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Preface

Seventeen years have past since Wiley first published Landau and Páez’s Compu-
tational Physics and twelve years since Cristian Bordeianu joined the collabora-
tion for the second edition. This third edition adheres to the original philosophy
that the best way to learn computational physics (CP) is by working on a wide
range of projects using the text and the computer as partners. Most projects are
still constructed using a computational, scientific problem-solving paradigm:

Problem → Theory/Model → Algorithm ↔ Visualization
←

(0.1)

Our guiding hypothesis remains that CP is a computational science, whichmeans
that to understand CP you need to understand some physics, some appliedmath-
ematics, and some computer science.What is different in this edition is the choice
of Python for sample codes and an increase in the number of topics covered. We
now have a survey of CP which is more than enough for a full-year’s course.
The use of Python is more than just a change of language, it is taking advan-

tage of the Python ecosystem of base language plus multiple, specialized libraries
to provide all computational needs. In addition, we find Python to be the easi-
est and most accessible language for beginners, while still being excellent for the
type of interactive and exploratory computations now popular in scientific re-
search. Furthermore, Python supplemented by the Visual package (VPython) has
gained traction in lower division physics teaching, and this may serve as an ex-
cellent segue to a Python-based CP course. Nevertheless, the important aspects
of computational modeling and thinking transcends any particular computer lan-
guage, and so having a Python alternative to our previous use of Fortran, C and
Java may help promote this view (codes in all languages are available).
As before, we advocate for the use of a compiled or interpreted programming

language when learning CP, in contrast to a higher level problem-solving environ-
ment like Mathematica or Maple, which we use in daily work. This follows from
our experiences that if youwant to understand how to compute scientifically, then
you must look inside a program’s black box and get your hands dirty. Otherwise,
the algorithms, logic, and the validity of solutions cannot be ascertained, and that
is not a good physics. Not surprisingly, we believe all physicists should know how
to read programs how to write them as well.
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Notwithstanding our beliefs about programming, we appreciate how time-
consuming and frustrating debugging programs often is, and especially for be-
ginners. Accordingly, rather than make the learner write all codes from scratch,
we have placed a large number of codes within the text and often ask the learner
only to run, modify, and extend them. This not only leaves time for exploration
and analysis, but also provides experience in the modern work environment in
which one must incorporate new developments into the preexisting codes of
others. Be that as it may, for this edition we have added problems in which the
relevant codes are not in the text (but are available to instructors). This should
permit an instructor to decide on the balance of new and second-hand codes with
which their students should work.
In addition to the paper version of the text, there is also an eBook of it that

incorporates many of the multimodal enhancements possible with modern tech-
nologies: video lecture modules, active simulations, editable codes, animations,
and sounds. The eBook is available as a Web (HTML5) document appropriate
for both PCs or mobile devices. The lecture modules, which can be viewed sepa-
rately from the eBook, cover most of the topics in the text, are listed in Appendix
B, and are available online. Theymay provide avenues for alternative understand-
ing the text (either as a preview or a review), for an online course, or for a blended
course that replaces some lecture time with lab time. This latter approach, which
we recommend, provides time for the instructor to assist students more person-
ally with their projects and their learning issues. The studio-produced lectures
are truly “modules,” with active slides, a dynamic table of context, excellent sound
(except maybe for a Bronx accent), and with occasional demonstrations replacing
the talking head.
The introductory chapter includes tables listing all of the problems and exer-

cises in the text, their locations in the text, as well as the physics courses in which
these problems may be used as computational examples. Although we think it
better to have entire courses in CP rather than just examples in the traditional
courses, the inclusion of examplesmay serve as a valuable first step towardsmod-
ernization.
The entire book has been reedited to improve clarity and useability. New ma-

terials have also been added, and this has led to additional and reorganized chap-
ters. Specific additions not found in the second edition include: descriptions of the
Python language and its packages, demonstrations of several visualization pack-
ages, discussions of algebraic tools, an example on protein folding, a derivation
of the Gaussian quadrature rule, searching to obtain the temperature dependence
of magnetization, chaotic weather patterns, planetary motion, matrix comput-
ing with Numerical Python, expanded and updated discussion of parallel com-
puting including scalability and domain composition, optimized matrix comput-
ing with NumPy, GPU computing, CUDA programming, principal components
analysis, digital filtering, the fast Fourier transform (FFT), an entire chapter on
wavelet analysis and data compression, a variety of predator–prey models, sig-
nals of chaos, nonlinear behavior of double pendulum, cellular automata, Perlin
noise, ray tracing, Wang–Landau sampling for thermodynamic simulations, fi-
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nite element (in addition to difference) solutions of 1D and 2D PDEs, waves on a
catenary, finite-difference-time-domain solutions for E&M waves, advection and
shock waves in fluids, and a new chapter on fluid dynamics.We hope you enjoy it
all!

Redmond, Oregon, June 2014 RHL, rubin@science.oregonstate.edu
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1
Introduction

Beginnings are hard.

Chaim Potok

Nothing is more expensive than a start.

Friedrich Nietzsche

This book is really two books. There is a rather traditional paper one with a re-
lated Web site, as well as an eBook version containing a variety of digital fea-
tures best experienced on a computer. Yet even if you are reading from paper, you
can still avail yourself of many of digital features, including video-based lecture
modules, via the book’s Web sites: http://physics.oregonstate.edu/~rubin/Books/
CPbook/eBook/Lectures/ and www.wiley.com/WileyCDA.
We start this chapter with a description of how computational physics (CP) fits into
physics and into the broader field of computational science. We then describe the
subjects we are to cover, and present lists of all the problems in the text and in
which area of physics they can be used as computational examples. The chapter
finallygets down tobusiness bydiscussing the Python language, someof themany
packages that are available for Python, and some detailed examples of the use of
visualization and symbolic manipulation packages.

1.1
Computational Physics and Computational Science

This book presents computational physics (CP) as a subfield of computational
science. This implies that CP is a multidisciplinary subject that combines aspects
of physics, applied mathematics, and computer science (CS) (Figure 1.1a), with
the aim of solving realistic and ever-changing physics problems. Other compu-
tational sciences replace physics with their discipline, such as biology, chemistry,
engineering, and so on. Although related, computational science is not part of
computer science. CS studies computing for its own intrinsic interest and devel-
ops the hardware and software tools that computational scientists use. Likewise,
applied mathematics develops and studies the algorithms that computational sci-
entists use. As much as we also find math and CS interesting for their own sakes,

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.
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Figure 1.1 (a) A representation of the multi-
disciplinary nature of computational physics
as an overlap of physics, applied mathematics
and computer science, and as a bridge among
them. (b) Simulation has been added to ex-

periment and theory as a basic approach in
the search for scientific truth. Although this
book focuses on simulation, we present it as
part of the scientific process.

our focus is on helping the reader do better physics for which you need to under-
stand the CS and math well enough to solve your problems correctly, but not to
become an expert programmer.
As CP has matured, we have come to realize that it is more than the overlap of

physics, computer science, and mathematics. It is also a bridge among them (the
central region in Figure 1.1a) containing core elements of it own, such as com-
putational tools and methods. To us, CP’s commonality of tools and its problem-
solving mindset draws it toward the other computational sciences and away from
the subspecialization found in so much of physics. In order to emphasize our
computational science focus, to the extent possible, we present the subjects in
this book in the form of a Problem to solve, with the components that consti-
tute the solution separated according to the scientific problem-solving paradigm
(Figure 1.1b). In recent times, this type of problem-solving approach, which can
be traced back to the post-World War II research techniques developed at US
national laboratories, has been applied to science education where it is called
something like computational scientific thinking. This is clearly related to what
the computer scientists more recently have come to callComputationalThinking,
but the former is less discipline specific. Our computational scientific thinking is
a hands-on, inquiry-based project approach in which there is problem analysis,
a theoretical foundation that considers computability and appropriate modeling,
algorithmic thinking and development, debugging, and an assessment that leads
back to the original problem.
Traditionally, physics utilizes both experimental and theoretical approaches to

discover scientific truth. Being able to transform a theory into an algorithm re-
quires significant theoretical insight, detailed physical and mathematical under-
standing, and amastery of the art of programming. The actual debugging, testing,
and organization of scientific programs are analogous to experimentation, with
the numerical simulations of nature being virtual experiments. The synthesis of
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numbers into generalizations, predictions, and conclusions requires the insight
and intuition common to both experimental and theoretical science. In fact, the
use of computation and simulation has now become so prevalent and essential a
part of the scientific process that many people believe that the scientific paradigm
has been extended to include simulation as an additional pillar (Figure 1.1b). Nev-
ertheless, as a science, CPmust hold experiment supreme, regardless of the beauty
of the mathematics.

1.2
This Book’s Subjects

This book starts with a discussion of Python as a computing environment and
then discusses some basic computational topics. A simple review of computing
hardware is put off until Chapter 10, although it also fits logically at the beginning
of a course. We include some physics applications in the first third of this book,
by put off most CP until the latter two-thirds of the book.
This text have been written to be accessible to upper division undergraduates,

although many graduate students without a CP background might also benefit,
even from themore elementary topics.We cover both ordinary and partial differ-
ential equation (PDE) applications, as well as problems using linear algebra, for
which we recommend the established subroutine libraries. Some intermediate-
level analysis tools such as discrete Fourier transforms, wavelet analysis, and sin-
gular value/principal component decompositions, often poorly understood by
physics students, are also covered (and recommended). We also present various
topics in fluid dynamics including shock and soliton physics, which in our expe-
rience physics students often do not see otherwise. Some more advanced topics
include integral equations for both the bound state and (singular) scattering prob-
lem in quantum mechanics, as well as Feynman path integrations.
A traditional way to view the materials in this text is in terms of its use in

courses. In our classes (CPUG, 2009), we have used approximately the first third of
the text, with its emphasis on computing tools, for a course called Scientific Com-
puting that is taken after students have acquired familiarity with some compiled
language. Typical topics covered in this one-quarter course are given in Table 1.1,
although we have used others as well. The latter two-thirds of the text, with its
greater emphasis on physics, has typically been used for a two-quarter (20-week)
course in CP. Typical topics covered for each quarter are given in Table 1.2. What
withmany of the topics being research level, thesematerials can easily be used for
a full year’s course or for extended research projects.
The text also uses various symbols and fonts to help clarify the type of material

being dealt with. These include:

⊙ Optional material
Monospace font Words as they would appear on a computer screen
Vertical gray line Note to reader at the beginning of a chapter saying
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Table 1.1 Topics for one-quarter (10 Weeks) scientific computing course.

Week Topics Chapter Week Topics Chapter

1 OS tools, limits 1, (10) 6 Matrices, N-D search 6
2 Visualization, Errors 1, 3 7 Data fitting 7
3 Monte Carlo, 4, 4 8 ODE oscillations 8
4 Integration, visualization 5, (1) 9 ODE eigenvalues 8
5 Derivatives, searching 5, 7 10 Hardware basics 10

Table 1.2 Topics for two-quarters (20 Weeks) computational physics course.

Computational Physics I Computational Physics II
Week Topics Chapter Week Topics Chapter

1 Nonlinear ODEs 8, 9 1 Ising model, Metropolis 17
2 Chaotic scattering 9 2 Molecular dynamics 18
3 Fourier analysis, filters 12 3 Project completions —
4 Wavelet analysis 13 4 Laplace and Poisson PDEs 19
5 Nonlinear maps 14 5 Heat PDE 19
6 Chaotic/double pendulum 15 6 Waves, catenary, friction 21
7 Project completion 15 7 Shocks and solitons 24
8 Fractals, growth 16 8 Fluid dynamics 25
9 Parallel computing, MPI 10, 11 9 Quantum integral equations 26
10 More parallel computing 10, 11 10 Feynman path integration 17

1.3
This Book’s Problems

For this book to contribute to a successful learning experience, we assume that the
reader will work through what we call the Problem at the beginning of each dis-
cussion. This entails studying the text, writing, debugging, and running programs,
visualizing the results, and then expressing inwordswhat has been performed and
what can be concluded. As part of this approach, we suggest that the learner write
up a mini lab report for each problem containing sections on

Equations solved Numerical method Code listing
Visualization Discussion Critique

Although we recognize that programming is a valuable skill for scientists, we also
know that it is incredibly exacting and time-consuming. In order to lighten the
workload, we provide “bare bones” programs. We recommend that these be used
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as guides for the reader’s own programs, or tested and extended to solve the prob-
lem at hand. In any case, they should be understood as part of the text.
While we think it is best to take a course, or several courses, in CP, we recognize

that this is not always possible and some instructors may only be able to include
some CP examples in their traditional courses. To assist in this latter endeavor,
in this section we list the location of each problem distributed throughout the
text and the subject area of each problem. Of course this is not really possible
with a multidisciplinary subject like CP, and so there is an overlap. The code
used in the table for different subjects is: QM= quantum mechanics or modern
physics, CM= classical mechanics, NL= nonlinear dynamics, EM= electricity
and magnetism, SP= statistical physics, MM=mathematical methods as well as
tools, FD=fluid dynamics, CS= computing fundamentals, Th= thermal physics,
and BI= biology. As you can see from the tables, there are many problems and
exercises, which reflects our view that you learn computing best by doing it, and
that many problems cover more than one subject.

Problems and exercises in computational basics
Subject Section Subject Section Subject Section

MM, CS 1.6 CS 2.2.2 CS 2.2.2
CS 2.4.3 CS 2.4.5 CS 2.5.2
CS 3.1.2 CS 3.2 CS 3.2.2
CS 3.3 CS 3.3.1 CS 4.2.2
MM, CS 6.6 CS 10.13.1 CS 10.14.1
CS 11.3.1 CS 11.1.2 CS 11.2.1

Problems and exercises in thermal physics and statistical physics
Subject Section Subject Section Subject Section

SP, MM 4.3 SP, MM 4.5 QM, SP 4.6
Th, SP 7.4 Th, SP 7.4.1 NL, SP 16.3.3
NL, SP 16.4.1 NL, SP 16.7.1 NL, SP 16.7.1
NL, SP 16.8 NL, SP 16.11 SP, QM 17.4.1
SP, QM 17.4.2 SP, QM 17.6.2 Th, MM 20.2.4
Th, MM 20.3 TH, MM 20.4.2 TH, MM 20.1
TH, MM 17.1 SP 16.2 SP, BI 16.3
SP 16.4 SP, MM 16.5 SP 16.6
SP 16.7



6 1 Introduction

Problems and exercises in electricity and magnetism
Subject Section Subject Section Subject Section

EM, MM 19.6 EM, MM 19.7 EM, MM 19.8
EM, MM 19.9 EM, MM 23.2 EM, MM 23.5
EM, MM 23.5.1 EM, MM 23.6.6 EM, MM 22.7.2
EM, MM 22.10 EM, MM 19.2

Problems and exercises in quantummechanics
Subject Section Subject Section Subject Section

QM, SP 4.6 QM, MM 7.1 QM, MM 7.2.1
QM, MM 7.3.2 QM, MM 9.1 QM, MM 9.2
QM, MM 9.2.1 QM, MM 9.3 QM 13.6.3
QM, MM 17.7 QM, MM 26.1 QM, MM 26.3
QM, MM 22.1

Problems and exercises in classical mechanics and nonlinear dynamics
Subject Section Subject Section Subject Section

CM, NL 5.16 CM 6.1 CM, NL 8.1
CM, NL 8.7.1 CM, NL 8.8 CM, NL 8.9
CM, NL 8.10 CM, NL 9.4 CM, NL 9.4.3
CM 9.5 CM 9.7 CM 9.7
NL, FD 9.7 CM 9.7 CM, MM 6.6.2
CM, MM 6.6.1 CM, NL 12.1 BI, NL 14.3
CM, MM 6.6.1 BI, NL 14.4 BI, NL 14.5.2
BI, NL 14.5.3 BI, NL 14.10 BI, NL 14.11.1
BI, NL 14.11.4 BI, NL 14.11.5 CM, NL 15.1.3
CM, NL 15.1 NL, BI 14.1 NL, BI 14.9
CM, NL 15.2.2 CM, NL 15.3 CM, NL 15.4
CM, NL 15.5 CM, NL 15.6 CM, NL 15.7
CM, NL 15.7 NL, MM 16.2.1 NL, MM 16.3.3
NL, MM 16.4.1 NL, MM 16.5.3 NL, MM 16.7.1
NL, MM 16.7.1 NL, MM 16.8 NL, MM 16.11
CM, MM 21.2.4 CM, MM 21.3 CM, MM 21.4.3
CM, MM 24.6 CM, MM 21.1 CM, MM 21.5


