
Problem Solving with Python

Third edition

Computational 
Physics

Rubin H. Landau, Manuel J. Páez
and Cristian C. Bordeianu

PHYSICS TEXTBOOK


le-tex
Dateianlage
9783527684663.jpeg





Rubin H. Landau
Manuel J. Páez
Cristian C. Bordeianu

Computational Physics



Related Titles

Paar, H.H.

An Introduction to Advanced Quantum Physics
2010
Print ISBN: 978-0-470-68675-1; also available in electronic formats

Har, J.J., Tamma, K.K.

Advances in Computational Dynamics of Particles, Materials and
Structures
2012
Print ISBN: 978-0-470-74980-7; also available in electronic formats ISBN: 978-1-119-96589-3

Cohen-Tannoudji, C., Diu, B., Laloe, F.

QuantumMechanics
2 Volume Set

1977
Print ISBN: 978-0-471-56952-7; also available in electronic formats

Schattke, W., Díez Muiño, R.

QuantumMonte-Carlo Programming
for Atoms, Molecules, Clusters, and Solids

2013
Print ISBN: 978-3-527-40851-1; also available in electronic formats

Zelevinsky, V.

Quantum Physics 1&2
2 Volume Set

2011
Print ISBN: 978-3-527-41057-6; also available in electronic formats



Rubin H. Landau
Manuel J. Páez
Cristian C. Bordeianu

Computational Physics

Problem Solving with Python

3rd completely revised edition



Authors

Rubin H. Landau
Oregon State University
97331 Corvallis OR
United States

Manuel J. Páez
Universad de Antioquia
Departamento Fisica
Medellin
Colombia

CristianC. Bordeianu
National Military College “Ştefan cal Mare”
Campulung Moldovenesc
Romania

All books published by Wiley-VCH are carefully
produced. Nevertheless, authors, editors, and
publisher do not warrant the information
contained in these books, including this book,
to be free of errors. Readers are advised to keep
in mind that statements, data, illustrations,
procedural details or other items may
inadvertently be inaccurate.

Library of Congress Card No.:
applied for

British Library Cataloguing-in-Publication Data:
A catalogue record for this book is available
from the British Library.

Bibliographic information published by the
DeutscheNationalbibliothek
The Deutsche Nationalbibliothek lists this
publication in theDeutsche Nationalbibliografie;
detailed bibliographic data are available on the
Internet at http://dnb.d-nb.de.

© 2015WILEY-VCHVerlagGmbH&Co. KGaA,
Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of trans-
lation into other languages). No part of this
book may be reproduced in any form – by
photoprinting, microfilm, or any other means
– nor transmitted or translated into a machine
language without written permission from the
publishers. Registered names, trademarks, etc.
used in this book, even when not specifically
marked as such, are not to be considered un-
protected by law.

Typesetting le-tex publishing services GmbH,
Leipzig, Deutschland
CoverDesign Formgeber,Mannheim, Deutsch-
land
Print and Binding Markono Print Media
Pte Ltd, Singapore

Print ISBN 978-3-527-41315-7
ePDF ISBN 978-3-527-68466-3
ePub ISBN 978-3-527-68469-4
Mobi ISBN 978-3-527-68467-0

Printed on acid-free paper.



V

To the memory of Jon Maestri





VII

Contents

Dedication V

Preface XIX

1 Introduction 1
1.1 Computational Physics and Computational Science 1
1.2 This Book’s Subjects 3
1.3 This Book’s Problems 4
1.4 This Book’s Language: The Python Ecosystem 8
1.4.1 Python Packages (Libraries) 9
1.4.2 This Book’s Packages 10
1.4.3 The Easy Way: Python Distributions (Package Collections) 12
1.5 Python’s Visualization Tools 13
1.5.1 Visual (VPython)’s 2D Plots 14
1.5.2 VPython’s Animations 17
1.5.3 Matplotlib’s 2D Plots 17
1.5.4 Matplotlib’s 3D Surface Plots 22
1.5.5 Matplotlib’s Animations 24
1.5.6 Mayavi’s Visualizations Beyond Plotting 26
1.6 Plotting Exercises 30
1.7 Python’s Algebraic Tools 31

2 Computing Software Basics 33
2.1 Making Computers Obey 33
2.2 Programming Warmup 35
2.2.1 Structured and Reproducible Program Design 36
2.2.2 Shells, Editors, and Execution 37
2.3 Python I/O 39
2.4 Computer Number Representations (Theory) 40
2.4.1 IEEE Floating-Point Numbers 41
2.4.2 Python and the IEEE 754 Standard 47
2.4.3 Over and Underflow Exercises 48
2.4.4 Machine Precision (Model) 49



VIII Contents

2.4.5 Experiment: Your Machine’s Precision 50
2.5 Problem: Summing Series 51
2.5.1 Numerical Summation (Method) 51
2.5.2 Implementation and Assessment 52

3 Errors and Uncertainties in Computations 53
3.1 Types of Errors (Theory) 53
3.1.1 Model for Disaster: Subtractive Cancelation 55
3.1.2 Subtractive Cancelation Exercises 56
3.1.3 Round-off Errors 57
3.1.4 Round-off Error Accumulation 58
3.2 Error in Bessel Functions (Problem) 58
3.2.1 Numerical Recursion (Method) 59
3.2.2 Implementation and Assessment: Recursion Relations 61
3.3 Experimental Error Investigation 62
3.3.1 Error Assessment 65

4 Monte Carlo: Randomness, Walks, and Decays 69
4.1 Deterministic Randomness 69
4.2 Random Sequences (Theory) 69
4.2.1 Random-Number Generation (Algorithm) 70
4.2.2 Implementation: Random Sequences 72
4.2.3 Assessing Randomness and Uniformity 73
4.3 RandomWalks (Problem) 75
4.3.1 Random-Walk Simulation 76
4.3.2 Implementation: RandomWalk 77
4.4 Extension: Protein Folding and Self-Avoiding RandomWalks 79
4.5 Spontaneous Decay (Problem) 80
4.5.1 Discrete Decay (Model) 81
4.5.2 Continuous Decay (Model) 82
4.5.3 Decay Simulation with Geiger Counter Sound 82
4.6 Decay Implementation and Visualization 84

5 Differentiation and Integration 85
5.1 Differentiation 85
5.2 Forward Difference (Algorithm) 86
5.3 Central Difference (Algorithm) 87
5.4 Extrapolated Difference (Algorithm) 87
5.5 Error Assessment 88
5.6 Second Derivatives (Problem) 90
5.6.1 Second-Derivative Assessment 90
5.7 Integration 91
5.8 Quadrature as Box Counting (Math) 91
5.9 Algorithm: Trapezoid Rule 93
5.10 Algorithm: Simpson’s Rule 94



IXContents

5.11 Integration Error (Assessment) 96
5.12 Algorithm: Gaussian Quadrature 97
5.12.1 Mapping Integration Points 98
5.12.2 Gaussian Points Derivation 99
5.12.3 Integration Error Assessment 100
5.13 Higher Order Rules (Algorithm) 103
5.14 Monte Carlo Integration by Stone Throwing (Problem) 104
5.14.1 Stone Throwing Implementation 104
5.15 Mean Value Integration (Theory and Math) 105
5.16 Integration Exercises 106
5.17 Multidimensional Monte Carlo Integration (Problem) 108
5.17.1 Multi Dimension Integration Error Assessment 109
5.17.2 Implementation: 10DMonte Carlo Integration 110
5.18 Integrating Rapidly Varying Functions (Problem) 110
5.19 Variance Reduction (Method) 110
5.20 Importance Sampling (Method) 111
5.21 von Neumann Rejection (Method) 111
5.21.1 Simple Random Gaussian Distribution 113
5.22 Nonuniform Assessment⊙ 113
5.22.1 Implementation ⊙ 114

6 Matrix Computing 117
6.1 Problem 3: N–D Newton–Raphson; Two Masses on a String 117
6.1.1 Theory: Statics 118
6.1.2 Algorithm: Multidimensional Searching 119
6.2 Why Matrix Computing? 122
6.3 Classes of Matrix Problems (Math) 122
6.3.1 Practical Matrix Computing 124
6.4 Python Lists as Arrays 126
6.5 Numerical Python (NumPy) Arrays 127
6.5.1 NumPy’s linalg Package 132
6.6 Exercise: Testing Matrix Programs 134
6.6.1 Matrix Solution of the String Problem 137
6.6.2 Explorations 139

7 Trial-and-Error Searching and Data Fitting 141
7.1 Problem 1: A Search for Quantum States in a Box 141
7.2 Algorithm: Trial-and-Error Roots via Bisection 142
7.2.1 Implementation: Bisection Algorithm 144
7.3 Improved Algorithm: Newton–Raphson Searching 145
7.3.1 Newton–Raphson with Backtracking 147
7.3.2 Implementation: Newton–Raphson Algorithm 148
7.4 Problem 2: Temperature Dependence of Magnetization 148
7.4.1 Searching Exercise 150
7.5 Problem 3: Fitting An Experimental Spectrum 150



X Contents

7.5.1 Lagrange Implementation, Assessment 152
7.5.2 Cubic Spline Interpolation (Method) 153
7.6 Problem 4: Fitting Exponential Decay 156
7.7 Least-Squares Fitting (Theory) 158
7.7.1 Least-Squares Fitting: Theory and Implementation 160
7.8 Exercises: Fitting Exponential Decay, Heat Flow andHubble’s Law 162
7.8.1 Linear Quadratic Fit 164
7.8.2 Problem 5: Nonlinear Fit to a Breit–Wigner 167

8 Solving Differential Equations: Nonlinear Oscillations 171
8.1 Free Nonlinear Oscillations 171
8.2 Nonlinear Oscillators (Models) 171
8.3 Types of Differential Equations (Math) 173
8.4 Dynamic Form for ODEs (Theory) 175
8.5 ODE Algorithms 177
8.5.1 Euler’s Rule 177
8.6 Runge–Kutta Rule 178
8.7 Adams–Bashforth–Moulton Predictor–Corrector Rule 183
8.7.1 Assessment: rk2 vs. rk4 vs. rk45 185
8.8 Solution for Nonlinear Oscillations (Assessment) 187
8.8.1 Precision Assessment: Energy Conservation 188
8.9 Extensions: Nonlinear Resonances, Beats, Friction 189
8.9.1 Friction (Model) 189
8.9.2 Resonances and Beats: Model, Implementation 190
8.10 Extension: Time-Dependent Forces 190

9 ODE Applications: Eigenvalues, Scattering, and Projectiles 193
9.1 Problem: Quantum Eigenvalues in Arbitrary Potential 193
9.1.1 Model: Nucleon in a Box 194
9.2 Algorithms: Eigenvalues via ODE Solver + Search 195
9.2.1 Numerov Algorithm for Schrödinger ODE ⊙ 197
9.2.2 Implementation: Eigenvalues viaODESolver+BisectionAlgorithm 200
9.3 Explorations 203
9.4 Problem: Classical Chaotic Scattering 203
9.4.1 Model and Theory 204
9.4.2 Implementation 206
9.4.3 Assessment 207
9.5 Problem: Balls Falling Out of the Sky 208
9.6 Theory: Projectile Motion with Drag 208
9.6.1 Simultaneous Second-Order ODEs 209
9.6.2 Assessment 210
9.7 Exercises: 2- and 3-Body Planet Orbits and Chaotic Weather 211

10 High-Performance Hardware and Parallel Computers 215
10.1 High-Performance Computers 215



XIContents

10.2 Memory Hierarchy 216
10.3 The Central Processing Unit 219
10.4 CPU Design: Reduced Instruction Set Processors 220
10.5 CPU Design: Multiple-Core Processors 221
10.6 CPU Design: Vector Processors 222
10.7 Introduction to Parallel Computing 223
10.8 Parallel Semantics (Theory) 224
10.9 Distributed Memory Programming 226
10.10 Parallel Performance 227
10.10.1 Communication Overhead 229
10.11 Parallelization Strategies 230
10.12 Practical Aspects of MIMDMessage Passing 231
10.12.1 High-Level View of Message Passing 233
10.12.2 Message Passing Example and Exercise 234
10.13 Scalability 236
10.13.1 Scalability Exercises 238
10.14 Data Parallelism and Domain Decomposition 239
10.14.1 Domain Decomposition Exercises 242
10.15 Example: The IBM Blue Gene Supercomputers 243
10.16 Exascale Computing via Multinode-Multicore GPUs 245

11 Applied HPC: Optimization, Tuning, and GPU Programming 247
11.1 General Program Optimization 247
11.1.1 Programming for Virtual Memory (Method) 248
11.1.2 Optimization Exercises 249
11.2 Optimized Matrix Programming with NumPy 251
11.2.1 NumPy Optimization Exercises 254
11.3 Empirical Performance of Hardware 254
11.3.1 Racing Python vs. Fortran/C 255
11.4 Programming for the Data Cache (Method) 262
11.4.1 Exercise 1: Cache Misses 264
11.4.2 Exercise 2: Cache Flow 264
11.4.3 Exercise 3: Large-Matrix Multiplication 265
11.5 Graphical Processing Units for High Performance Computing 266
11.5.1 The GPU Card 267
11.6 Practical Tips for Multicore and GPU Programming ⊙ 267
11.6.1 CUDA Memory Usage 270
11.6.2 CUDA Programming ⊙ 271

12 Fourier Analysis: Signals and Filters 275
12.1 Fourier Analysis of Nonlinear Oscillations 275
12.2 Fourier Series (Math) 276
12.2.1 Examples: Sawtooth and Half-Wave Functions 278
12.3 Exercise: Summation of Fourier Series 279
12.4 Fourier Transforms (Theory) 279



XII Contents

12.5 The Discrete Fourier Transform 281
12.5.1 Aliasing (Assessment) 285
12.5.2 Fourier Series DFT (Example) 287
12.5.3 Assessments 288
12.5.4 Nonperiodic Function DFT (Exploration) 290
12.6 Filtering Noisy Signals 290
12.7 Noise Reduction via Autocorrelation (Theory) 290
12.7.1 Autocorrelation Function Exercises 293
12.8 Filtering with Transforms (Theory) 294
12.8.1 Digital Filters: Windowed Sinc Filters (Exploration)⊙ 296
12.9 The Fast Fourier Transform Algorithm⊙ 299
12.9.1 Bit Reversal 301
12.10 FFT Implementation 303
12.11 FFT Assessment 304

13 Wavelet and Principal Components Analyses: Nonstationary Signals and
Data Compression 307

13.1 Problem: Spectral Analysis of Nonstationary Signals 307
13.2 Wavelet Basics 307
13.3 Wave Packets and Uncertainty Principle (Theory) 309
13.3.1 Wave Packet Assessment 311
13.4 Short-Time Fourier Transforms (Math) 311
13.5 TheWavelet Transform 313
13.5.1 Generating Wavelet Basis Functions 313
13.5.2 Continuous Wavelet Transform Implementation 316
13.6 Discrete Wavelet Transforms, Multiresolution Analysis ⊙ 317
13.6.1 Pyramid Scheme Implementation ⊙ 323
13.6.2 Daubechies Wavelets via Filtering 327
13.6.3 DWT Implementation and Exercise 330
13.7 Principal Components Analysis 332
13.7.1 Demonstration of Principal Component Analysis 334
13.7.2 PCA Exercises 337

14 Nonlinear Population Dynamics 339
14.1 Bug Population Dynamics 339
14.2 The Logistic Map (Model) 339
14.3 Properties of Nonlinear Maps (Theory and Exercise) 341
14.3.1 Fixed Points 342
14.3.2 Period Doubling, Attractors 343
14.4 Mapping Implementation 344
14.5 Bifurcation Diagram (Assessment) 345
14.5.1 Bifurcation Diagram Implementation 346
14.5.2 Visualization Algorithm: Binning 347
14.5.3 Feigenbaum Constants (Exploration) 348
14.6 Logistic Map Random Numbers (Exploration)⊙ 348



XIIIContents

14.7 Other Maps (Exploration) 348
14.8 Signals of Chaos: Lyapunov Coefficient and Shannon Entropy ⊙ 349
14.9 Coupled Predator–Prey Models 353
14.10 Lotka–Volterra Model 354
14.10.1 Lotka–Volterra Assessment 356
14.11 Predator–Prey Chaos 356
14.11.1 Exercises 359
14.11.2 LVM with Prey Limit 359
14.11.3 LVM with Predation Efficiency 360
14.11.4 LVM Implementation and Assessment 361
14.11.5 Two Predators, One Prey (Exploration) 362

15 Continuous Nonlinear Dynamics 363
15.1 Chaotic Pendulum 363
15.1.1 Free Pendulum Oscillations 364
15.1.2 Solution as Elliptic Integrals 365
15.1.3 Implementation and Test: Free Pendulum 366
15.2 Visualization: Phase-Space Orbits 367
15.2.1 Chaos in Phase Space 368
15.2.2 Assessment in Phase Space 372
15.3 Exploration: Bifurcations of Chaotic Pendulums 374
15.4 Alternate Problem: The Double Pendulum 375
15.5 Assessment: Fourier/Wavelet Analysis of Chaos 377
15.6 Exploration: Alternate Phase-Space Plots 378
15.7 Further Explorations 379

16 Fractals and Statistical Growth Models 383
16.1 Fractional Dimension (Math) 383
16.2 The Sierpiński Gasket (Problem 1) 384
16.2.1 Sierpiński Implementation 384
16.2.2 Assessing Fractal Dimension 385
16.3 Growing Plants (Problem 2) 386
16.3.1 Self-Affine Connection (Theory) 386
16.3.2 Barnsley’s Fern Implementation 387
16.3.3 Self-Affinity in Trees Implementation 389
16.4 Ballistic Deposition (Problem 3) 390
16.4.1 Random Deposition Algorithm 390
16.5 Length of British Coastline (Problem 4) 391
16.5.1 Coastlines as Fractals (Model) 392
16.5.2 Box Counting Algorithm 392
16.5.3 Coastline Implementation and Exercise 393
16.6 Correlated Growth, Forests, Films (Problem 5) 395
16.6.1 Correlated Ballistic Deposition Algorithm 395
16.7 Globular Cluster (Problem 6) 396
16.7.1 Diffusion-Limited Aggregation Algorithm 396



XIV Contents

16.7.2 Fractal Analysis of DLA or a Pollock 399
16.8 Fractals in Bifurcation Plot (Problem 7) 400
16.9 Fractals from Cellular Automata 400
16.10 Perlin Noise Adds Realism ⊙ 402
16.10.1 Ray Tracing Algorithms 404
16.11 Exercises 407

17 Thermodynamic Simulations and Feynman Path Integrals 409
17.1 Magnets via Metropolis Algorithm 409
17.2 An Ising Chain (Model) 410
17.3 Statistical Mechanics (Theory) 412
17.3.1 Analytic Solution 413
17.4 Metropolis Algorithm 413
17.4.1 Metropolis Algorithm Implementation 416
17.4.2 Equilibration, Thermodynamic Properties (Assessment) 417
17.4.3 Beyond Nearest Neighbors, 1D (Exploration) 419
17.5 Magnets via Wang–Landau Sampling ⊙ 420
17.6 Wang–Landau Algorithm 423
17.6.1 WLS Ising Model Implementation 425
17.6.2 WLS Ising Model Assessment 428
17.7 Feynman Path Integral Quantum Mechanics⊙ 429
17.8 Feynman’s Space–Time Propagation (Theory) 429
17.8.1 Bound-State Wave Function (Theory) 431
17.8.2 Lattice Path Integration (Algorithm) 432
17.8.3 Lattice Implementation 437
17.8.4 Assessment and Exploration 440
17.9 Exploration: Quantum Bouncer’s Paths⊙ 440

18 Molecular Dynamics Simulations 445
18.1 Molecular Dynamics (Theory) 445
18.1.1 Connection to Thermodynamic Variables 449
18.1.2 Setting Initial Velocities 449
18.1.3 Periodic Boundary Conditions and Potential Cutoff 450
18.2 Verlet and Velocity–Verlet Algorithms 451
18.3 1D Implementation and Exercise 453
18.4 Analysis 456

19 PDE Review and Electrostatics via Finite Differences and Electrostatics via
Finite Differences 461

19.1 PDE Generalities 461
19.2 Electrostatic Potentials 463
19.2.1 Laplace’s Elliptic PDE (Theory) 463
19.3 Fourier Series Solution of a PDE 464
19.3.1 Polynomial Expansion as an Algorithm 466
19.4 Finite-Difference Algorithm 467



XVContents

19.4.1 Relaxation and Over-relaxation 469
19.4.2 Lattice PDE Implementation 470
19.5 Assessment via Surface Plot 471
19.6 Alternate Capacitor Problems 471
19.7 Implementation and Assessment 474
19.8 Electric Field Visualization (Exploration) 475
19.9 Review Exercise 476

20 Heat Flow via Time Stepping 477
20.1 Heat Flow via Time-Stepping (Leapfrog) 477
20.2 The Parabolic Heat Equation (Theory) 478
20.2.1 Solution: Analytic Expansion 478
20.2.2 Solution: Time Stepping 479
20.2.3 von Neumann Stability Assessment 481
20.2.4 Heat Equation Implementation 483
20.3 Assessment and Visualization 483
20.4 Improved Heat Flow: Crank–Nicolson Method 484
20.4.1 Solution of Tridiagonal Matrix Equations ⊙ 487
20.4.2 Crank–Nicolson Implementation, Assessment 490

21 Wave Equations I: Strings andMembranes 491
21.1 A Vibrating String 491
21.2 The Hyperbolic Wave Equation (Theory) 491
21.2.1 Solution via Normal-Mode Expansion 493
21.2.2 Algorithm: Time Stepping 494
21.2.3 Wave Equation Implementation 496
21.2.4 Assessment, Exploration 497
21.3 Strings with Friction (Extension) 499
21.4 Strings with Variable Tension and Density 500
21.4.1 Waves on Catenary 501
21.4.2 Derivation of Catenary Shape 501
21.4.3 Catenary and Frictional Wave Exercises 503
21.5 Vibrating Membrane (2DWaves) 504
21.6 Analytical Solution 505
21.7 Numerical Solution for 2DWaves 508

22 Wave Equations II: Quantum Packets and Electromagnetic 511
22.1 Quantum Wave Packets 511
22.2 Time-Dependent Schrödinger Equation (Theory) 511
22.2.1 Finite-Difference Algorithm 513
22.2.2 Wave Packet Implementation, Animation 514
22.2.3 Wave Packets in Other Wells (Exploration) 516
22.3 Algorithm for the 2D Schrödinger Equation 517
22.3.1 Exploration: Bound and Diffracted 2D Packet 518
22.4 Wave Packet–Wave Packet Scattering 518



XVI Contents

22.4.1 Algorithm 520
22.4.2 Implementation 520
22.4.3 Results and Visualization 522
22.5 E&MWaves via Finite-Difference Time Domain 525
22.6 Maxwell’s Equations 525
22.7 FDTD Algorithm 526
22.7.1 Implementation 530
22.7.2 Assessment 530
22.7.3 Extension: Circularly Polarized Waves 531
22.8 Application: Wave Plates 533
22.9 Algorithm 534
22.10 FDTD Exercise and Assessment 535

23 Electrostatics via Finite Elements 537
23.1 Finite-Element Method⊙ 537
23.2 Electric Field from Charge Density (Problem) 538
23.3 Analytic Solution 538
23.4 Finite-Element (Not Difference) Methods, 1D 539
23.4.1 Weak Form of PDE 539
23.4.2 Galerkin Spectral Decomposition 540
23.5 1D FEM Implementation and Exercises 544
23.5.1 1D Exploration 547
23.6 Extension to 2D Finite Elements 547
23.6.1 Weak Form of PDE 548
23.6.2 Galerkin’s Spectral Decomposition 548
23.6.3 Triangular Elements 549
23.6.4 Solution as Linear Equations 551
23.6.5 Imposing Boundary Conditions 552
23.6.6 FEM 2D Implementation and Exercise 554
23.6.7 FEM 2D Exercises 554

24 Shocks Waves and Solitons 555
24.1 Shocks and Solitons in ShallowWater 555
24.2 Theory: Continuity and Advection Equations 556
24.2.1 Advection Implementation 558
24.3 Theory: ShockWaves via Burgers’ Equation 559
24.3.1 Lax–Wendroff Algorithm for Burgers’ Equation 560
24.3.2 Implementation and Assessment of Burgers’ Shock Equation 561
24.4 Including Dispersion 562
24.5 Shallow-Water Solitons: The KdeV Equation 563
24.5.1 Analytic Soliton Solution 563
24.5.2 Algorithm for KdeV Solitons 564
24.5.3 Implementation: KdeV Solitons 565
24.5.4 Exploration: Solitons in Phase Space, Crossing 567
24.6 Solitons on Pendulum Chain 567



XVIIContents

24.6.1 Including Dispersion 568
24.6.2 Continuum Limit, the Sine-Gordon Equation 570
24.6.3 Analytic SGE Solution 571
24.6.4 Numeric Solution: 2D SGE Solitons 571
24.6.5 2D Soliton Implementation 573
24.6.6 SGE Soliton Visualization 574

25 Fluid Dynamics 575
25.1 River Hydrodynamics 575
25.2 Navier–Stokes Equation (Theory) 576
25.2.1 Boundary Conditions for Parallel Plates 578
25.2.2 Finite-Difference Algorithm and Overrelaxation 580
25.2.3 Successive Overrelaxation Implementation 581
25.3 2D Flow over a Beam 581
25.4 Theory: Vorticity Form of Navier–Stokes Equation 582
25.4.1 Finite Differences and the SOR Algorithm 584
25.4.2 Boundary Conditions for a Beam 585
25.4.3 SOR on a Grid 587
25.4.4 Flow Assessment 589
25.4.5 Exploration 590

26 Integral Equations of QuantumMechanics 591
26.1 Bound States of Nonlocal Potentials 591
26.2 Momentum–Space Schrödinger Equation (Theory) 592
26.2.1 Integral to Matrix Equations 593
26.2.2 Delta-Shell Potential (Model) 595
26.2.3 Binding Energies Solution 595
26.2.4 Wave Function (Exploration) 597
26.3 Scattering States of Nonlocal Potentials ⊙ 597
26.4 Lippmann–Schwinger Equation (Theory) 598
26.4.1 Singular Integrals (Math) 599
26.4.2 Numerical Principal Values 600
26.4.3 Reducing Integral Equations to Matrix Equations (Method) 600
26.4.4 Solution via Inversion, Elimination 602
26.4.5 Scattering Implementation 603
26.4.6 Scattering Wave Function (Exploration) 604

Appendix A Codes, Applets, and Animations 607

Bibliography 609

Index 615





XIX

Preface

Seventeen years have past since Wiley first published Landau and Páez’s Compu-
tational Physics and twelve years since Cristian Bordeianu joined the collabora-
tion for the second edition. This third edition adheres to the original philosophy
that the best way to learn computational physics (CP) is by working on a wide
range of projects using the text and the computer as partners. Most projects are
still constructed using a computational, scientific problem-solving paradigm:

Problem → Theory/Model → Algorithm ↔ Visualization
←

(0.1)

Our guiding hypothesis remains that CP is a computational science, whichmeans
that to understand CP you need to understand some physics, some appliedmath-
ematics, and some computer science.What is different in this edition is the choice
of Python for sample codes and an increase in the number of topics covered. We
now have a survey of CP which is more than enough for a full-year’s course.
The use of Python is more than just a change of language, it is taking advan-

tage of the Python ecosystem of base language plus multiple, specialized libraries
to provide all computational needs. In addition, we find Python to be the easi-
est and most accessible language for beginners, while still being excellent for the
type of interactive and exploratory computations now popular in scientific re-
search. Furthermore, Python supplemented by the Visual package (VPython) has
gained traction in lower division physics teaching, and this may serve as an ex-
cellent segue to a Python-based CP course. Nevertheless, the important aspects
of computational modeling and thinking transcends any particular computer lan-
guage, and so having a Python alternative to our previous use of Fortran, C and
Java may help promote this view (codes in all languages are available).
As before, we advocate for the use of a compiled or interpreted programming

language when learning CP, in contrast to a higher level problem-solving environ-
ment like Mathematica or Maple, which we use in daily work. This follows from
our experiences that if youwant to understand how to compute scientifically, then
you must look inside a program’s black box and get your hands dirty. Otherwise,
the algorithms, logic, and the validity of solutions cannot be ascertained, and that
is not a good physics. Not surprisingly, we believe all physicists should know how
to read programs how to write them as well.



XX Preface

Notwithstanding our beliefs about programming, we appreciate how time-
consuming and frustrating debugging programs often is, and especially for be-
ginners. Accordingly, rather than make the learner write all codes from scratch,
we have placed a large number of codes within the text and often ask the learner
only to run, modify, and extend them. This not only leaves time for exploration
and analysis, but also provides experience in the modern work environment in
which one must incorporate new developments into the preexisting codes of
others. Be that as it may, for this edition we have added problems in which the
relevant codes are not in the text (but are available to instructors). This should
permit an instructor to decide on the balance of new and second-hand codes with
which their students should work.
In addition to the paper version of the text, there is also an eBook of it that

incorporates many of the multimodal enhancements possible with modern tech-
nologies: video lecture modules, active simulations, editable codes, animations,
and sounds. The eBook is available as a Web (HTML5) document appropriate
for both PCs or mobile devices. The lecture modules, which can be viewed sepa-
rately from the eBook, cover most of the topics in the text, are listed in Appendix
B, and are available online. Theymay provide avenues for alternative understand-
ing the text (either as a preview or a review), for an online course, or for a blended
course that replaces some lecture time with lab time. This latter approach, which
we recommend, provides time for the instructor to assist students more person-
ally with their projects and their learning issues. The studio-produced lectures
are truly “modules,” with active slides, a dynamic table of context, excellent sound
(except maybe for a Bronx accent), and with occasional demonstrations replacing
the talking head.
The introductory chapter includes tables listing all of the problems and exer-

cises in the text, their locations in the text, as well as the physics courses in which
these problems may be used as computational examples. Although we think it
better to have entire courses in CP rather than just examples in the traditional
courses, the inclusion of examplesmay serve as a valuable first step towardsmod-
ernization.
The entire book has been reedited to improve clarity and useability. New ma-

terials have also been added, and this has led to additional and reorganized chap-
ters. Specific additions not found in the second edition include: descriptions of the
Python language and its packages, demonstrations of several visualization pack-
ages, discussions of algebraic tools, an example on protein folding, a derivation
of the Gaussian quadrature rule, searching to obtain the temperature dependence
of magnetization, chaotic weather patterns, planetary motion, matrix comput-
ing with Numerical Python, expanded and updated discussion of parallel com-
puting including scalability and domain composition, optimized matrix comput-
ing with NumPy, GPU computing, CUDA programming, principal components
analysis, digital filtering, the fast Fourier transform (FFT), an entire chapter on
wavelet analysis and data compression, a variety of predator–prey models, sig-
nals of chaos, nonlinear behavior of double pendulum, cellular automata, Perlin
noise, ray tracing, Wang–Landau sampling for thermodynamic simulations, fi-



XXIPreface

nite element (in addition to difference) solutions of 1D and 2D PDEs, waves on a
catenary, finite-difference-time-domain solutions for E&M waves, advection and
shock waves in fluids, and a new chapter on fluid dynamics.We hope you enjoy it
all!

Redmond, Oregon, June 2014 RHL, rubin@science.oregonstate.edu



XXII Preface

Acknowledgments

Immature poets imitate;
mature poets steal.
T.S. Elliot

This book and the courses it is based upon could not have been created without
continued financial support from the National Science Foundation’s CCLI, EPIC,
andNPACI programs, as well as support from theOregon State University. Thank
you all and we hope we have done you proud.
Our CP developments have followed the pioneering path paved by the books

of Thompson, Gould and Tobochnik, Koonin and Press et al.; indubitably, we
have borrowedmaterial from them andmade it our ownwith no further thought.
We wish to acknowledge valuable contributions by Hans Kowallik, Sally Haerer
(video-lecture modules), Paul Fink, Michel Vallières, Joel Wetzel, Oscar A. Re-
strepo, Jaime Zuluaga, Pavel Snopok, and Henri Jansen. It is our pleasure to
acknowledge the invaluable friendship, encouragement, helpful discussions, and
experiences we have had with many colleagues and students over the years.
We are particularly indebted to Guillermo Avendaño-Franco, Saturo S. Kano,
Melanie Johnson, Jon Maestri (deceased), David McIntyre, Shashikant Phatak,
Viktor Podolskiy, C.E. Yaguna, Zlatco Dimcovic, and Al Stetz. The new work on
principal component analysis resulted from a wonderful collaboration with Jon
Wright and Roy Schult in 1997. Our gratitude also goes to the reviewers for their
thoughtful and valuable suggestions, and to Bruce Sherwood, who has assisted
us in making the Python codes run faster and look better. And finally, Martin
Preuss, Nina Stadthaus, Ann Seidel, and Vera Palmer at Wiley-VCH have been a
pleasure to work with.
In spite of everyone’s best efforts, there are still errors and confusing statements

in the book and codes for which we are to blame.
Finally, we extend our gratitude to the wives, Jan and Lucia, whose reliable sup-

port and encouragement are lovingly accepted, as always.



1

1
Introduction

Beginnings are hard.

Chaim Potok

Nothing is more expensive than a start.

Friedrich Nietzsche

This book is really two books. There is a rather traditional paper one with a re-
lated Web site, as well as an eBook version containing a variety of digital fea-
tures best experienced on a computer. Yet even if you are reading from paper, you
can still avail yourself of many of digital features, including video-based lecture
modules, via the book’s Web sites: http://physics.oregonstate.edu/~rubin/Books/
CPbook/eBook/Lectures/ and www.wiley.com/WileyCDA.
We start this chapter with a description of how computational physics (CP) fits into
physics and into the broader field of computational science. We then describe the
subjects we are to cover, and present lists of all the problems in the text and in
which area of physics they can be used as computational examples. The chapter
finallygets down tobusiness bydiscussing the Python language, someof themany
packages that are available for Python, and some detailed examples of the use of
visualization and symbolic manipulation packages.

1.1
Computational Physics and Computational Science

This book presents computational physics (CP) as a subfield of computational
science. This implies that CP is a multidisciplinary subject that combines aspects
of physics, applied mathematics, and computer science (CS) (Figure 1.1a), with
the aim of solving realistic and ever-changing physics problems. Other compu-
tational sciences replace physics with their discipline, such as biology, chemistry,
engineering, and so on. Although related, computational science is not part of
computer science. CS studies computing for its own intrinsic interest and devel-
ops the hardware and software tools that computational scientists use. Likewise,
applied mathematics develops and studies the algorithms that computational sci-
entists use. As much as we also find math and CS interesting for their own sakes,

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.



2 1 Introduction

Figure 1.1 (a) A representation of the multi-
disciplinary nature of computational physics
as an overlap of physics, applied mathematics
and computer science, and as a bridge among
them. (b) Simulation has been added to ex-

periment and theory as a basic approach in
the search for scientific truth. Although this
book focuses on simulation, we present it as
part of the scientific process.

our focus is on helping the reader do better physics for which you need to under-
stand the CS and math well enough to solve your problems correctly, but not to
become an expert programmer.
As CP has matured, we have come to realize that it is more than the overlap of

physics, computer science, and mathematics. It is also a bridge among them (the
central region in Figure 1.1a) containing core elements of it own, such as com-
putational tools and methods. To us, CP’s commonality of tools and its problem-
solving mindset draws it toward the other computational sciences and away from
the subspecialization found in so much of physics. In order to emphasize our
computational science focus, to the extent possible, we present the subjects in
this book in the form of a Problem to solve, with the components that consti-
tute the solution separated according to the scientific problem-solving paradigm
(Figure 1.1b). In recent times, this type of problem-solving approach, which can
be traced back to the post-World War II research techniques developed at US
national laboratories, has been applied to science education where it is called
something like computational scientific thinking. This is clearly related to what
the computer scientists more recently have come to callComputationalThinking,
but the former is less discipline specific. Our computational scientific thinking is
a hands-on, inquiry-based project approach in which there is problem analysis,
a theoretical foundation that considers computability and appropriate modeling,
algorithmic thinking and development, debugging, and an assessment that leads
back to the original problem.
Traditionally, physics utilizes both experimental and theoretical approaches to

discover scientific truth. Being able to transform a theory into an algorithm re-
quires significant theoretical insight, detailed physical and mathematical under-
standing, and amastery of the art of programming. The actual debugging, testing,
and organization of scientific programs are analogous to experimentation, with
the numerical simulations of nature being virtual experiments. The synthesis of



31.2 This Book’s Subjects

numbers into generalizations, predictions, and conclusions requires the insight
and intuition common to both experimental and theoretical science. In fact, the
use of computation and simulation has now become so prevalent and essential a
part of the scientific process that many people believe that the scientific paradigm
has been extended to include simulation as an additional pillar (Figure 1.1b). Nev-
ertheless, as a science, CPmust hold experiment supreme, regardless of the beauty
of the mathematics.

1.2
This Book’s Subjects

This book starts with a discussion of Python as a computing environment and
then discusses some basic computational topics. A simple review of computing
hardware is put off until Chapter 10, although it also fits logically at the beginning
of a course. We include some physics applications in the first third of this book,
by put off most CP until the latter two-thirds of the book.
This text have been written to be accessible to upper division undergraduates,

although many graduate students without a CP background might also benefit,
even from themore elementary topics.We cover both ordinary and partial differ-
ential equation (PDE) applications, as well as problems using linear algebra, for
which we recommend the established subroutine libraries. Some intermediate-
level analysis tools such as discrete Fourier transforms, wavelet analysis, and sin-
gular value/principal component decompositions, often poorly understood by
physics students, are also covered (and recommended). We also present various
topics in fluid dynamics including shock and soliton physics, which in our expe-
rience physics students often do not see otherwise. Some more advanced topics
include integral equations for both the bound state and (singular) scattering prob-
lem in quantum mechanics, as well as Feynman path integrations.
A traditional way to view the materials in this text is in terms of its use in

courses. In our classes (CPUG, 2009), we have used approximately the first third of
the text, with its emphasis on computing tools, for a course called Scientific Com-
puting that is taken after students have acquired familiarity with some compiled
language. Typical topics covered in this one-quarter course are given in Table 1.1,
although we have used others as well. The latter two-thirds of the text, with its
greater emphasis on physics, has typically been used for a two-quarter (20-week)
course in CP. Typical topics covered for each quarter are given in Table 1.2. What
withmany of the topics being research level, thesematerials can easily be used for
a full year’s course or for extended research projects.
The text also uses various symbols and fonts to help clarify the type of material

being dealt with. These include:

⊙ Optional material
Monospace font Words as they would appear on a computer screen
Vertical gray line Note to reader at the beginning of a chapter saying



4 1 Introduction

Table 1.1 Topics for one-quarter (10 Weeks) scientific computing course.

Week Topics Chapter Week Topics Chapter

1 OS tools, limits 1, (10) 6 Matrices, N-D search 6
2 Visualization, Errors 1, 3 7 Data fitting 7
3 Monte Carlo, 4, 4 8 ODE oscillations 8
4 Integration, visualization 5, (1) 9 ODE eigenvalues 8
5 Derivatives, searching 5, 7 10 Hardware basics 10

Table 1.2 Topics for two-quarters (20 Weeks) computational physics course.

Computational Physics I Computational Physics II
Week Topics Chapter Week Topics Chapter

1 Nonlinear ODEs 8, 9 1 Ising model, Metropolis 17
2 Chaotic scattering 9 2 Molecular dynamics 18
3 Fourier analysis, filters 12 3 Project completions —
4 Wavelet analysis 13 4 Laplace and Poisson PDEs 19
5 Nonlinear maps 14 5 Heat PDE 19
6 Chaotic/double pendulum 15 6 Waves, catenary, friction 21
7 Project completion 15 7 Shocks and solitons 24
8 Fractals, growth 16 8 Fluid dynamics 25
9 Parallel computing, MPI 10, 11 9 Quantum integral equations 26
10 More parallel computing 10, 11 10 Feynman path integration 17

1.3
This Book’s Problems

For this book to contribute to a successful learning experience, we assume that the
reader will work through what we call the Problem at the beginning of each dis-
cussion. This entails studying the text, writing, debugging, and running programs,
visualizing the results, and then expressing inwordswhat has been performed and
what can be concluded. As part of this approach, we suggest that the learner write
up a mini lab report for each problem containing sections on

Equations solved Numerical method Code listing
Visualization Discussion Critique

Although we recognize that programming is a valuable skill for scientists, we also
know that it is incredibly exacting and time-consuming. In order to lighten the
workload, we provide “bare bones” programs. We recommend that these be used



51.3 This Book’s Problems

as guides for the reader’s own programs, or tested and extended to solve the prob-
lem at hand. In any case, they should be understood as part of the text.
While we think it is best to take a course, or several courses, in CP, we recognize

that this is not always possible and some instructors may only be able to include
some CP examples in their traditional courses. To assist in this latter endeavor,
in this section we list the location of each problem distributed throughout the
text and the subject area of each problem. Of course this is not really possible
with a multidisciplinary subject like CP, and so there is an overlap. The code
used in the table for different subjects is: QM= quantum mechanics or modern
physics, CM= classical mechanics, NL= nonlinear dynamics, EM= electricity
and magnetism, SP= statistical physics, MM=mathematical methods as well as
tools, FD=fluid dynamics, CS= computing fundamentals, Th= thermal physics,
and BI= biology. As you can see from the tables, there are many problems and
exercises, which reflects our view that you learn computing best by doing it, and
that many problems cover more than one subject.

Problems and exercises in computational basics
Subject Section Subject Section Subject Section

MM, CS 1.6 CS 2.2.2 CS 2.2.2
CS 2.4.3 CS 2.4.5 CS 2.5.2
CS 3.1.2 CS 3.2 CS 3.2.2
CS 3.3 CS 3.3.1 CS 4.2.2
MM, CS 6.6 CS 10.13.1 CS 10.14.1
CS 11.3.1 CS 11.1.2 CS 11.2.1

Problems and exercises in thermal physics and statistical physics
Subject Section Subject Section Subject Section

SP, MM 4.3 SP, MM 4.5 QM, SP 4.6
Th, SP 7.4 Th, SP 7.4.1 NL, SP 16.3.3
NL, SP 16.4.1 NL, SP 16.7.1 NL, SP 16.7.1
NL, SP 16.8 NL, SP 16.11 SP, QM 17.4.1
SP, QM 17.4.2 SP, QM 17.6.2 Th, MM 20.2.4
Th, MM 20.3 TH, MM 20.4.2 TH, MM 20.1
TH, MM 17.1 SP 16.2 SP, BI 16.3
SP 16.4 SP, MM 16.5 SP 16.6
SP 16.7



6 1 Introduction

Problems and exercises in electricity and magnetism
Subject Section Subject Section Subject Section

EM, MM 19.6 EM, MM 19.7 EM, MM 19.8
EM, MM 19.9 EM, MM 23.2 EM, MM 23.5
EM, MM 23.5.1 EM, MM 23.6.6 EM, MM 22.7.2
EM, MM 22.10 EM, MM 19.2

Problems and exercises in quantummechanics
Subject Section Subject Section Subject Section

QM, SP 4.6 QM, MM 7.1 QM, MM 7.2.1
QM, MM 7.3.2 QM, MM 9.1 QM, MM 9.2
QM, MM 9.2.1 QM, MM 9.3 QM 13.6.3
QM, MM 17.7 QM, MM 26.1 QM, MM 26.3
QM, MM 22.1

Problems and exercises in classical mechanics and nonlinear dynamics
Subject Section Subject Section Subject Section

CM, NL 5.16 CM 6.1 CM, NL 8.1
CM, NL 8.7.1 CM, NL 8.8 CM, NL 8.9
CM, NL 8.10 CM, NL 9.4 CM, NL 9.4.3
CM 9.5 CM 9.7 CM 9.7
NL, FD 9.7 CM 9.7 CM, MM 6.6.2
CM, MM 6.6.1 CM, NL 12.1 BI, NL 14.3
CM, MM 6.6.1 BI, NL 14.4 BI, NL 14.5.2
BI, NL 14.5.3 BI, NL 14.10 BI, NL 14.11.1
BI, NL 14.11.4 BI, NL 14.11.5 CM, NL 15.1.3
CM, NL 15.1 NL, BI 14.1 NL, BI 14.9
CM, NL 15.2.2 CM, NL 15.3 CM, NL 15.4
CM, NL 15.5 CM, NL 15.6 CM, NL 15.7
CM, NL 15.7 NL, MM 16.2.1 NL, MM 16.3.3
NL, MM 16.4.1 NL, MM 16.5.3 NL, MM 16.7.1
NL, MM 16.7.1 NL, MM 16.8 NL, MM 16.11
CM, MM 21.2.4 CM, MM 21.3 CM, MM 21.4.3
CM, MM 24.6 CM, MM 21.1 CM, MM 21.5


