate to tuber tissue. Suppression of the AOX pathway would be beneficial in growing tubers, which characteristically have low internal oxygen concentrations and low adenylate energy charge (Geigenberger, 2003). In line with this, PKc silenced plants produced significantly more tubers which also tended to be larger than the control tubers (Oliver et al., 2008). Thus, PKc modulation of pyruvate accumulation would be of great agronomic importance, functioning as a key regulatory step in potato tuber development by influencing the AOX in heterotrophic potato tubers.

NADPH dehydrogenases linked to AOX

In addition to complex I (NADH dehydrogenase) there are some additional proteins which can use NADH and NADPH to reduce ubiquinone pool. There are NAD(P)H dehydrogenases. Type II NAD(P)H dehydrogenases (ND2) are membrane-bound proteins that face either the matrix or the inter-membrane side (Figure 1.1). Unlike complex I these are not involved in proton translocation and therefore do not contribute for ATP synthesis. As shown in Figure 1.1 there are at least four types of NADH dehydrogenase proteins; two on the external side of the inner mitochondrial membrane (one oxidizing NADH and one NADPH) and two to the inner face of the inner membrane (similarly one devoted use NADH and other use NADPH) (Rasmusson and Møller, 1991). Substrate specificity for these dehydrogenases is based on pH and calcium. Since various environmental conditions and biotic abiotic stresses influence the dynamics of calcium and pH, which in turn have cascading effects on activities of NADH and NADPH dehydrogenases (Felle, 2005; Dodd et al., 2010). For instance NADPH dehydrogenases are involved in nitric oxide generation under anoxia. In view of these intricate dynamic processes, uncovering the roles of different dehydrogenases has been an area of intense research (Michalecka et al., 2003; Rasmusson et al., 2008). There are reports that specificity for NADPH of the external NADPH dehydrogenase NDB1 at low pH becomes important under hypoxia (Felle, 2005). This leads to oxidation of cytosolic NADH under hypoxia which leads to recycling of NAD+.
Uncoupling proteins (UCPs)

Plant uncoupling proteins are a class of mitochondrial anion carrier proteins. UCP is a specialized protein that uncouples electron transport from ATP synthesis in mitochondria by acting downstream of complex IV (Figure 1.1). The primary functions of UCPs are to transport protons from the intermembrane space into the mitochondrial matrix. This translocation leads to generation of electrochemical gradient ($\Delta \psi$) (Rial et al., 1983) which is opposite of ATP and this action leads to a decrease in $\Delta \psi$, and the potential energy of the $\Delta \psi$ is dissipated as heat (Vercesi et al., 2006). Therefore UCPs were initially considered as energy wastage proteins. UCP mediates a fatty acid dependent, purine nucleotide-inhibited proton leakage across the inner mitochondrial membrane (Krauss et al., 2005). Therefore, within the context of plant energy-balance rearrangements, UCP may have overlapping functions with other alternative pathway proteins in the ETC like AOX and NAD(P)H dehydrogenases. Due to this, a tight regulation of UCP takes place in mitochondria. UCPs are mainly activated by free fatty acids and activity diminishes by ADP, GDP, ATP and GTP; (Vercesi et al., 1995; Jezek et al., 1996). Various physiological states such as pH, redox status of the ubiquinone pool control UCPs activity (Navet et al., 2005; Borecký et al., 2001).

For instance, a decline in pH from 7.1 to 6.3 promotes the inhibitory effect of UCPs (Borecký et al., 2001). It was also found that ROS can increase the activity of UCP. First interaction of ROS with membrane lipids leads to the production of 4-hydroxy-2-trans-nonenal which then activates the proton translocation activity of the UCPs (Smith et al., 2004). UCPs are known to protect plants from high light, drought or heat stress. Supporting evidence in line with this is that the over-expression of Arabidopsis UCP (AtUCP1) in tobacco suppressed drought and salt stress-associated respiration. The AtUCP1 transgenic lines exhibited lower levels of ROS and higher tolerance to drought and salt stress (Begcy et al., 2011). Not only to combat stress, UCPs also facilitate the synthesis of intermediates for amino acid and lipid biosynthesis (Tielens and Van Hellemond, 1998; Sweetlove et al., 2007). This is via increasing metabolic flux during the conditions of excess ATP production by, for example, photosynthetic light reactions. Sweetlove et al. (2007) demonstrated that UCPs are involved in the recycling of metabolic intermediates of photorespiration and play important role in maintaining the metabolite flux during the condition of photorespiration.

Electron transfer flavoprotein (ETF)

Besides uncovering pathways which remove excess reducing power and balance the redox poise of the cell, several additional electron donors to the mitochondrial ETC in addition to NADH and NADPH have been uncovered in plants.
Most of them are similarities to well-characterized animal systems (Fe, 1988; Frerman et al., 2001). One of such components is the electron transfer flavoprotein (ETF). ETF was first identified by Crane and Beinert in 1956 based on its capability to transfer electrons to various acceptors from fatty acyl-CoA dehydrogenases. Mammalian ETF is a heterodimer of alpha and beta subunits which are 31 and 27 kDa respectively, each binding to a single flavin adenine dinucleotide (FAD) as a redox responsive co-factor (McKean, Beckmann and Frerman, 1983). This protein is located in mitochondrial matrix and encoded by nuclear genome. ETF is an electron acceptor for at least nine mitochondrial matrix flavoprotein dehydrogenases. These are four straight fatty acyl-CoA dehydrogenases and five dehydrogenases which are involved in the catabolism of amino acids such as glutaryl, isovaleryl short and long chain and choline (reviewed by Roberts et al., 1996 and the literature therein). These donors can be also classified as seven acyl-CoA dehydrogenases and two N-methyl dehydrogenases, isovaleryl-CoA dehydrogenase (IVDH), 2-methyl branched-chain acyl-CoA dehydrogenase, glutaryl-CoA dehydrogenase, sarcosine and dimethylglycine dehydrogenases. ETF donates electrons to flavoprotein:ubiquinone oxidoreductase (ETFQO) which are transferred to the ubiquinone pool (Ishizaki et al., 2005). In mammalian systems the ETF-EFQO has been shown to link the β-oxidation of fatty acids, choline and various amino acids to respiratory metabolism (Frerman, 1987). As a result mutation in either ETF or ETFQO leads to type II glutaric acidemia disease in humans where the build-up of incomplete processed proteins and fats leads to blood plasma acidosis (Frerman and Goodman, 2001).

Within plant science ETF came into picture when Heazlewood et al. (2004) identified the ETF system by liquid chromatography, tandem mass spectrometry mitochondrion proteomic analysis of Arabidopsis. Very soon afterwards Arabidopsis genes encoding ETFQO were discovered (Ishizaki et al., 2005). It quickly emerged that the ETF-EFQO system was involved in plant senescence which includes lipid mobilisation. Thus, Buchanan-Wollaston et al., (2005) found the ETF system was transcriptionally induced during dark-induced senescence but this role was unambiguously demonstrated with T-DNA tagged mutants in Arabidopsis (Ishizaki et al., 2005, 2006). Both ETF and ETFQO T-DNA mutants exhibited accelerated senescence and early death compared to wild-type during extended darkness. Interestingly, the mutants exhibited altered amino acid metabolism and in particular the accumulation of a leucine catabolism intermediate (Ishizaki et al., 2005, 2006). The ETC complex was induced by oxidative stress following menadione treatment (Lehmann et al., 2009) and it is tempting to suggest that senescence-associated oxidative stress triggers the ETC to contribute towards the energetic demands of cellular catabolism. Indeed, phytol and branched chain amino acid degradation leads to the formation of isovaleryl-CoA which can be oxidized by isovaleryl dehydrogenase (IVDH)
leading to a transfer of electrons to the ETF/ETFQO system (Araújo et al., 2010). Similarly, hydroxyglutarate formed via lysine degradation is oxidized by 2-hydroxyglutarate dehydrogenase (D2HGDH) to 2-oxo-glutarate (2-OG) to transfer electrons to ETF (Figure 1.2). The relative importance of each pathway in ETF/ETFQO expression has been investigated using knockout mutants of IVDH and D2HGDH, both enzymes being encoded by single genes (Araújo et al., 2010). Comparing continuous light (24 h light), short day (8 h light/16 h dark) and in cold conditions (13 °C, 16 h light/8 h dark) ivdh-1 plants exhibited a clearer accelerated senescence than the d2hgdh1–2 plants. This finding suggests that IVDH is more likely to control the provision of electrons to the ETF/ETFQO complex than D2HGDH. Lysine was found to accumulate in both mutants, implying that this amino acid accumulation is important to flux the electrons through the ETF/ETFQO complex.

Figure 1.2 Alternative ATP generating mechanisms via operation of ETF/ETFQO and hemoglobin nitric oxide cycle.
Deploying electron dissipatory mechanisms whilst maintaining ATP production under stress situations

Stress imposes certain conditions in plants during which ETC components can become over-reduced to produce ROS and electron dissipation becomes vital but ATP production is still required for energy requirement. Due to the situation of O₂ limitation, hypoxia represents a fascinating interplay between aerobic and anaerobic respiratory metabolism that is discussed here.

Hypoxia is one of the barriers for respiration in bulky tissues (Rolletschek et al., 2003; Rolletschek et al., 2005a, 2005b, 2007) but also plants experience hypoxia that lead to alterations in respiration, for instance during the period of flooding or waterlogging. O₂ depletion occurs where respiration dominates over O₂ availability that result in the depletion of ATP (Zabalza et al., 2009; van Dongen et al., 2009). One major structural change that occurs in certain plant roots is the formation of aerenchyma (Drew et al., 2000). However, this is mediated by ethylene whose biosynthesis is dependent on O₂-requiring ACC oxidase so aerenchyma tend to form only under hypoxic conditions (He et al., 1996). In anoxic conditions aerenchyma formation might takes place only with active photosynthesis which can transfer O₂ to the roots. The metabolic adjustment to low oxygen includes the down-regulation of energy-consuming metabolic pathways (Geigenberger, 2003; van Dongen et al., 2011 that include the down-regulation of storage carbohydrate metabolism (Geigenberger et al., 2000), the metabolic shift from invertase to sucrose synthase pathway (Bologa et al., 2003; Huang et al., 2008), and the inhibition of mitochondrial respiration at near low oxygen to utilize available oxygen for longer time (Gupta et al., 2009; Zabalza et al., 2009). Downregulation of energy inefficient pathways such as AOX pathway also takes place at low oxygen which is a part of the plant survival strategy. When the O₂ concentration decreases below the level of operation of oxidative phosphorylation, plant cells follow various alternative strategies to produce ATP. These include the operation of glycolytic pathway (even in low oxygen situations), which produces two ATP and two pyruvate molecules per unit of hexose utilizing while concomitantly reducing NAD⁺ to NADH. However, for the glycolytic pathway to operate NAD⁺ must be continuously regenerated from NADH via fermentative pathways. By using pyruvate as substrate, fermentative metabolism either produces ethanol via pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) or lactate via lactate dehydrogenase (Tadege et al., 1999). It seems likely that these pathways play role in hypoxic survival as both that Pdc and Adh are strongly induced in response to this stress (Rahman et al., 2001; Kürsteiner et al., 2003). However lactate and ethanol are potentially cytotoxic, if produced in high concentrations (Figure 1.3).