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Foreword

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary
Computing, or CIS for short, is a true magnum opus. Authored by Dr Nazmul Siddique and
Professor Hojjat Adeli, CIS is a profoundly impressive work. It breaks new ground on many
levels and in many directions. It contains a wealth of information which is new, and if not new,
hard to find elsewhere.

In recent years, computational intelligence (CI) has been growing rapidly in visibility and
importance. CIS’s coverage of CI is very thorough, very authoritative, very insightful and very
reader-friendly. CIS paves the way for making courses on CI a requirement in engineering
curricula.

What is computational intelligence? A bit of history is in order. The core of CI is the
conception, design and utilization of intelligent systems. The concept of an intelligent system
began to crystallize in the 1980s, at a time when Al was undergoing an identity crisis,
moving from logic to probability theory. There were many competing methodologies, among
them traditional Al, fuzzy logic, neuro-computing and evolutionary computing. Each of these
methodologies had a community, with each community claiming superiority over the others.
In that climate, I came to the conclusion that what was needed was a unification of the
methodologies which were competing with Al, gaining strength through unity. This was the
genesis of the concept of soft computing (SC) as a partnership of fuzzy logic, neuro-computing,
evolutionary computing and probabilistic computing. The guiding principle that underlies SC
is that generally, superior performance can be achieved when the constituent methodologies of
SC are employed in combination rather than in stand-alone mode. The Berkeley Initiative in
Soft Computing (BISC) was launched in 1991 with very lukewarm support of my colleagues
but strong backing from the Dean of the College of Engineering, David Hodges. Today, there
are 20 journals with ‘soft computing’ in the title.

A few years after the launch of BISC, Jim Bezdek used his influence to create a Compu-
tational Intelligence Society within the IEEE. The concept of computational intelligence is
closely related to the concept of soft computing. The principal difference between SC and
Cl is that SC is a partnership of fuzzy logic, neuro-computing, evolutionary computing and
probabilistic computing, whereas CI is a partnership of fuzzy logic, neuro-computing and
evolutionary computing. There is no competition between CI and SC, but with the backing
of the IEEE, CI has been growing rapidly in visibility and acceptance. An important factor
in the growth of CI is that today the principal concepts and techniques which are employed
in the conception, design and utilization of intelligent systems are drawn, in large measure,
from CI rather than from AI. What is worthy of note is that in 1995, at about the time when CI
came into existence, Professors Adeli and Hung published a book entitled Machine Learning —
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Neural Networks, Genetic Algorithms, and Fuzzy Systems, which in effect was the first treatise
on CIL. In retrospect, the importance of this seminal treatise is hard to exaggerate.

CIS is a remarkable work. The introductory chapter on CIS presents the authors’ perception
of what CI is and what it has to offer. The introductory chapter is followed by two chapters on
the basics of fuzzy set theory and fuzzy logic. The authors’ exposition is succinct, insightful and
reader-friendly. I am highly impressed by their exposition of fuzzy logic and its applications.

The concepts of a linguistic variable, fuzzy if-then rules and fuzzy control received a great
deal of attention, with the stress on applications. The authors’ discussion of the concept of
a linguistic variable reminds me of the hostile criticism of what I wrote at the time, 1973,
about the concept of a linguistic variable. The criticism reflected a deep-seated tradition within
science and engineering — the tradition of respect for numbers and disrespect for words. What
my critics did not understand is that the use of words in place of numbers opens the door to
exploitation of tolerance for imprecision, and thereby reduces cost and achieves simplicity.
Today, almost all applications of fuzzy logic employ the concept of a linguistic variable. Several
important applications of fuzzy logic, among them fuzzy control, are discussed in detail. As
in other chapters of CIS, the exposition concludes with MATLAB® programs and references.

Following their masterly exposition of the basics of fuzzy logic, the authors turn to neuro-
computing and neural systems. In the three decades since its debut, neuro-computing has
become a highly important body of concepts and techniques, with wide-ranging applications
in system identification, simulation and adaptation. A critical event in the evolution of neuro-
computing was the invention of the backpropagation algorithm, originally due to Paul Werbos
in the early 1970s and independently reinvented and developed by David Rumelhart in the
early 1980s. The backpropagation algorithm opened the door to a wide variety of applications
of neuro-computing. Many examples of such applications are described in CIS.

The exposition of neuro-computing is followed by an equally masterly exposition of
evolutionary computing. Evolutionary computing is rooted in the pioneering work of John
Holland on genetic algorithms, in combination with the seminal work of Larry Fogel. In
essence, evolutionary computing is systematized random search. What is surprising is that
systematized random search can be so effective in optimization, and especially in global
maximization. In CIS, one finds insightful expositions of various non-standard approaches
to optimization, including multi-objective optimization and Pareto optimization. But what is
really fascinating is what remarkable results can be achieved through the employment of John
Koza’s genetic programming.

I noted earlier that the guiding principle of computational intelligence is that, in general,
superior performance is achieved when fuzzy logic, neuro-computing and evolutionary com-
puting are used in combination rather than in stand-alone mode. The last part of CIS is
motivated by this guiding principle. There are very informative discussions of neuro-fuzzy
systems, evolutionary fuzzy systems, evolutionary neural systems and evolutionary fuzzy neu-
ral systems. Much of the information in these chapters is hard to find elsewhere. There is much
that is original to the authors.

In sum, CIS is a major contribution to the literature — it is authoritative, thorough, up-to-
date, insightful and reader-friendly. CIS should be on the desk of anybody who is interested
in the conception, design and utilization of intelligent systems. Professors Nazmul Siddique
and Hojjat Adeli (and their publisher, John Wiley & Sons Ltd) deserve our compliments and
loud applause.

Lotfi A. Zadeh
UC Berkeley
December 2012



Preface

Creating intelligent systems has been of interest to scientists for many years. In the early days
of science, scientists developed systems which imitated the behaviour of living organisms. A
famous example is Jacque De Vaucanson’s mechanical duck from 1735, which could move its
head, tail and wings as well as swallow food. This gave the illusion of intelligence and delighted
and amused people at the time. The whole control mechanism was based on rotating cylinders,
with gudgeons used in music boxes to control the timely execution of different behaviours.
The behaviour was mechanistic as the duck always showed the same behaviour according
to the mechanical control system used. To generate a new behaviour, the mechanical control
system had to be changed. That means, to generate different behaviours in different situations
and environments, the mechanical duck needed different control systems. Rather than using
different control systems for different behaviours, scientists attempted to provide different
behaviours with a single control system. This posed the challenge of developing adaptive and
learning systems. In the beginning, the hope of success was based only on the belief that
some general laws of adaptation should exist. The endeavour went through different stages of
development, such as deterministic, stochastic and adaptive. In the happy days of determinism,
various mathematical and analytical tools were developed to describe and analyse systems.
These methodologies were successful, especially for linear systems. Difficulties arose as soon
as nonlinear factors had to be considered. New tools had to be developed for nonlinear systems.

Uncertainty was an issue to be avoided at all costs and was not addressed until the late
nineteenth century. Newtonian mechanics was replaced by statistical mechanics to describe
uncertainty with the help of probability theory, developed by Thomas Bayes in the eighteenth
century, which continued until the late twentieth century. The gradual evolution of probability
theory for the expression of uncertainty was challenged by new theories of vagueness and fuzzy
set theory, developed by Lotfi Zadeh, which came into being in the latter part of the twentieth
century as a measure of uncertainty. Fuzzy systems theory has proved to be a powerful tool
for the approximation of nonlinear and complex systems where traditional analytic functions
or numeric relations are unable to manage.

The long-suffering stage is the time taken for model development of unknown systems,
which cannot even be determined experimentally. This is evidenced by the emergence of
new theories of adaptivity. The possibility of developing system models under incomplete
and very little a priori information is based on adaptation and learning. That is, a system
capable of adapting and learning is to be considered intelligent. Among the many interesting
mathematical and non-traditional apparatuses for adaptation and learning, neural networks are
the most widely used. Various learning algorithms have been developed since the 1960s.
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The problem of developing systems to satisfy specific criteria appeared at some stage due
to design, technology and development constraints. The problem of optimality then became
one of the key issues in developing models or systems. In fact, the problem of optimality is a
central issue in science, engineering, economy and everyday life. In deterministic or stochastic
processes, the criterion of optimality (i.e., the functional) should be known explicitly a priori
with sufficient information. The conditions of optimality only define local extrema. If the
number of such extrema is large, the problem of finding the global extremum becomes a com-
plex one. Various conventional mathematical and derivative-based optimization techniques
have been developed over the past decades. Unfortunately, very often these methods cannot
be applied to a wide range of problems since the functional (or the objective functions) are
not analytically treatable or even not available in closed form. Further, many real-life opti-
mization problems have constraints that either cannot be defined mathematically or are highly
nonlinear implicit and discontinuous functions of design variables. These led researchers to
seek stochastic methods such as evolutionary and bio-inspired optimization techniques that
are capable of searching a high-dimensional space.

The inherent capability and appeal of such traditional approaches diminished as the com-
plexity of systems grew. There arose a need for non-traditional approaches inspired by nature,
such as human thinking, perception and reasoning, biological neural networks and evolution
in nature.

In 1995 H. Adeli and S.L. Hung published a seminal book, Machine Learning — Neural
Networks, Genetic Algorithms, and Fuzzy Systems (John Wiley & Sons) as the first treatise to
present the three main fields of computational intelligence in a single book and demonstrate
that through integration of the three emerging computing paradigms, intractable problems
could be solved more effectively. Since then, research on computational intelligence has
grown exponentially and the field of computational intelligence is now well established. That
seminal book has inspired the current book. Computational intelligence schemes are presented
in this book with the development of a suitable framework for fuzzy, neural and evolutionary
computing, evolutionary/fuzzy systems, evolutionary neural systems, neuro-fuzzy systems
and finally hybridization of the three basic paradigms. Applications to linear and nonlinear
systems are discussed, with examples and MATLAB® exercises.

This book is designed for final-year undergraduate, postgraduate, research students and
professionals. It is written at a comprehensible level for students who have some basic knowl-
edge in calculus, differential equations and some exposure to optimization theory. Owing to
the emphasis on systems and control, the book should be appropriate for electrical, control,
computer, industrial and manufacturing engineering students as well as computer and infor-
mation science students. With mathematical and programming references and applications in
each chapter, the book is self-contained. It should also serve already practicing engineers and
scientists who intend to study the field of computational intelligence and system science. In
particular, it is assumed that the reader has no experience in fuzzy logic, neural networks or
evolutionary computing.

The final goal of the authors is the adroit integration of three different computational
intelligence technologies and problem-solving paradigms: fuzzy systems, neural networks and
evolutionary computing. The book is organized in ten chapters. It includes three introductory
chapters (Chapters 2, 4 and 6) on basic techniques of fuzzy logic, neural networks and
evolutionary computing in order to introduce the reader to these three different computing
paradigms. It then presents different applications of the three technologies in a wide range
of application domains in Chapters 3, 5 and 7. Hybridization of the three technologies is an
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interesting feature, which has been presented in Chapters 8, 9 and 10. Most of the book covers
applications in systems modelling, control and optimization.

There have been many texts, research monographs and edited volumes published since the
1990s. There are a few books that cover some topics on the combination of the three basic
technologies. They are all referenced in each chapter of this book, which the reader may find
useful in further reading for research. There is no single book covering all topics on fuzzy,
neural networks or evolutionary computing or their combinations that is well suited for such
a wide-ranging audience, especially undergraduate, postgraduate and research students. This
book is an attempt to attract all groups, putting the emphasis on a combination of the three
methodologies. The book has not been written for any specific course, however, it could be
used for courses in computational intelligence, intelligent control, intelligent systems, fuzzy
systems, neural computing, evolutionary computing and hybrid systems. As such, the book is
appropriate for beginners in the field of computational intelligence. The book is also applicable
as prescribed material for a final-year undergraduate course. The book is written based on
the experience of many years following pedagogical features with illustrations, step-by-step
algorithms, worked examples and MATLAB® code for real-world problems. The intention of
the book is not to provide a thorough discussion of all computational intelligence paradigms
and methods, but to give an overview of the most popular and frequently used methods.
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1

Introduction to Computational
Intelligence

Keep it simple:

As simple as possible,

But not simpler.
—Albert Einstein

1.1 Computational Intelligence

Much is unknown about intelligence and much will remain beyond human comprehension.
The fundamental nature of intelligence is only poorly understood and even the definition
of intelligence remains a subject of controversy. Considerable research is currently being
devoted to the understanding and representation of intelligence. According to its dictionary
definition, intelligence means the ability to comprehend, reason and learn. From this point of
view, a definition of intelligence can be elicited whereby an intelligent system is capable of
comprehending (with or without much a priori information) the environment or a process;
reasoning about and identifying different environmental or process variables, their inter-
relationship and influence on the environment or process; and learning about the environment
or process, its disturbance and operating conditions. Other aspects of intelligence that describe
human intelligence are creativity, skills, consciousness, intuition and emotion.

Traditional artificial intelligence (Al) has tried to simulate such intelligent behaviour in sys-
tems requiring exact and complete knowledge representation (Turing, 1950). Unfortunately,
many real-world systems cannot be described exactly with complete knowledge. It has been
demonstrated that the use of highly complex mathematical description can seriously inhibit the
ability to develop system models. Furthermore, it is required to cope with significant unmod-
elled and unanticipated changes in the environment or process and in the model objectives.
This will involve the use of advanced decision-making processes to generate actions so that a
certain performance level is maintained even though there are drastic changes in the operating
conditions. Thus, the dissatisfaction with conventional modelling techniques is growing with

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, First Edition.
Nazmul Siddique and Hojjat Adeli.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.



2 Computational Intelligence

the increasing complexity of dynamical systems, necessitating the use of more human exper-
tise and knowledge in handling such processes. Computational intelligence techniques are
thus a manifestation of the crucial time when human knowledge will become more and more
important in system modelling and control as an alternative approach to classical mathemati-
cal modelling, whose structure and consequent outputs in response to external commands are
determined by experimental evidence (i.e., the observed input/output behaviour of the system
or plant). The system is then a so-called intelligent system. Intelligent techniques are properly
aimed at processes that are ill-defined, complex, nonlinear, time-varying and stochastic. Intel-
ligent systems are not defined in terms of specific algorithms. They employ techniques that
can sense and reason without much a priori knowledge about the environment and produce
control actions in a flexible, adaptive and robust manner.

1.2 Paradigms of Computational Intelligence

Many attempts have been made by different authors and researchers to define the term com-
putational intelligence (CI). Despite the widespread use of the term, there is no commonly
accepted definition of CI. The term was first used in 1990 by the IEEE Neural Networks Coun-
cil. Bezdek (1994) first proposed and defined the term CI. A system is called computationally
intelligent if it deals with low-level data such as numerical data, has a pattern-recognition
component and does not use knowledge in the Al sense, and additionally when it begins to
exhibit computational adaptivity, fault tolerance, speed approaching human-like turnaround
and error rates that approximate human performance (Bezdek, 1994). At the same time, the
birth of CI is attributed to the IEEE World Congress on Computational Intelligence in 1994.
Since then there has been much explanation published on the term CI. The IEEE Computa-
tional Intelligence Society (formerly the IEEE Neural Networks Council) defines its subject
of interest as neural networks (NN), fuzzy systems (FS) and evolutionary algorithms (EA)
(Dote and Ovaska, 2001). Some authors argue that computational intelligence is a collection
of heuristic algorithms encompassing techniques such as swarm intelligence, fractals, chaos
theory, immune systems and artificial intelligence. There are also other approaches that satisty
the Al techniques. Marks (1993) clearly outlined the distinction between CI and Al although
both CI and AI seek similar goals. Based on three levels of analysis of system complexity,
Bezdek (1994) argues that CI is a subset of Al

Zadeh (1994, 1998) proposed a different view of machine intelligence, where he distin-
guishes hard computing techniques based on Al from soft computing techniques based on CI.
In hard computing, imprecision and uncertainty are undesirable features of a system whereas
these are the foremost features in soft computing. Figure 1.1 shows the difference between Al
and CI along with their alliance with hard computing (HC) and soft computing (SC). Zadeh
defines soft computing as a consortium of methodologies that provide a foundation for design-
ing intelligent systems. Some researchers also believe that SC is a large subset of CI (Eberhart
and Shui, 2007). The remarkable features of these intelligent systems are their human-like
capability to make decisions based on information with imprecision and uncertainty.

Fogel (1995a) views adaptation as the key feature of intelligence and delineates the technolo-
gies of neural, fuzzy and evolutionary systems as the rubric of CI, denoting them as methods
of computation that can be used to adapt solutions to new problems without relying on explicit
human intervention. Adaptation is defined as the ability of a system to change or evolve its
parameters or structure in order to better meet its goal. Eberhart and Shui (2007) believe that
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adaptation and self-organization play an important role in CI and argue that adaptation is
central to CI, comprising the practical concept, paradigms, algorithms and implementations
that facilitate intelligent behaviour. They argue further that CI and adaptation/self-organization
are synonymous (Eberhart and Shui, 2007).

1.3 Approaches to Computational Intelligence

Central to computational intelligence is the construction of a process or system model (King,
1999; Konar, 2005), which is not amenable to mathematical or traditional modelling because:

(i) the processes are too complex to represent mathematically;
(i1) the process models are difficult and expensive to evaluate;
(iii) there are uncertainties in process operation;
(iv) the process is nonlinear, distributed, incomplete and stochastic in nature.

The system has the ability to learn and/or deal with new or unknown situations and is able
to make predictions or decisions about future events. The term computational intelligence, as
defined by Zadeh, is a combination of soft computing and numerical processing. The area of
computational intelligence is in fact interdisciplinary and attempts to combine and extend the-
ories and methods from other disciplines, including modern adaptive control, optimal control,
learning theory, reinforcement learning, fuzzy logic, neural networks and evolutionary com-
putation. Each discipline approaches computational intelligence from a different perspective,
using different methodologies and toolsets towards a common goal. The inter-relationship
between these disciplines is illustrated in Figure 1.2.

Computational intelligence uses experiential knowledge about the process that generally
produces a model in terms of input/output behaviour. The question is how to model this human
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Figure 1.2 Periphery of computational intelligent methodologies

knowledge and represent it in such a manner as to be computationally efficient. Engelbrecht
(2002) considers the following five basic approaches to computational intelligence:

(i) Fuzzy logic,

(i1) Neural networks,
(iii) Evolutionary computing,
(iv) Learning theory,

(v) Probabilistic methods,
(vi) Swarm intelligence.

In this book, the three methodologies of fuzzy logic, neural networks and evolutionary com-
puting and their synergies will be covered and all other methodologies (such as swarm intelli-
gence, learning theory and probabilistic methods) will be addressed as supportive methods in
computational intelligence.

1.3.1 Fuzzy Logic

It has been suggested by researchers that measurements, process modelling and control can
never be exact for real and complex processes. Also, there are uncertainties such as incom-
pleteness, randomness and ignorance of data in the process model. The seminal work of Zadeh
introduced the concept of fuzzy logic to model human reasoning from imprecise and incom-
plete information by giving definitions to vague terms and allowing construction of a rule base
(Zadeh, 1965, 1973). Fuzzy logic can incorporate human experiential knowledge and give it
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an engineering flavour to model and control such ill-defined systems with nonlinearity and
uncertainty. The fuzzy logic methodology usually deals with reasoning and inference on a
higher level, such as semantic or linguistic.

1.3.2 Neural Networks

Neurons are the fundamental building blocks of the biological brain. Neurons receive signals
from neighbouring neurons through connections, process them in the cell body and transfer
the results through a long fibre called an axon. An inhibiting unit at the end of the axon,
called the synapse, controls the signal between neurons. The axon behaves like a signal-
conducting device. An artificial neural network is an electrical analogue of the biological
neural network. Neural networks originated from the work of Hebb in the 1940s and more
recently the work of Hopfield, Rumellhart, Grossberg and Widrow in the 1980s has led to
a resurgence of research interest in the field (Hebb, 1949; Grossberg, 1982; Hopfield, 1982;
Rummelhart et al., 1986; Widrow, 1987). Neural networks are biologically inspired, massively
parallel and distributed information-processing systems. Neural networks are characterized
by computational power, fault tolerance, learning from experiential data and generalization
capability, and are essentially low-level computational algorithms that usually demonstrate
good performance in processing numerical data. The learning takes place in different forms in
neural networks, such as supervised, unsupervised, competitive and reinforcement learning.
Research on neural network-based control systems has received considerable interest over the
past several years, firstly because neural networks have been shown to be able to approximate
any nonlinear function defined on a compact set of data to a specified accuracy and secondly
because most control systems exhibit certain types of unknown nonlinearity, which suits neural
networks as an appropriate control technology.

1.3.3  Evolutionary Computing

Evolutionary computing is the emulation of the process of natural selection in a search proce-
dure based on the seminal work on evolutionary theory by Charles Darwin (Darwin, 1859). In
nature, organisms have certain characteristics that influence their ability to survive in adverse
environments and pass on to successive progeny with improved abilities. The genetic infor-
mation of species can be coded into chromosomes that represent these characteristics. The
species undergo reproduction and give birth to new offspring with features of capability to
combat the adverse environment and survive. The process of natural selection ensures that the
more fit individuals have the opportunity to mate most of the time, leading to the expectation
that the offspring will have a similar or higher level of fitness. Evolutionary computation
uses iterative progress and development in a population. This population is then selected in a
guided random search using parallel processing to achieve the desired population of solutions.
Such processes are often inspired by biological mechanisms of evolution. Nearly a century
after Darwin’s theory of evolution, Fraser (1957) was the first to conduct a simulation of
genetic systems representing organisms by binary strings. Box (1957) proposed an evolution-
ary operation to optimize industrial production. Friedberg (1958) proposed an approach to
evolve computer programs. The fundamental works of Lowrence Fogel (Fogel, 1962) in evo-
lutionary programming, John Holland (Holland, 1962) in genetic algorithms, Ingo Rechenberg
(Rechenberg, 1965) and Hans-Paul Schwefel (Schwefel, 1968) in evolutionary strategies have
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had significant influence on the development of evolutionary algorithms and computation as
a general concept for problem solving and a powerful tool for optimization. Since the devel-
opmental years of the 1960s there have been significant contributions to the field by many
people, including De Jong (1975), Goldberg (1989) and Fogel (1995b) to name a few. The
1990s saw another set of developments in evolutionary algorithms, for example Koza (1992)
developed genetic programming, Reynolds (1994, 1999) developed cultural algorithms and
Storn and Price (1997) developed differential evolution. Evolutionary algorithms have now
found widespread application in almost all branches of science and engineering.

1.3.4 Learning Theory

Humans appear to be able to learn new concepts without much effort in a conventional sense.
The mechanism of learning in humans is little known. In psychology, learning is the process of
bringing together cognitive, emotional and environmental effects and experiences to acquire,
enhance or change knowledge, skills, values and world views (Ormrod, 1995; Illeris, 2004).
For any learning, it is also important how information is input, processed and stored. Learning
theories provide explanations of such processes, and how exactly they occur (Vapnik, 1998).

Learning theories fall into three main philosophical frameworks: behaviourism, cognitive
theories and constructivism. Behaviourism deals with the objectively observable aspects of
learning. Cognitive theories look at how learning occurs in the brain. Constructivism views
learning as a process in which the learner actively constructs or builds new ideas or concepts.

A new scientific discipline of machine learning (Samuel, 1959) has evolved based on
the psychological learning theories. In machine learning, researchers use and apply four
basic forms of learning. Supervised learning generates a function that maps inputs to desired
outputs. Unsupervised learning models a set of input features and maps them to similar patterns,
like clustering. Semi-supervised learning combines both labelled and unlabelled examples to
generate an appropriate function or classifier. Reinforcement learning indicates how to act on
a given observation from the environment. Every action has some impact on the environment,
and the environment provides feedback in the form of rewards that guide the learning process.
Learning mechanisms are an essential part of any intelligent system and hence are powerful
tools for computational intelligence.

1.3.5 Probabilistic Methods

Probability theory has been viewed as the methodology of choice for dealing with uncertainty
and imprecision. The probabilistic method involves considering an appropriate probability
space over a wider family of structures, and proving that a sample point corresponding to
the required structure has positive probability in this space. This method was introduced by
Erdos and Spencer (1974) and has made major contributions in areas of mathematics and
computer science such as combinatorics, functional analysis, number theory, topology, group
theory, combinatorial geometry and theoretical computer science. Probabilistic behaviour or
stochasticity (randomness) is also sometimes listed as an attribute of intelligent systems.
A complex nonlinear dynamic system very often shows chaotic behaviour, that is, chaotic
phenomena are features of complex dynamical systems (Grim, 1993). It is somewhat uncertain
whether the attribute should be represented as randomness or chaos.
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The term chaos refers to complicated dynamical behaviour. There is no uniform agreement
as to the precise definition, but a significant body of literature uses the term to refer to systems
of a particular type with a set of periodic points and an orbit which are dense in a closed
invariant set A and these are very sensitive to initial conditions (Devaney, 1989). In principle,
the future behaviour of a chaotic system is completely determined by the past, but in practice,
any uncertainty in the choice of initial conditions grows exponentially with time. Chaotic
behaviour has been observed in the laboratory in a variety of systems, such as electrical
and electronic circuits, lasers, oscillating chemical reactions, fluid dynamics, mechanical and
magneto-mechanical systems (Sumathi and Surekha, 2010). The dynamic behaviour of a
chaotic system is predictable in the short term but impossible to predict in the long term.
Chaos theory is essentially a recent extension of a larger field of mathematics which is part of
complex nonlinear system dynamics. However, these theories seem to permeate many aspects
of natural intelligent systems, from basic biology to behavioural intelligence, as well as most
artificial intelligent processes and systems.

1.3.6  Swarm Intelligence

Swarm systems in nature are perhaps one of the most mesmerizing things to observe. A flock
of birds twisting in the evening light, the V-shaped structure of migrating geese, winter birds
hunting for food, the dancing of starlings in the evening light, ants marching to forage, the
synchronized flashing of fireflies and mound building by termites are some of the fascinating
examples of swarm systems. But how do they produce such well-choreographed collective
behaviour without any central coordinator or leader? How do they communicate with each
other? How does an ant which has found food tell other ants about the location of the food?
How do the flocks of migrating geese maintain a V-shaped structure? How do fireflies know
when to glow? Is there a central control or coordinator for the collective behaviours? Scientists
and biologists have been researching for decades to answer some of these questions.

The collective behaviours of insects living in colonies (such as ants, bees, wasps and
termites) have attracted researchers and naturalists for many years. Close observation of an
insect colony shows that the whole colony is very organized, with every single insect having
its own agenda. The seamless integration of all individual activities does not have any central
control or any kind of supervision. Researchers are interested in this new way of achieving a
form of collective intelligence, called swarm intelligence (SI) (Bonabeau et al., 1999; Kennedy
and Eberhart, 2001). SI is widely accepted as a computational intelligence technique based
around the study of collective behaviour in decentralized and self-organized systems typically
made up of a population of simple agents interacting locally with one another and with their
environment (Kennedy and Eberhart, 2001; Garnier ez al., 2007). Although there is normally no
centralized control structure dictating how individual agents should behave, local interactions
between such agents often lead to the emergence of global behaviour. Examples of systems like
this can be found in nature, including particle swarms, ant colonies, birds flocking, animals
herding, fish schooling and bacterial foraging. Recently, biologists and computer scientists
have studied how to model biological swarms to understand how such social insects interact,
achieve goals and evolve.

Ants are social insects. They live in colonies and their behaviour is governed by the goal of
colony survival rather than the survival of individuals. When searching for food, ants initially
explore the surrounding area close to the nest in a random manner. While moving, ants leave a
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chemical pheromone trail on the ground. Ants can smell the pheromone. When choosing their
way, they tend to choose, in probability, paths marked by strong pheromone concentrations.
As soon as an ant finds a food source, it evaluates the quantity and the quality of the food and
carries some of it back to the nest. During the return trip, the quantity of pheromone that an
ant leaves on the ground may depend on the quantity and quality of the food. The pheromone
trails will guide other ants to the food source. It has been shown (Deneubourg et al., 1990;
Dorigo and Stiitzle, 2004) that the indirect communication between the ants via pheromone
trails enables them to find shortest paths between their nest and food sources.

Ant colonies or societies in general can be compared to distributed systems, which present
a highly structured social organization in spite of simple individuals. The ant colonies can
accomplish complex tasks far beyond their individual capabilities due to the structured organi-
zation of their society. The inspiring source of ant colony optimization (ACO) is the foraging
behaviour of real ant colonies (Blum, 2005). Dorigo et al. (1996) were the first to propose a sim-
ple stochastic model that adequately describes the dynamics of the ants’ foraging behaviour,
and in particular, how ants can find shortest paths between food sources and their nest.

ACO is a meta-heuristic optimization algorithm that can be used to find approximate
solutions to difficult combinatorial optimization problems and has been applied successfully
to an impressive number of optimization problems. Applications of ACO include routing
optimization in networks and vehicle routing, graph colouring, timetabling, scheduling and
solving the quadratic assignment problem, the travelling salesman problem (Blum, 2005).
Studies of the nest building of ants and bees have resulted in the development of clustering
and structural optimization algorithms.

Flocking is seen as a feature of coherent manoeuvring of a group of individuals in space.
This is a commonly observed phenomenon in some animal societies. Flocks of birds, herds
of quadrupeds and schools of fish are often shown as fascinating examples of self-organized
coordination (Camazine et al., 2001). Natural flocks maintain two balanced behaviours: a
desire to stay close to the flock and a desire to avoid collisions within the flock (Shaw, 1975).
Joining a flock or staying with a flock seems to be the result of evolutionary pressure from
several factors, such as protecting and defending from predators, improving the chances of
survival of the (shared) gene pool from attacks by predators, profiting from a larger effective
search for food, and advantages for social and mating activities (Shaw, 1962). Reynolds (1987)
was the first to develop a model to mimic the flocking behaviour of birds, which he described
as a general class of polarized, non-colliding, aggregate motion of a group of individuals. Such
flocking behaviours were simulated using three simple rules: collision avoidance with flock
mates, velocity matching with nearby flock mates, and flock centring to stay close to the flock.
Flocking models have numerous applications. Some include the simulation of traffic patterns,
such as the flow of cars on a motorway which has a flock-like motion, animating troop
movement in real-time strategy games and in simulating mobile robot movement (Momen
et al., 2007; Turgut et al., 2008).

One of the interesting features in the behaviour of fishes is the fish school. About half of
all fish species are known to form fish schools at some stage in their lives. Fish can form
loosely structured groups called shoals and highly organized structures called fish schools.
Fish schools are seen as self-organized systems consisting of individual autonomous agents
(Shaw, 1962). Fish schools also come in many different shapes: stationary swarms, predator-
avoiding vacuoles and flash expansions, hourglasses and vortices, highly aligned cruising
parabolas, herds and balls (Parrish et al., 2002). A fish school can be of various sizes, for
example, a herring school often exceeds 5000 individuals and spreads over 700 square metres



