Shaoyuan Li • Yi Zheng

DISTRIBUTED MODEL PREDICTIVE CONTROL FOR PLANT-WIDE SYSTEMS

DISTRIBUTED MODEL PREDICTIVE CONTROL FOR PLANT-WIDE SYSTEMS

DISTRIBUTED MODEL PREDICTIVE CONTROL FOR PLANT-WIDE SYSTEMS

Shaoyuan Li and Yi Zheng

Shanghai Jiao Tong University, China

WILEY

This edition first published 2015 © 2015 John Wiley & Sons Singapore Pte. Ltd.

Registered office:

John Wiley & Sons Singapore Pte. Ltd., 1 Fusionopolis Walk, #07-01 Solaris South Tower, Singapore 138628.

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as expressly permitted by law, without either the prior written permission of the Publisher, or authorization through payment of the appropriate photocopy fee to the Copyright Clearance Center. Requests for permission should be addressed to the Publisher, John Wiley & Sons Singapore Pte. Ltd., 1 Fusionopolis Walk, #07-01 Solaris South Tower, Singapore 138628, tel: 65-66438000, fax: 65-66438008, email: enquiry@wiley.com.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data applied for.

A catalogue record for this book is available from the British Library.

ISBN: 9781118921562

Set in 10/12pt, TimesLTStd by SPi Global, Chennai, India

1 2015

Contents

Prefa	ace		xi
Abo	ut the Au	thors	XV
Ackı	nowledge	ment	xvii
List	of Figure	2S	xix
List	of Tables		xxiii
1	Introd	uction	1
1.1	Plant-V	Wide System	1
1.2	Contro	l System Structure of the Plant-Wide System	3
	1.2.1	Centralized Control	4
	1.2.2	Decentralized Control and Hierarchical Coordinated	
		Decentralized Control	5
	1.2.3	Distributed Control	6
1.3	Predict	tive Control	8
	1.3.1	What is Predictive Control	8
	1.3.2	Advantage of Predictive Control	9
1.4	Distrib	uted Predictive Control	9
	1.4.1	Why Distributed Predictive Control	9
	1.4.2	What is Distributed Predictive Control	10
	1.4.3	Advantage of Distributed Predictive Control	10
	1.4.4	Classification of DMPC	11
1.5	About	this Book	13

Part I FOUNDATION

2	Model	Predictive Control	19
2.1	Introdu	uction	19
2.2	Dynamic Matrix Control		20
	2.2.1	Step Response Model	20
	2.2.2	Prediction	21

	2.2.3	Optimization	22
	2.2.4	Feedback Correction	23
	2.2.5	DMC with Constraint	24
2.3	Predict	tive Control with the State Space Model	26
	2.3.1	System Model	27
	2.3.2	Performance Index	28
	2.3.3	Prediction	28
	2.3.4	Closed-Loop Solution	30
	2.3.5	State Space MPC with Constraint	31
2.4	Dual N	Aode Predictive Control	33
	2.4.1	Invariant Region	33
	2.4.2	MPC Formulation	34
	2.4.3	Algorithms	35
	2.4.4	Feasibility and Stability	36
2.5	Conclu	ision	37
3	Contro	ol Structure of Distributed MPC	39
3.1	Introdu	uction	39
3.2	Centra	lized MPC	40
3.3	Single	-Layer Distributed MPC	41
3.4	Hierar	chical Distributed MPC	42
3.5	Examp	ble of the Hierarchical DMPC Structure	43
3.6	Conclu	ision	45
4	Struct	ure Model and System Decomposition	47
4.1	Introdu	action	47
4.2	Systen	n Mathematic Model	48
4.3	Structu	are Model and Structure Controllability	50
	4.3.1	Structure Model	50
	4.3.2	Function of the Structure Model in System Decomposition	51
	4.3.3	Input–Output Accessibility	53
	4.3.4	General Rank of the Structure Matrix	56
	4.3.5	Structure Controllability	56
4.4	Relate	d Gain Array Decomposition	58
	4.4.1	RGA Definition	59
	4.4.2	RGA Interpretation	60
	4.4.3	Pairing Rules	61
4.5	Conclu	ision	63

Part II UNCONSTRAINED DISTRIBUTED PREDICTIVE CONTROL

5	Local	Cost Optimization-based Distributed Model Predictive Control	67
5.1	Introdu	lection	67
5.2	Local Cost Optimization-based Distributed Predictive Control		68
	5.2.1	Problem Description	68
	5.2.2	DMPC Formulation	69

	5.2.3	Closed-loop Solution	72
	5.2.4	Stability Analysis	79
	5.2.5	Simulation Results	79
5.3	Distrib	uted MPC Strategy Based on Nash Optimality	82
	5.3.1	Formulation	83
	5.3.2	Algorithm	86
	5.3.3	Computational Convergence for Linear Systems	86
	5.3.4	Nominal Stability of Distributed Model Predictive Control System	88
	5.3.5	Performance Analysis with Single-step Horizon Control Under	
		Communication Failure	89
	5.3.6	Simulation Results	94
5.4	Conclu	ision	99
	Appen	dix	99
	Appen	dix A. QP problem transformation	99
	Appen	dix B. Proof of Theorem 5.1	100
6	Coope	rative Distributed Predictive Control	103
6.1	Introdu	iction	103
6.2	Nonite	rative Cooperative DMPC	104
	6.2.1	System Description	104
	6.2.2	Formulation	104
	6.2.3	Closed-Form Solution	107
	6.2.4	Stability and Performance Analysis	109
	6.2.5	Example	113
6.3	Distrib	uted Predictive Control based on Pareto Optimality	114
	6.3.1	Formulation	118
	6.3.2	Algorithm	119
	6.3.3	The DMPC Algorithm Based on Plant-Wide Optimality	119
	6.3.4	The Convergence Analysis of the Algorithm	121
6.4	Simula	tion	121
6.5	Conclu	isions	123
7	Netwo	rked Distributed Predictive Control with Information	
	Struct	ure Constraints	125
7.1	Introdu	action	125
7.2	Nonite	rative Networked DMPC	126
	7.2.1	Problem Description	126
	7.2.2	DMPC Formulation	127
	7.2.3	Closed-Form Solution	132
	7.2.4	Stability Analysis	135
	7.2.5	Analysis of Performance	135
	7.2.6	Numerical Validation	137
7.3	Netwo	rked DMPC with Iterative Algorithm	144
	7.3.1	Problem Description	144
	7.3.2	DMPC Formulation	145
	7.3.3	Networked MPC Algorithm	147
	7.3.4	Convergence and Optimality Analysis for Networked	150

	7.3.5	Nominal Stability Analysis for Distributed Control Systems	152
	7.3.6	Simulation Study	153
7.4	Conclu	sion	159
	Append	dix	159
	Append	dix A. Proof of Lemma 7.1	159
	Append	dix B. Proof of Lemma 7.2	160
	Append	dix C. Proof of Lemma 7.3	160
	Append	dix D. Proof of Theorem 7.1	161
	Append	dix E. Proof of Theorem 7.2	161
	Append	dix F. Derivation of the QP problem (7.52)	164

Part III CONSTRAINT DISTRIBUTED PREDICTIVE CONTROL

8	Local (Constr	Cost Optimization Based Distributed Predictive Control with aints	169
8.1	Introdu	ction	169
8.2	Problei	n Description	170
8.3	Stabiliz	ing Dual Mode Noncooperative DMPC with Input Constraints	171
	8.3.1	Formulation	171
	8.3.2	Algorithm Design for Resolving Each Subsystem-based Predictive Control	176
8.4	Analys	is	177
	8.4.1	Recursive Feasibility of Each Subsystem-based Predictive Control	177
	8.4.2	Stability Analysis of Entire Closed-loop System	183
8.5	Examp	le	184
	8.5.1	The System	184
	8.5.2	Performance Comparison with the Centralized MPC	185
8.6	Conclu	sion	187
9	Coope	rative Distributed Predictive Control with Constraints	189
9.1	Introdu	ction	189
9.2	System	Description	190
9.3	Stabiliz	ring Cooperative DMPC with Input Constraints	191
	9.3.1	Formulation	191
	9.3.2	Constraint C-DMPC Algorithm	193
9.4	Analys	is	194
	9.4.1	Feasibility	194
	9.4.2	Stability	199
9.5	Simula	tion	201
9.6	Conclu	sion	208
10	Netwo	rked Distributed Predictive Control with Inputs and	
	Inform	ation Structure Constraints	209
10.1	Introdu	ction	209
10.2	Problei	n Description	210

10.3	Constra	ined N-DMPC	212
	10.3.1	Formulation	212
	10.3.2	Algorithm Design for Resolving Each Subsystem-based	
		Predictive Control	218
10.4	Analysi	S	219
	10.4.1	Feasibility	219
	10.4.2	Stability	225
10.5	Formula	ations Under Other Coordination Strategies	227
	10.5.1	Local Cost Optimization Based DMPC	227
	10.5.2	Cooperative DMPC	228
10.6	Simulat	ion Results	229
	10.6.1	The System	229
	10.6.2	Performance of Closed-loop System under the N-DMPC	230
	10.6.3	Performance Comparison with the Centralized MPC and the Local	
		Cost Optimization based MPC	231
10.7	Conclus	sions	236

Part IV APPLICATION

11	Hot-Ro	olled Strip Laminar Cooling Process with Distributed	
	Predict	tive Control	239
11.1	Introdu	ction	239
11.2	Lamina	ar Cooling of Hot-rolled Strip	240
	11.2.1	Description	240
	11.2.2	Thermodynamic Model	241
	11.2.3	Problem Statement	242
11.3	Control	l Strategy of HSLC	244
	11.3.1	State Space Model of Subsystems	244
	11.3.2	Design of Extended Kalman Filter	247
	11.3.3	Predictor	247
	11.3.4	Local MPC Formulation	248
	11.3.5	Iterative Algorithm	249
11.4	Numeri	ical Experiment	251
	11.4.1	Validation of Designed Model	251
	11.4.2	Convergence of EKF	252
	11.4.3	Performance of DMPC Comparing with Centralized MPC	252
	11.4.4	Advantages of the Proposed DMPC Framework Comparing	
		with the Existing Method	253
11.5	Experir	nental Results	256
11.6	Conclu	sion	258
12	High-S	peed Train Control with Distributed Predictive	
	Contro	l	263
12.1	Introdu	ction	263
12.2	System	Description	264

12.3	N-DMP	PC for High-Speed Trains	264
	12.3.1	Three Types of Force	264
	12.3.2	The Force Analysis of EMUs	266
	12.3.3	Model of CRH2	267
	12.3.4	Performance Index	271
	12.3.5	Optimization Problem	272
12.4	Simulat	ion Results	272
	12.4.1	Parameters of CRH2	273
	12.4.2	Simulation Matrix	273
	12.4.3	Results and Some Comments	274
12.5	Conclus	sion	278
13	Operat	ion Optimization of Multitype Cooling Source System Based on	
	DMPC		279
13.1	Introduc	ction	279
13.2	Structur	e of Joint Cooling System	279
13.3	Control	Strategy of Joint Cooling System	280
	13.3.1	Economic Optimization Strategy	281
	13.3.2	Design of Distributed Model Predictive Control in Multitype Cold	
		Source System	283
13.4	Results	and Analysis of Simulation	286
13.5	Conclus	sion	292
Refer	ences		293
Index			299

Preface

There is a class of complex plant-wide systems which are composed of many physically or geographically divided subsystems. Each subsystem interacts with some so-called neighboring subsystems by their states and inputs. The technical target is to achieve a specific global performance of the entire system.

The classical centralized control solution, which could obtain a good global performance, is often impractical for application to a plant-wide system for computational reasons and lack of error tolerance. When the centralized controller fails or a control component fails, the entire system is out of control and the control integrity cannot be guaranteed.

The distributed (or decentralized) framework, where each subsystem is controlled by an independent controller, has the advantages of error-tolerance, less computational effort, and flexibility to system structure. Thus the distributed control framework is usually adopted in this class of system, in spite of the fact that the dynamic performance of centralized framework is better. Thus, how to improve the global performance under distributed control framework is a valuable problem.

Model predictive control (MPC), as a highly practical control technology with high performance, has been successfully applied to various linear and nonlinear systems in the process industries, and is becoming more widespread. The distributed framework of MPC, distributed MPC (DMPC), is also gradually developed with the development of communication network technologies in process industries that allow the control technologies and methodologies to utilize their potentials for improving control.

For the MPC algorithm applied to the plant-wide systems, the system's architectures can be divided as follows:

- 1. Centralized MPC, which is a MIMO system architecture;
- 2. Decentralized MPC, one controller-one subsystem, but no information exchange between controllers, and
- Distributed MPC, which assumes that each subsystem can exchange information with its neighbor's subset of other subsystems.

Since the centralized MPC is forbidden for the large-scale plant-wide system with hundreds (or thousands) of inputs and outputs variables due to its lesser flexibility, weak error tolerance and the large cost of computation, the distributed framework is usually adopted despite its lower global performance. The schematic of distributed MPC is shown in Figure 1, the whole system is composed by many spatial distributed interconnected sub-systems. Each

Figure 1 The schematic of distributed model predictive control

subsystem is controlled by a subsystem-based MPC and these controllers are interconnected by the network.

As mentioned before, how to improve the global performance under distributed control framework is a valuable problem. It is exactly true for the DMPC. There are many DMPC strategies and design methods in the literature, all to different ends. We have done extensive research in this topic for more than 10 years, and have proposed some strategies, e.g., the Nash optimization-based DMPC and the impacted region optimization based DMPC, etc. We found that the DMPC is definitely a useful method for large-scale plant-wide systems. Thus, we decided to write this book.

This book systematically introduces different distributed predictive control methods for plant-wide systems, including system decomposition, classification of distributed predictive control, unconstrained distributed predictive control, and the stabilized distributed predictive control with different coordinating strategies for different purposes, as well as the implementation examples of distributed predictive control. The major new contribution of this book is to show how the distributed MPCs can be coordinated efficiently for different control requirements, namely network connectivity, error tolerance, performance of entire closed-loop system, calculation speed, etc., and how to design distributed MPC. The remaining contents of this book are structured into four parts.

In the first part, we recall the main concepts and some fundamental results of the predictive control for discrete-time linear systems. The system structure model and some decomposition methods to present how to divide the entire system into interacting subsystems according to the specific control requirements is also introduced. Our intent is to provide the necessary background knowledge to understand the rest of the book.

The second part introduces the unconstrained distributed MPCs with different coordination strategies. The simplest and most practical local cost optimization based distributed MPC, Nash optimization based distributed MPC, the cooperative distributed MPC that can obtain very good performance of the entire system but each subsystem-based MPC of which requires

the information of the whole system, and the networked distributed MPC with information constraints, which is a tradeoff between the two methods mentioned above. For primary readers, the major ideas and characteristics of distributed MPCs are clearly explained in a simple way without constraints.

The third part focuses on introducing the design of the stabilizing distributed MPCs with constraints for the three types of DMPCs: the local cost optimization based DMPC, the cooperative DMPC, and the networked DMPC with information constraint, respectively. The designed DMPCs can guarantee recursive feasibility and the asymptotic stability of the closed-loop system if the initial feasible solution exists.

In the last part, three practical examples are given to illustrate how to implement the introduced distributed MPC into industrial processes, they are the nonlinear networked DMPC for accelerated cooling processes in heavy plate steel mills, the speed train control with unconstrained networked DMPC, and the hierarchical DMPC for load control of a high building with multicooling resources.

In conclusion, this book tries to give a systematic overview of the latest distributed predictive control technologies to readers. We hope this book can help engineers to design control systems in their daily work or in their new projects. In addition, we believe that this book is fit for the graduate students who are pursuing their master or doctor degree in control theory and control engineering. We will be very pleased if this book is of use to you if you are interested in the control of plant-wide systems or predictive control.

Shaoyuan Li Yi Zheng

About the Authors

Shaoyuan Li (IEEE Senior Member, 2006) is currently Professor and vice president of the School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University. He is also the discipline response person of Control Theory and Control Engineering, the vice director of Key Laboratory of Ministry of Education, the Vice President of the Chinese Association of Automation. He received his PhD in Computer and System Science from Nankai University in 1997. His research interests include predictive control, intelligent adaptive control, fuzzy intelligent control, and its applications. He has published five books and more than 200 papers in journals/conferences. Prof. Li has worked in the area of distributed model predictive control for more than 13 years.

Yi Zheng (IEEE Member, 2010) is Associate Professor at Shanghai Jiao Tong University and currently works in the School of Electronic Information and Electrical Engineering. He received his PhD in Control Theory and Engineering from Shanghai Jiao Tong University. He was with Shanghai Petrochemical Company, Ltd., Shanghai, from 2000 to 2003, GE-Global Research (Shanghai) from 2010 to 2012, and the University of Alberta from 2014 to 2015. His research interests include smart grids, model predictive control, system identification, and their applications to industrial processes. Zheng has worked in the area of distributed model predictive control for nearly 9 years.

Acknowledgement

This work was supported by the National Nature Science Foundation of China (61233004, 61221003, 61374109, 61304078), the National Basic Research Program of China (973 Program-2013CB035500), and partly sponsored by the International Cooperation Program of Shanghai Science and Technology Commission (12230709600), the Higher Education Research Fund for the Doctoral Program of China (20120073130006, 20110073110018), and the China Postdoctoral Science Foundation (2013M540364).

List of Figures

Figure 1	The schematic of distributed model predictive control	xii
Figure 1.1	The wind farm	2
Figure 1.2	The multizone building temperature regulation system	3
Figure 1.3	Distributed power generation power network	3
Figure 1.4	Hierarchical control system for the plant-wide system	4
Figure 1.5	Centralized control	5
Figure 1.6	Decentralized control	6
Figure 1.7	Hierarchical coordinated decentralized control	7
Figure 1.8	Distributed control	7
Figure 1.9	Distributed control in the hierarchical control system	8
Figure 1.10	Distributed predictive control	10
Figure 1.11	Content of this book	14
Figure 2.1	A state observer with measurable disturbances	30
Figure 3.1	The centralized MPC control structure	40
Figure 3.2	The single-layer decentralized/distributed MPC control structure	41
Figure 3.3	The hierarchical decentralized/distributed MPC control structure	43
Figure 3.4	Simplified process flow diagram of a hydrocracking plant and its hierarchical distributed MPC control structure	44
Figure 4.1	The schematic of the distributed system	48
Figure 4.2	A multizone building temperature regulation system	51
Figure 4.3	The two-input-two-output system (TITO)	59
Figure 4.4	Distillation column controlled with the LV-configuration	62
Figure 5.1	Maximum closed-loop eigenvalues with LCO-DMPC when $\alpha = 0.1$	81
Figure 5.2	Performance with $\gamma = 1$ and $P = 20$ of a closed-loop system under the control of LCO-DMPC with $\alpha = 0.1$	82
Figure 5.3	Maximum closed-loop eigenvalues with LCO-DMPC when $\alpha = 1$	83
Figure 5.4	Performance with $\gamma = 1$ and $P = 20$ of a closed-loop system under the control of LCO-DMPC with $\alpha = 1$	84

Figure 5.5	Shell heavy oil fractionator benchmark control problem	95
Figure 5.6	Closed-loop system output responses and manipulated/control signals with no communication failure under the disturbance pattern $\mathbf{d}^1 = [0.5 \ 0.5]^T$	97
Figure 5.7	Closed-loop system output responses and manipulated/control signals with no communication failure under the disturbance pattern $\mathbf{d}^2 = [-0.5 - 0.5]^{\mathrm{T}}$	97
Figure 5.8	Closed-loop system output responses and manipulated/control signals with mixed communication failure under the disturbance pattern $\mathbf{d}^1 = [0.5 \ 0.5]^T$	98
Figure 5.9	Closed-loop system output responses and manipulated/control signals with mixed communication failure under the disturbance pattern $\mathbf{d}^2 = [-0.5 - 0.5]^{\mathrm{T}}$	98
Figure 6.1	Plant with $\alpha = 0.1$: (a) maximum closed-loop eigenvalues with LCO-DMPC and C-DMPC; (b) control performance with $\gamma = 1$ for LCO-DMPC (blue line, MSE = 0.2568) and C-DMPC (red line, MSE = 0.2086)	115
Figure 6.2	Plant with $\alpha = 1$: (a) maximum closed-loop eigenvalues with LCO-DMPC and C-DMPC; (b) control performance with $\gamma = 1$ for LCO-DMPC (blue line, MSE = 0.2277) and C-DMPC (red line, MSE = 0.2034)	116
Figure 6.3	Plant with $\alpha = 10$: (a) maximum closed-loop eigenvalues with LCO-DMPC and C-DMPC; (b) control performance with $\gamma = 1$ for LCO-DMPC (blue line, unstable) and C-DMPC (red line, MSE = 0.1544)	117
Figure 6.4	The outputs and inputs of each subprocess	122
Figure 6.5	The outputs and inputs of the second subprocess	122
Figure 7.1	ACC process for middle and heavy plates	138
Figure 7.2	Control strategy of ACC	140
Figure 7.3	Equilibriums of states of entire system	141
Figure 7.4	Performance of close-loop subsystems using centralized MPC, N-DMPC, and the LCO-MPC	142
Figure 7.5	Flux of each header unit using centralized MPC, N-DMPC, and LCO-MPC	143
Figure 7.6	Diagram of a serially connected process	144
Figure 7.7	Diagram of the MPC unit for each subsystem	148
Figure 7.8	Diagram of networked MPC algorithm	149
Figure 7.9	Outputs and control signals under the decentralized MPC	155
Figure 7.10	Outputs and control signals under the LCO-DMPC with Nash optimization	155
Figure 7.11	Outputs and control signals under the N-DMPC iterative algorithm	156
Figure 7.12	Performance index comparisons for three schemes	156

Figure 7.13	Structure of a walking beam reheating furnace	157
Figure 7.14	Furnace temperature and fuel feed flow for each zone	158
Figure 8.1	The interaction relationship among subsystems	184
Figure 8.2	The evolution of the states under the LCO-DMPC	185
Figure 8.3	The evolution of the control inputs under the LCO-DMPC	186
Figure 8.4	The evolution of the states under the centralized MPC	186
Figure 8.5	The evolution of the control inputs under the centralized MPC	187
Figure 9.1	Schematic of the discrepancy among feasible state sequence and presumed state sequence	196
Figure 9.2	The multizones building temperature regulation system	202
Figure 9.3	The evolution of the states under the centralized MPC, LCO-DMPC, and C-DMPC	204
Figure 9.4	The evolution of the inputs under the centralized MPC, LCO-DMPC, and C-DMPC	205
Figure 9.5	Differences of the absolute value of the state and inputs of each subsystem between under the control of LCO-DMPC and under the control of centralized MPC, and between under the control of C-DMPC and under the control centralized DMPC	206
Figure 9.6	The difference between the input of each subsystem produced by the LCO-DMPC and the input of each subsystem calculated by the central- ized MPC, and between the input of each subsystem produced by the C-DMPC and the input of each subsystem calculated by the centralized MPC	207
Figure 10.1	The interaction relationship among subsystems	229
Figure 10.2	The evolution of the states under the N-DMPC	231
Figure 10.3	The evolution of the control inputs under the N-DMPC	232
Figure 10.4	The evolution of the states under the centralized MPC	232
Figure 10.5	The evolution of the control inputs under the centralized MPC	233
Figure 10.6	The evolution of the states under the LCO-DMPC	233
Figure 10.7	The evolution of the control inputs under the LCO-DMPC	233
Figure 10.8	The errors between the absolute value of the state of each subsystem under the centralized MPC and the absolute value of the state of each subsystem under the N-DMPC	234
Figure 10.9	The difference between the input of each subsystem produced by the centralized MPC and the input of each subsystem calculated by the N-DMPC	234
Figure 10.10	The errors between the absolute value of the state of each subsystem under the local cost optimization based DMPC and the absolute value of the state of each subsystem under the N-DMPC	234
Figure 10.11	The difference between the input of each subsystem produced by the LCO-DMPC and the input of each subsystem calculated by the N-DMPC	235

Figure 11.1	Hot-rolled strip laminar cooling process	241
Figure 11.2	Desired temperature profile	242
Figure 11.3	The structure of DMPC framework for HSLC	244
Figure 11.4	The division of each subsystem	245
Figure 11.5	Comparison between the predictive CT and the measurement of CT	252
Figure 11.6	Initial states of process model and observer	252
Figure 11.7	Comparison of temperatures estimated by process model and observer	253
Figure 11.8	Performance comparison of different control strategies (centralized MPC and DMPC framework proposed)	254
Figure 11.9	Flux of each header group with centralized MPC and DMPC framework proposed	255
Figure 11.10	The cooling curve of each strip-point with existing method	256
Figure 11.11	The cooling curve of each strip-point with proposed DMPC framework	257
Figure 11.12	The structure of experimental system	257
Figure 11.13	Runout table pilot apparatus	258
Figure 11.14	Finishing rolling temperature of strip	258
Figure 11.15	Output of each closed-loop subsystem with DMPC framework	259
Figure 11.16	Flux of each header group with DMPC framework	260
Figure 12.1	Traction characteristics of the CRH2 [140]	265
Figure 12.2	Groups of CRH2 ("M" means motor coach and "T" means trailer coach)	266
Figure 12.3	Analysis of the force of the CRH2	267
Figure 12.4	Spring-mass model	267
Figure 12.5	The structure diagram of the distributed model predictive control	270
Figure 12.6	Half of the CRH2 EMUs schematic diagram	273
Figure 12.7	Velocity track	274
Figure 12.8	Driving force optimal scheduling	275
Figure 12.9	The relative displacement of the coaches	275
Figure 12.10	Velocity track of the first coach	276
Figure 12.11	Velocity track	276
Figure 12.12	Driving force optimal scheduling of the second coach	277
Figure 12.13	Driving force optimal scheduling of the third coach	277
Figure 13.1	Structure of joint cooling system	280
Figure 13.2	Control strategy of joint cooling system	281
Figure 13.3	Load forecasting curve	288
Figure 13.4	Comparison of power cost in every half an hour between the two strategies	289
Figure 13.5	Simulation results of dynamic performance optimization	290

List of Tables

Table 4.1	The meaning of the value for RGA elements	61
Table 5.1	Notations used in this chapter	70
Table 6.1	Notations definition	105
Table 7.1	Notations used in this chapter	128
Table 7.2	The plate parameters and the operating points	141
Table 8.1	Notations in this chapter	172
Table 8.2	Parameters of the LCO-DMPC	185
Table 8.3	State square errors of the closed-loop system under the control of the centralized MPC (CMPC) and the LCO-DMPC	187
Table 9.1	Notations in this chapter	191
Table 9.2	Parameters of C-DMPC	203
Table 9.3	State square errors of the closed-loop system under the control of the centralized MPC (CMPC), the LCO-DMPC, and the C-DMPC	208
Table 10.1	Notations in this chapter	213
Table 10.2	Parameters of the N-DMPC	231
Table 10.3	State square errors of the closed-loop system under the control of the centralized MPC(CMPC), the LCO-DMPC, and the N-DMPC	235
Table 11.1	Thermal and physical properties of the strip	251
Table 11.2	Computational burdens of DMPC and centralized MPC	256
Table 12.1	Coefficients	266
Table 13.1	Power consumption functions of refrigerators under air conditioning operation	287
Table 13.2	Time-of use power price	287
Table 13.3	Dynamic parameters of refrigerators under air conditioning operation	288
Table 13.4	Effect of dynamic optimization	291

1

Introduction

1.1 Plant-Wide System

There is a class of systems which are composed of many interacted subsystems' industrial fields. Especially with the development of the advanced technology and the increase in the requirement of products, many new distributed processes have appeared, the processes of producing products have become more and more complex, and the scales of industrial processes have become more and more large. The automation structure for this kind of systems has changed from the traditional centralized automation system to a decentralized and centralized automation system.

Correspondingly, the control algorithm and control structure for this kind of system change from centralized control and decentralized control to the distributed control system. The distributed control refers to a control system where each subsystem is controlled by an individual controller, and these controllers communicate with other subsystem-based controllers and are coordinated according to the exchanged information for obtaining good global performance or some special common goals. So far, the distributed control, especially the DMPC, has been studied and are still being studied by many scientists, and many theories and algorithms have been developed. We think it is the right time to introduce the distributed control to more students and engineers.

To make it more clear which kind of system is suitable for distributed control, we give some examples as follows.

1. Wind power generation farm

In a wind turbine power generation farm, as shown in Figure 1.1, wind turbines are spatially distributed. The output wind flow rate of each wind turbine decreases with increasing generated power. It affects the input wind flow rate of the downstream wind turbines, and then their dynamics. In this way, these wind turbines interact with each other. For the automation system, each wind turbine is controlled by an individual controller. And these controllers are connected by a network (fieldbus) and are able to communicate with each other by the network.

Distributed Model Predictive Control for Plant-Wide Systems, First Edition. Shaoyuan Li and Yi Zheng. © 2015 John Wiley & Sons (Asia) Pte Ltd. Published 2015 by John Wiley & Sons (Asia) Pte Ltd.

Figure 1.1 The wind farm

2. Multizone building temperature regulation system

Multizone building temperature regulation systems are a class of typical spatially distributed systems, as shown in Figure 1.2, which are composed of many physically interacted subsystems (rooms or zones) labeled as S_1, S_2, \ldots, S_m , respectively. The thermal influences between rooms of the same building occur through internal walls (the internal walls' isolation is weak) and/or door openings. A thermal meter and a heater (or air conditioner) are installed in each zone, which is used to measure and adjust the temperature of the multizone building.

3. Distributed power network

Power networks are large networks consisting of a large number of components. The dynamics of the power network as a whole are the result of interactions between the individual components. The generators produce power that is injected into the network on the one side, while the loads consume power from the network on the other. If we consider each power plant, load, and station as a subsystem, it is a typical distributed system, whose subsystems interacted with each other and controlled separately.

In addition, since the number of players involved in the generation and distribution of power has increased significantly, in the near future, the number of source nodes of the power distribution network will increase even further as large-scale industrial suppliers and small-scale individual household will also start to feed electricity into the network. As a consequence, the structure of the power distribution network will change into a much more decentralized system with many generating sources and distribution agencies (Figure 1.3).

Figure 1.2 The multizone building temperature regulation system

Figure 1.3 Distributed power generation power network

1.2 Control System Structure of the Plant-Wide System

The control structure is a very general concept. It includes how to schedule the controllers, and the inputs/outputs of each controller. The control system structure of the plant-wide system is shown in Figure 1.4, which is a hierarchical structure. The top layer, denoted as layer 4, is a steady economic optimization layer which is used to optimize the key process parameters, e.g., the product quantity, product quality, feeding material quality, etc. Layer 3 is a real-time optimization layer which dynamically optimizes the set-point of the multivariable layers.

Figure 1.4 Hierarchical control system for the plant-wide system

This layer considers the dynamic economic performance and efficiency. The slow time variation of the process condition is taken into account in this layer. Below this layer is a multivariable layer which coordinates the interaction between each control loop and gives a set-point for the field control loop. The lowest layer, a field control loop layer, which is not drawn in this figure, is used to regulate the process variable, e.g., the temperature, flow rate, or pressure. In some cases, the multivariable takes some work of the field control loop layer when the control problem is complicated. In this structure, with an increase in the layer level, the information to communicate is deduced, and the computing interval is increased.

Here, we consider the multivariable control layer. For a plant-wide system, there are many inputs and outputs. With the development of a network, communication technology, and fieldbus product, as well as intelligent meters, the control theory for a multivariable system is developed correspondingly. Many advanced control methods appear in the literature works, and the control structure in a multivariable layer changes from the centralized control to the decentralized control, to the distributed control. In addition, recently, the distributed structures for the real-time dynamic optimization layer and steady-state optimization layer have also appeared in the literature works. The real-time optimization layer and multivariable control loop are combined together in some cases. This is out of the scope of discussion in this book. In the following, three types of control structures, centralized control structure, decentralized control structure, and distributed control structure, in a multivariable control layer are specified to show the advantage of the distributed control framework.

1.2.1 Centralized Control

As shown in Figure 1.5, the centralized multivariable controller gets all the information of the plant-wide system, and then calculates the control law of all the inputs together, and sends the