Climate Change Adaptation in Practice

From Strategy Development to Implementation
Climate Change Adaptation in Practice
From strategy development to implementation
Climate Change Adaptation in Practice
From strategy development to implementation

EDITED BY

Philipp Schmidt-Thomé
Geological Survey of Finland

Johannes Klein
Aalto University, Finland

WILEY-BLACKWELL
A John Wiley & Sons, Ltd., Publication
Contents

List of Contributors, vii
About the Editors, xi

1 Communicating Climate Change Adaptation: From Strategy Development to Implementation, 1
 Philipp Schmidt-Thomé, Johannes Klein, Anika Nockert, Larissa Donges & Inga Haller

2 Participatory Climate Change Adaptation in Kalundborg, Denmark, 11
 B. Bedsted & S. Gram

3 Adaptation to Sea Level Rise: Calculating Costs and Benefits for the Case Study Kalundborg, Denmark, 25
 Markus Boettle, Diego Rybski & Jürgen P. Kropp

4 Coastal Protection and Multi-Criteria Decision Analysis: Didactically Processed Examples, 35
 Markus Boettle, Philipp Schmidt-Thomé & Diego Rybski

5 Preparing for Climate Change: Planning Adaptation to Climate Change in the Helsinki Metropolitan Area, Finland, 51
 Ruusu Tuusa, Susanna Kankaanpää, Jari Viinanen, Tiia Yrjölä & Sirkku Juhola

6 Adaptation to Floods in Riga, Latvia: Historical Experience and Change of Approaches, 65
 Laila Kūle, Agrita Briede, Māris Klāviņš, Guntis Eberhards & Andris Ločmanis

7 Climate Adaptation in Metropolis Hamburg: Paradigm Shift in Urban Planning and Water Management towards ‘Living with Water’?, 83
 Joerg Knieling & Mareike Fellmer

8 Climate Change Adaptation Policy in Bergen: Ideals and Realities, 95
 O. Langeland, J.E. Klausen & M. Winsvold

9 Adaptation to Climate Change in the Smeltalė River Basin, Lithuania, 111
 Egidijus Rimkus, Justas Kažys, Edvinas Stonevičius & Gintaras Valiuškevičius

10 The Geological Structure of Pyynikinharju Esker and the Local Effects of Climate Change, 123
 Jussi Ahonen, Tiitre Valjus & Ulla Tiilikainen

11 Climate Change and Groundwater: Impacts and Adaptation in Shallow Coastal Aquifer in Hanko, South Finland, 137
 Samrit Luoma, Johannes Klein & Birgitta Backman

12 Climate Change and Groundwater – From Modelling to some Adaptation Means in Example of Klaipėda Region, Lithuania, 157
 Jurga Arušienė, Jurgita Kriukaitė, Jonas Satkūnas & Marius Gregorauskas

13 Climate Change – A New Opportunity for Mussel Farming in the Southern Baltic?, 171
 Anna-Marie Klamt & Gerald Schernewski

14 Impacts of Sea Level Change to the West Estonian Coastal Zone towards the End of the 21st Century, 185
 Valter Petersell, Sten Suuroja, Tarmo All & Mihkel Shtokalenko

15 Geodynamical Conditions of the Karklė Beach (Lithuania) and Adaptation to Sea Level Change, 205
 Jonas Satkūnas, Darius Jarmalavičius, Aldona Damušytė & Gintautas Žilinskas
List of Contributors

Jussi Ahonen
Geological Survey of Finland (GTK), Espoo, Finland

Tarmo All
Ministry of the Environment, Tallinn, Estonia

Jurga Arustienė
Lithuanian Geological Survey, Vilnius, Lithuania

Birgitta Backman
Geological Survey of Finland (GTK), Espoo, Finland

B. Bedsted
The Danish Board of Technology, Copenhagen, Denmark

Markus Boettle
Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany

Agrita Briede
University of Latvia, Faculty of Geography and Earth Sciences, Riga, Latvia

Jorge Olcina Cantos
Alicante University, Alicante, Spain

Sven Dahlke
University of Greifswald, Kloster/Hiddensee, Germany

Aldona Damušytė
Lithuanian Geological Survey, Vilnius, Lithuania

Larissa Donges
Leibniz Institute for Baltic Sea Research, Warnemünde, Rostock, Germany

Guntis Eberhards
University of Latvia, Faculty of Geography and Earth Sciences, Riga, Latvia

Mareike Fellmer
Hafen City University Hamburg, Urban Planning and Regional Development, Germany

Christian Filies
EUCC – The Coastal Union Germany, Rostock, Germany

René Friedland
Leibniz Institute for Baltic Sea Research, Warnemünde, Rostock, Germany

Koji Fukuda
Institute for Global Environmental Strategies, Japan

S. Gram
The Danish Board of Technology, Copenhagen, Denmark

Marius Gregorauskas
Vilniaus hidrogeologija Ltd, Vilnius, Lithuania

Inga Haller
EUCC – The Coastal Union Germany, Rostock, Germany

Shinano Hayashi
Institute for Global Environmental Strategies, Japan

Doddy Juli Irawan
Center for Climate Risk and Opportunity Management in Southeast Asia and Pacific, Bogor Agriculture University, Indonesia

Darius Jarmalavičius
Nature Research Centre, Institute of Geology and Geography, Vilnius, Lithuania

Sirkku Juhola
Department of Real Estate, Planning and Geoinformatics, Aalto University; Department of Environmental Sciences, University of Helsinki

Susanna Kankaanpää
Helsinki Region Environmental Services Authority (HSY)

Kiki Kartikasari
Center for Climate Risk and Opportunity Management in Southeast Asia and Pacific, Bogor Agriculture University, Indonesia
List of Contributors

Justas Kažys
Department of Hydrology and Climatology, Vilnius University, Lithuania

Anna-Marie Klamt
Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany

J.E. Klausen
Norwegian Institute for Urban and Regional Research (NIBR), Norway

Māris Klavīņš
University of Latvia, Faculty of Geography and Earth Sciences, Riga, Latvia

Johannes Klein
Geological Survey of Finland (GTK), Espoo, Finland; Aalto University, Espoo, Finland

Joerg Knieling
Hafen City University Hamburg, Urban Planning and Regional Development, Germany

Jurgita Kriukaitė
Lithuanian Geological Survey, Vilnius, Lithuania

Jürgen P. Kropp
Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany; University of Potsdam, Institute of Earth and Environmental Science, Potsdam, Germany

Laila Küle
University of Latvia, Faculty of Geography and Earth Sciences, Riga, Latvia

O. Langeland
Norwegian Institute for Urban and Regional Research (NIBR), Norway

Andris Ločmanis
University of Latvia, Faculty of Geography and Earth Sciences, Riga, Latvia

Samrit Luoma
Geological Survey of Finland (GTK), Espoo, Finland

Matthias Mossbauer
Leibniz Institute for Baltic Sea Research, Warnemünde, Rostock, Germany; EUCC – The Coastal Union Germany, Rostock, Germany

Anika Nockert
Geological Survey of Finland (GTK), Espoo, Finland

Valter Petersell
Geological Survey of Estonia, Tallinn, Estonia

S.V.R.K. Prabhakar
Institute for Global Environmental Strategies, Japan

Gattineni Srinivasa Rao
eemausam, Weather Risk Management Services, India

Egidijus Rimkus
Department of Hydrology and Climatology, Vilnius University, Lithuania

Jayant K. Routray
School of Environment, Resources and Development (SERD), Asian Institute of Technology (AIT), Bangkok, Thailand

Diego Rybski
Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany

Daisuke Sano
Institute for Global Environmental Strategies (IGES), Japan

M. Mustafa Saroar
School of Environment, Resources and Development (SERD), Asian Institute of Technology (AIT), Bangkok, Thailand; Urban and Rural Planning, School of Science, Engineering and Technology (SET), Khulna University, Bangladesh

Jonas Satkūnas
Lithuanian Geological Survey, Vilnius, Lithuania

Gerald Schernewski
Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany; Coastal Research & Planning Institute, Klaipeda University, Klaipeda, Lithuania

Philipp Schmidt-Thomé
Geological Survey of Finland (GTK), Espoo, Finland; Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany

Susanne Schumacher
EUCC – The Coastal Union Germany, Rostock, Germany

Mihkel Shtokalenko
Geological Survey of Estonia, Tallinn, Estonia

Edvinas Stonevičius
Department of Hydrology and Climatology, Vilnius University, Lithuania

Sten Suuroja
Geological Survey of Estonia, Tallinn, Estonia

Ulla Tiilikainen
City of Tampere, Urban Development, Tampere, Finland
List of Contributors

Ruusu Tuusa
Department of Real Estate, Planning and Geoinformatics, Aalto University

Gintaras Valiūškevičius
Department of Hydrology and Climatology, Vilnius University, Lithuania

Tuire Valjus
Geological Survey of Finland (GTK), Espoo, Finland

Jari Viinanen
Environment Centre, City of Helsinki, Finland

M. Winsvold
Norwegian Institute for Urban and Regional Research (NIBR), Norway

Tiia Yrjölä
Environment Centre, City of Helsinki, Finland

Gintautas Žilinskas
Nature Research Centre, Institute of Geology and Geography, Vilnius, Lithuania
Philipp Schmidt-Thomé is a senior scientist and project manager at the Geological Survey of Finland (GTK) and an Adjunct Professor at the University of Helsinki. He is trained as a Geographer (MSc) and holds a PhD in Geology. He leads the Working Group on Climate Change Adaptation under the International Union of Geosciences Commission on Geo-Environment. His scientific focus is on geoscience communication and interdisciplinary cooperation. His recent project work has focused on integrating natural hazards, climate change and risks into land-use planning practices. He is a regular lecturer in several universities and a visiting fellow to the South East Asia Disaster Prevention Institute (SEADPRI).

Johannes Klein works at the Aalto University, Department of Real Estate, Planning and Geoinformatics, Land Use Planning and Urban Studies Group. He graduated from the University of Stuttgart in environmental engineering and is currently a PhD student within the Nordic Centre of Excellence for Strategic Adaptation Research (NORD-STAR). His research focus is on climate change adaptation and urban development. He worked as researcher at the Geological Survey of Finland from 2005 to 2012 and was the coordinator of the BaltCICA project.

Acknowledgements

The Editors acknowledge the significant contribution of Anika Nockert who was largely responsible for the technical and administrative revision process of this book. Anika Nockert has a Bachelor of Science in Geography and is an MSc student in ‘Physical geography of human-environment-systems’ at the Humboldt-University in Berlin. She worked as a research assistant in the ‘Climate Impacts & Vulnerability’ Research Domain at the Potsdam Institute for Climate Impact Research (PIK) and at the Geological Survey of Finland (GTK) where she primarily supported the BaltCICA project.
1 Communication Climate Change Adaptation: From Strategy Development to Implementation

Philipp Schmidt-Thomé¹, Johannes Klein¹,², Anika Nockert¹, Larissa Donges³ & Inga Haller⁴

¹Geological Survey of Finland (GTK), Espoo, Finland
²Aalto University, Espoo, Finland
³Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
⁴EUCC – The Coastal Union Germany, Rostock, Germany

1.1 Introduction

This book displays climate change adaptation measures that were developed and implemented in the Baltic Sea Region. International and European institutions, such as the Intergovernmental Panel on Climate Change (IPCC) as well as the EU Commission (2009) have identified the necessity of actions to go beyond strategies and called for the implementation of adaptation measures (IPCC, 2007; COM, 2009). Examples that demonstrate the need for the implementation of climate change adaptation measures to be politically pushed towards the local level are the resolution on resilient cities adopted by the Congress of Local and Regional Authorities of the Council of Europe (2012), the position paper on climate change by the Association of Finnish Local and Regional Authorities (Suomen Kuntaliitto, 2010) or the recently published policy document on climate change adaptation by the German Association of Cities (2012). The latter paper lists a number of adaptation measures cities shall take into consideration for future land-use planning.

Consistent with these calls for action, the Climate Change: Impacts, Costs and Adaptation in the Baltic Sea Region (BaltCICA) project particularly focused on the implementation of adaptation measures, which are summarised in this book. Representatives of regional and local authorities, municipalities, research institutes of various disciplines and universities from eight countries¹ participated in the project. The BaltCICA project was the third consecutive project on climate change adaptation in the Baltic Sea Region conducted under the Geological Survey of Finland. The first of these projects, SEAREG,² focused on awareness raising and structuring of the science-stakeholder dialogue. The second project, ASTRA,³ identified climate change impacts on regional development and formulated adaptation strategies. The BaltCICA project drew on the experiences of these projects and contributed to the implementation of adaptation measures. It produced new knowledge relating to climate change impacts, costs and benefits and governance of adaptation. It reduced uncertainty in decision-making in relation to adaptation by

¹Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Norway and Sweden
strengthening science-decision maker links and it increased participation of stakeholders and citizens in decision-making on adaptation measures.

Thirteen case studies dealt with a broad range of thematic areas, especially focusing on land-use planning and urban development for adaptation. Interdisciplinary work enabled a multi-faceted approach to these topics. This included modelling of climate change impacts on groundwater and flood-prone areas; the participatory development of adaptation measures with the cooperation of citizens, authorities, scientists and representatives of economic sectors; as well as the assessment of adaptation options with respect to costs, benefits and less tangible criteria such as environmental impacts or aesthetics. These methods were closely interlinked in order to foster climate change adaptation at the local level.

The methodologies to identify and implement adaptation measures were developed on a local level and communicated among project partners via study visits and workshops. These workshops enabled other project partners to both learn about new methodologies and to further develop them according to specific local needs in their respective case studies.

Scenario workshops were designed and employed for direct science-stakeholder cooperation. This methodology was adapted to local circumstances of each case study and applied to identify needs and viabilities of decision-making processes towards implementing adaptation measures. Adapting or changing current land-use plans and underlying regulations, is often a lengthy process. Therefore concrete adaptation actions have been employed in only some of the case study areas, meanwhile in several other municipalities decisions are currently being taken or are high on the political agenda. In any case, the BaltCICA project has had a notable impact in the case studies on developing methodologies on how to take the step ahead from formulating climate change adaptation strategies towards specific adaptation measures.

The project partners have communicated their activities and results beyond the Baltic Sea Region and Europe. In the course of these dissemination activities several new project ideas were born. Some international activities therefore round the book up with examples on how climate change adaptation is perceived and dealt with in areas outside of the Baltic Sea Region.

1.2 Structuring the communication processes

The identification of adaptation necessities and potentials requires interdisciplinary cooperation, not only between scientific disciplines but especially between scientists and stakeholders (including decision makers) (e.g. Adger et al., 2009; Dessai & Hulme, 2004). Therefore the communication process plays a key role. Only if decision makers, scientists and involved citizens agree on local necessities of adaptation options is it possible to develop reasonable and cost-effective options that can be implemented. For decision makers it is usually not practicable to develop measures against impacts that might potentially occur in 100 years. In the daily business of decision makers, the focus is often on current and near future land use patterns. Therefore it is necessary to understand motivations and interests of decision makers in order to find entry points in planning that may respect developments that lie in the farther future. It was shown during the project work that adaptation concepts that can be embedded into current political demands and interests raise the interest and thus also the acceptability among decision makers.

The communication with stakeholders during the BaltCICA project and its predecessors showed that overall ‘tool boxes’ are difficult to deploy or can even be counterproductive, as every municipality has its own history and special characters. An overall adaptation concept is often received sceptically, so that general concepts, for example, on how to start and endorse communication processes are helpful. But finally each approach for every respective case study has to be completely adapted to the special requirements of each respective case study.

It also turned out that preferred adaptation options are in fact those of no-regret character, that is, those that also offer protection to current hazard patterns. It proved useful to start off with current extreme events (including historical records) rather than using those of potential flood events that might occur in the future. The potential impacts of current extreme events revealed recent developments of local
vulnerability patterns. Often it turned out that assets had been constructed in unsuitable, that is, currently hazard prone areas. In the communication process land use developments and future options were then combined with potential changes in sea level and hydro-meteorological phenomena.

The combination of current and potential future land use patterns, climate variables and extreme events then lead to an integrated understanding of present as well as emerging risk patterns. In some case studies adaptation measures were designed to avoid or withstand current impacts, with an outlook on enhancing these measures along with ongoing climate change. In these cases adaptation measures are currently being put into practice. In other cases even more radical approaches of retreat were discussed, which would be implemented and aligned to the life cycles of buildings and infrastructure, and the development of climate impacts.

The examples displayed in this book show that whatever option on climate change adaptation might seem to be important from a scientific perspective, the structure of the communication process with stakeholders is the decisive factor to implement cost effective as well as politically and socially acceptable implementation measures.

1.3 Climate change induced physical impacts on the Baltic Sea Region

Impacts of climate change occur and are perceived differently throughout the Baltic Sea Region. Depending on local circumstances, climate change adaptation processes are in various stages and address different challenges. This section gives an overview on climate change impacts in the Baltic Sea Region, as based on current scientific knowledge. Local impacts are, where necessary, further described and analysed in the respective case studies.

1.3.1 Air Surface Temperature (AST)

Long-term observations of the Baltic Sea Basin mean AST indicates both decadal and seasonal trends. Annual temperature anomaly estimates show stronger fluctuations for the northern areas (north of 60°N) for the investigation period 1961–2001 (Jones & Moberg, 2003; HELCOM, 2007). Negative AST anomalies until the 1920s were followed by a first warming phase ending in the 1930s (0.274 K/decade). After a period of cooling (−0.156 K/decade) the annual AST anomalies increased steadily since the 1970s, exceeding any previously observed rates in the early 1990s (1977–2001: 0.364 K/decade) (Jones & Moberg, 2003).

For the Baltic Sea Region south of 60°N the AST development is not dramatic. Up until the 1970s, no significant AST trends can be observed. Nevertheless, an even more distinctive AST increase since 1985 (1977–2001: 0.425 K/decade) (Jones & Moberg, 2003), was recorded and was strongest south and east of Tallinn and St Petersburg due to changing patterns of the atmospheric circulation (HELCOM, 2007). The annual linear AST trends for the investigation period 1871–2004 show an overall increase of 0.07 K/decade for latitudes >60°N and of 0.10 K/decade for latitudes <60°N (Heino et al., 2008). With an annual warming trend of 0.08 K/decade, the Baltic Sea ASTs increase faster than global temperatures (0.05 K/decade) (HELCOM, 2007).

For the southern area seasonal trends are significant in spring, autumn and winter, with the highest increase (0.11 K/decade) for spring temperatures (HELCOM, 2007; Heino et al., 2008). In the northern Baltic Sea Basin the most distinct warming trend is also recorded in spring (0.15 K/decade), whereas the development of winter temperatures is insignificant (Heino et al., 2008). Among other consequences, this resulted in a significantly prolonged growing season in the Baltic Sea Region.

Despite certain caveats and uncertainties, all existing projections indicate that atmospheric temperatures in the Baltic Sea Basin may continue to warm during the next decades. Simulations based on the IPCC A2 and B2 emissions scenarios of future AST in 2071–2100 show changes relative to the reference period 1961–90 between 2.8–4.8 K for the Baltic Sea Region (Meier, 2006). There are seasonal differences, indicating a stronger increase in wintertime AST as compared to summertime AST, which are especially high in the northern and eastern sub-regions of the Baltic Sea (Räisänen et al., 2004; HELCOM, 2007). Meier (2006) found the largest monthly mean AST change of 6 K in February (2071–2100). Moreover, the southern parts of the Baltic Sea Region may experience a more pronounced warming in summer than the northern parts (HELCOM, 2007).
1.3.2 Sea Surface Temperature (SST)

As the Baltic Sea is a relatively small and shallow semi-enclosed sea characterized by a low and strongly varying salinity of its surface waters (approximately 20 practical salinity units (PSU) in the Kattegat and 1–2 PSU in the Bothnian Bay and Gulf of Finland) (HELCOM, 2012), changes in SST occur comparatively fast. This holds true for both seasonal and long-term responses of sea temperatures to solar radiation and air temperatures.

Depending on the investigation period, analyses of SST data lead to different results. A reason for that is the long-term variability in the thermal development of the Baltic Sea. For example, the past 100 years were characterized by warming phases in 1920–40 and since the 1970s. These warming phases were interrupted by colder periods, whereby the SST increase rates of 0.65 K/decade since 1985 are unprecedented (Siegel, Gerth & Tschersich, 2008). The warmest years are observed since 1999 when there was a temperature rise of 0.8 K/year (Siegel, Gerth & Tschersich, 2006; HELCOM, 2007), showing strong seasonal and regional variations. The rise of temperatures in summer and autumn mainly determined the positive trend in SST for the Baltic Sea (Siegel, Gerth & Tschersich, 2008). On the other hand, analyses of modelled mean water temperatures for 1970 and 2002, averaged over all depths of the Baltic Sea, showed no trend at all (Heino et al., 2008).

Current simulations of the SST in the Baltic Sea Basin project a positive warming trend for the next decades. Regional coupled atmosphere-ocean models forced by the B2 and A2 emissions scenarios project an increase in annual mean SST between 2 to 4 Kelvin in the period 2071–2100 compared to 1961–1990, which would be most pronounced in the southern and central Baltic Sea (HELCOM, 2007). In comparison, Neumann and Friedland (2011), based their projections on the IPCC B1 and A1B emissions scenarios, assumed an increase in the order of 2–3.5 K until the end of the 21st century.

1.3.3 Precipitation

Compared to other parameters, precipitation varies greatly in time and space. Due to this and the poor data coverage as well as differing measurement techniques, it is difficult to establish long-term trends for the Baltic Sea Basin. Long-term observations indicate seasonally varying precipitation patterns. For each season, both increasing and decreasing trends can be found for the period 1976–2000 compared to the period 1951–75 (HELCOM, 2007). Nevertheless, an annual increase in precipitation is observed for the period mentioned which however, varies strongly across regions (Heino et al., 2008).

Modelling the development of precipitation under climate change appears to be rather difficult, as the RCM results are still biased, often overestimating winter precipitation (Graham et al., 2008). The general winter precipitation trends may be intensified due to an increasing number and intensity of low-pressure systems from the Atlantic. Changes in summer precipitation may vary regionally with an increase in the northern parts of the Baltic Sea and a decrease in southern parts (HELCOM, 2007; Graham et al., 2008; Neumann & Friedland, 2011). Consequently, precipitation patterns may both shift seasonally and change geographically.

1.3.4 Sea level

Over long-term timescales, the Baltic Sea Region has been subject to dynamic processes, affecting sea level. One of the most important factors is the isostatic effect, due to post-glacial rebound of Fennoscandia, which results in an uplift of the Scandinavian plate with simultaneous lowering of the southern Baltic coast (Heino et al., 2008). Secondarily, since the end of the 19th century there is an eustatic sea-level rise (SLR) of about 1 mm/year (Ekman, 1999). A different factor that is affecting the mean sea level is the salinity gradient (see section on ‘salinity’) together with a mean west wind component in the Baltic Sea Basin which all cause an increase in the mean sea surface height ‘from the Kattegat to the Gulf of Finland and the Bay of Bothnia by about 25 and 32 cm, respectively’ as observed in the 20th century (Meier, Broman & Kjellström, 2004). All these factors have to be considered when discussing changes in sea levels along the Baltic coast. Except for the southern Baltic Sea (SLR 1.7 mm/year), post-glacial rebound combined with eustatic SLR results in decreasing sea levels (Ekman, 1996; Heino et al., 2008; Scotto, Barbosa & Alonso, 2009). In the Gulf of Finland, there is a slight net sea level decrease (1–2 mm/year) (Ekman, 1996). The strongest decrease rates can be found in the Gulf.
of Bothnia (8–9 mm/year) during the 20th century (Ekman, 1996; Heino et al., 2008). Based on observations from the late 19th century Johansson, Boman, Kahma and Launiainen (2004) found a considerable slow-down of sea level decrease or even slight sea level rise in recent decades. For example in Kokkola on the west coast of Finland, the recent SLR led to a less effective post-glacial rebound of the order of 4–5 mm/year compared to a long-term trend in land uplift of 7–8 mm/year (Schmidt-Thomé, Klein & Satkunas, 2010). Additionally, Johansson, Boman, Kahma and Launiainen (2001) found a significant increasing trend in the maximum values in the Baltic Sea nodal area which is at a range of 10 centimetres over half a century (1950–2000) which is more likely to be triggered by larger-scale changes in hydrological and weather conditions than by local storms.

Due to the previously mentioned reasons, an overall assessment of the development of future SLR for the entire Baltic Sea Region is hardly possible. But, it can be expected that some regions that are currently experiencing decreasing sea levels may be confronted with a SLR at the end of the 21st century as well (Fenger, Buch & Jacobsen, 2001).

1.3.5 Salinity

The Baltic Sea is characterized by a decreasing salinity gradient from southwestern to north/northeastern areas determined by the following factors: river runoff, net precipitation and water exchange with the North Sea (Meier, Broman & Kjellström, 2004; Meier, 2006; HELCOM, 2012). The development of salinity during the 20th century is statistically insignificant and no long-term trend can be found (Winsor, Rodhe & Omstedt, 2001; Heino et al., 2008). But because of variations in freshwater inflow and the zonal wind velocity, decadal effects in salinity can be detected (HELCOM, 2007).

Projections of the future development of salinity vary greatly. Nevertheless, it is likely that the salinity of the Baltic Sea might decrease until the end of the 21st century (HELCOM, 2007). On the basis of simulations using the A1B and B1 emissions scenarios, Neumann and Friedland (2011) report a decrease in sea surface salinity in the range of 1.5–2 g/kg or 8–50 % (Meier, 2006) until the end of the 21st century. Due to increasing rainfalls in the northern parts of the Baltic Sea, the river runoff may increase by up to 15% (Meier, 2006) and may, therefore, influence especially the salinity of the northern and northeastern parts of the Baltic Sea Basin. The decrease in salinity would be more pronounced in the wintertime due to an enhanced river runoff (Neumann & Friedland, 2001).

1.3.6 Sea ice

The development of sea ice in the Baltic Sea is predominately determined by atmospheric conditions due to the smallness of the basin (Stigebrandt & Gustafsson, 2003). The sea ice concentration ‘increases approximately linearly with decreasing temperatures’ starting at 1°C (Stigebrandt & Gustafsson, 2003). Currently, half of the Baltic Sea is ice-covered in the wintertime (Meier, 2006). The ice extent is mainly forced by the severity of a winter season. Since the mid 1990s, the ice winters have been average or milder than average (HELCOM, 2007). Within the Baltic Sea Region, the length of the ice season decreased by 14–44 days in the twentieth century (HELCOM, 2007).

As there is a strong relationship between AST and SST, the future ice coverage is highly dependent on climate change induced warming temperatures. Therefore, the development towards more winters with a comparatively small sea ice extent as well as the decreasing length of the ice season are likely to continue in the Baltic Sea Region. Projections suggest a dramatic retreat of ice cover until the end of the 21st century, which would have a great impact on the Baltic winter climate in general (HELCOM, 2007). Simulations (based on A1B and B1) show that the sea may be covered by only one third of the recent coverage at the end of the 21st century (Neumann & Friedland, 2011). On average, large areas would become ice free and the ice season may decrease by one to two months in the northern parts and two to three months in the central parts of the Baltic Sea (HELCOM, 2007).

1.4 Chapter summaries

The chapters in this book are built on adaptation processes with a clear geographic reference, but touching different thematic aspects. They are grouped as far as possible according to common geographic entities as well as thematic preferences. The book starts
off with some of the most important aspects of climate change adaptation, the structuring of communication processes and cost evaluations. In the following, applications of these topics are elaborated for planning aspects in urban and metropolitan areas. The management of resources under climate changes is elaborated in the next section, after which climate change impacts and adaptation measures on larger geographical entities comprising entire coastlines and the tourism sector are assessed. The book closes with four examples, reaching from international insurance approaches towards national activities on natural hazard mitigation and agricultural adaptation projects – towards grass-root level adaptation in cooperation with local people, all exemplarily displaying the wide range of ongoing activities.

Chapter 2 introduces two methods for participatory decision-making for climate change adaptation and their application in Kalundborg, Denmark (Bedsted and Gram). Scenario workshops are presented as a way of addressing uncertainties related to climate change and offering stakeholders the possibility of creating their own development visions for an area or a specific thematic issue. The citizen summit in turn allows citizens to discuss and decide on a set of options for the development of their town. The results provide guidance for political decisions. Chapter 3 and Chapter 4 show two assessment methods for specific adaptation options for flood protection. In Chapter 3 Boettle, Rybski and Kropp test, using the example of Kalundborg, the applicability of cost-benefit analysis (CBA) as a supporting tool for decisions about the level and timing of flood protection measures. In this context they show that the results of the CBA (and hence potential decisions based on the CBA) depend strongly on underlying assumptions of discounting rates and climate sensitivity to greenhouse gases. In Chapter 4 the analysis of flood protection options for two case studies in Northern Germany include a wider set of monetary and intangible criteria. Boettle, Schmidt-Thomé and Rybski show that multi-criteria decision analysis (MCDA) can support decision making and increase the acceptance among stakeholders.

The methods of scenario workshops, CBA and MCDA were adjusted to and applied in a range of other case studies of the BaltCICA project. This is reflected in the following chapters.

The role of climate change in an urban context is discussed on the basis of case studies in six chapters. Tuusa et al. (Chapter 5) look at the development process of the climate change adaptation strategy for the Helsinki Metropolitan Area (HSY, 2012) with a special emphasis on interviews of key stakeholders.

Chapter 6 about Riga, Latvia (Kūle et al.) highlights several aspects of flood protection and climate change. On the background of historical flood events and protection measurements it assesses in detail the communication processes and generation of knowledge related to flooding and introduces Multi Criteria Decision Analysis as a potential support tool for strategic flood risk management in Riga.

Chapter 7 by Knieling and Schaeffer takes a look at developments and new plans along the River Elbe and the harbour area in Hamburg, Germany. These developments are critically reflected upon with respect to the aim of absolute flood safety compared to more flexible concepts of flood risk management.

Bergen is among the most active cities with respect to climate change adaptation in Norway (Dannevig, Rauken & Hovelsrud, 2012). Chapter 8 by Langeland, Klausen and Winsvold focuses on the learning processes, knowledge transfer and coordination that take place among the numerous institutions and project addressing climate change.

Though clearly located in an urban context Chapter 9 by Rimkus, Kažys, Stonevičius and Valiuškevičius illustrates the adaptation process based on specific adaptation measures for flood protection along the Smeltalė River in Klaipėda, Lithuania. The chapter includes the modelling of potential climate change impacts on precipitation and flooding, multi-criteria decision analysis for decision support and the participatory development and assessment of a set of adaptation options. In Chapter 10 Ahonen, Valjus and Tiilikainen explain how geological investigations can help to open up the discussion on climate change adaptation on a broader scale. It starts with a thorough geological investigation of the ridge (esker) and popular housing area that separates the two lakes Näsjöväri and Pyhäjärvi in Tampere, Finland. It then describes the most important impacts of climate change to be expected in the investigated area and points out further issues that should be addressed in municipal planning.
Chapter 11 on water supply in the municipality of Hanko, Finland (Luoma, Klein and Backman) describes how potential climate change impacts on water supply can be assessed with the help of groundwater flow models and how they can provide supporting information for groundwater management. Also, Chapter 12 on groundwater availability in Klaipėda, Lithuania (Arustienė, Gregorauskas, Kriukaitė and Satkūnas) describes the assessment of changing climate conditions on groundwater availability, but also addresses groundwater as an important resource for drinking water in Europe. In Chapter 13 Klamt and Schernewski explore the potential for commercial mussel farming in the southern Baltic with the Blue mussel and the Zebra mussel as two suitable species. Mussel farming is not only seen as an economic potential thanks to higher temperatures and less sea ice in winter, but also as an effective measure to reduce eutrophication in the Baltic Sea.

Sea level rise and changes in flood patterns concern not only urban development but are expected to affect the entire coastal zone. These potential changes are assessed by Petersell, Suuroja, All and Shtokalenko (Chapter 14) for the west Estonian coast. They also investigate potential consequences for groundwater quality, loss of forest and arable land and costs for built-up areas. In Chapter 15 Satkūnas, Jarmalavičius, Damušytė and Žilinskas investigate the geomorphological conditions for Karkle beach in Lithuania, potential consequences of climate change and the indirect effects on long-term plans and investments for tourism in this area. Interestingly, not only can the state of the coastal zone, but also the water conditions in the Baltic Sea have effects on the tourism development in the Baltic Sea Region. Mossbauer, Dahlke, Friedland and Schernewski (Chapter 16) model the potential effects of climate change and the Baltic Sea Action Plan on the growth and development on macroalgae accumulations along the German shore and outline the implications for the maintenance of beaches. Two chapters in this book deal specifically with tourism and climate change. Filies and Schumacher (Chapter 17) identify a wide range of direct, indirect and induced impacts of climate change on tourism at the German Baltic Sea coast. Based on their results they challenge the view that the tourism sector could benefit from climate change thanks to higher temperatures and changes in precipitation. Additionally, they compare tourism experts’ views on adaptation with adaptation requirements suggested by science. Since tourism also depends highly on the satisfaction of the customers (tourists) it seems to be consequent to take tourists’ perceptions and opinions into account in strategic planning. In Chapter 18 Donges, Haller and Schernewski show that visitor questionnaires can provide valuable input for short-term decisions and planning, but have restricted benefits for long-term strategies for climate change adaptation.

The outreach section of this book sets off with Chapter 19 in which Olcina analyses recent modifications to Spain’s national, regional and local planning regulation to mitigate the impacts of natural hazards. Meanwhile these policies mainly focus on current hazard patterns; initiatives already go further in order to respect potential climate change impacts too.

In Chapter 20 Sano, Prabhakar, Kartikasari and Irawan describe in detail how Indonesia’s agricultural sector is planning to adapt to climate changes in order to safeguard food security. Besides the largely positive activities the chapter also explains the difficulties of applying and implementing climate change adaptation on the local level.

In Chapter 21 Saroar and Routray analyse the often-predicted climate change induced mass emigration scenarios at the grass root level. Vulnerability reductions to hinder prospected emigration patterns are explored.

Prabhakar, Rao, Fukuda and Hayashi (Chapter 22) study risk insurances in the Asia-Pacific region. Focusing on India and Japan they identify a set of potential short-comings in the currently available insurance schemes. These include the affordability of insurance premiums, the access to risk insurances for individuals and the availability of information about risks. They suggest the UNFCCC as a suitable platform to enhance risk insurance as a means of risk reduction and climate change adaptation.

Acknowledgements

The European Regional Development Fund’s (ERDF) Baltic Sea Region Programme 2007–2013 part-financed the BaltCICA project and the publication of this book. The International Union of Geological Sciences’ Commission on GeoEnvironment (IUGS/GEM)
Climate Change Adaptation in Practice

part-financed activities to seek for potential case studies of the outreach chapter. Professor Joy Pereira from the South East Asia Disaster Prevention Institute (SEADPRI) strongly supported the book by identifying and contacting authors for the outreach chapter. The editors would also like to thank the numerous reviewers of each article for their constructive comments.

References

HSY (Helsinki Region Environmental Services Authority), 2012. *Helsinki Metropolitan Area Adaptation to climate change strategy*. Helsinki: HSY.

2.1 Introduction

The municipality of Kalundborg is situated on the west corner shoreline of Zealand, Denmark. Like many municipalities along the Danish coast, they have only recently started to consider the need to develop adaptation strategies. Municipalities on the west coast of Jutland are used to dealing with storm surges from the North Sea, but coastal areas in the rest of Denmark are better protected from such surges and have dealt with them on a much less regular basis. A change is anticipated.

The municipality of Kalundborg joined the BaltCICA project because their representative in Brussels became aware of the opportunity and because the project could contribute to the increased knowledge of and experience of local climate adaptation in the municipality. Had they not joined, it is safe to conclude that the attention to climate change adaptation among citizens, stakeholders and politicians in the municipality would have been less conspicuous. While Denmark has adopted a national strategy for climate change adaptation, this strategy does not impose any obligation on municipalities to make their own strategies, nor does it provide municipalities with much information on how to proceed with such strategies.\(^1\)

Any obligation would have been met by municipalities with claims of financial support from the Danish state, which has so far been very limited.

Thus, while the municipality of Kalundborg considered making a climate adaptation strategy before joining BaltCICA, they did not plan to make it a very detailed one, and they joined BaltCICA with the purpose of taking a close look at an area located in the south-western part of the municipality. Flooding is already an issue in this area, as it occasionally affects farmers and summer cottage owners. BaltCICA was considered to be one of several ways to gain the required knowledge to draw up a climate adaptation strategy for that particular area, and possibly to provide inspiration for such a strategy covering the entire municipality.

The case study area was selected in cooperation with the Danish Board of Technology (DBT) and the Geological Survey of Denmark and Greenland (GEUS), the two other Danish BaltCICA partners. GEUS became part of the Danish team in order to provide geological data, whereas DBT specializes in the involvement of stakeholders and citizens in political decision-making processes with regards to technological and scientific issues such as energy, biotech, healthcare, IT, biodiversity and climate change (Vig & Paschen, 2000; DBT, 2012). The case study area was adaptation strategy within the next two years. At the time of writing this chapter, it was still not decided how detailed such strategies should be.

\(^1\)This situation changed somewhat, when a new centre-left government won the general election of September 2011. The new minister for the Environment announced in the autumn 2011 that all municipalities should make a climate adaptation strategy within the next two years. At the time of writing this chapter, it was still not decided how detailed such strategies should be.
selected, in order to address future problems with flooding caused by storm surges and heavy precipitation. Moreover, it was selected in order to include different and potentially conflicting interests from local inhabitants and stakeholders. The intention was to make a climate adaptation strategy for the area, and at the outset of the project it was decided that DBT would assist the municipality in these efforts by organizing both a scenario workshop and a citizen summit. While the municipality had some preliminary understanding of how these methods work, they later got somewhat surprised by the strain they put on their decision-makers and civil servants.

This chapter presents the implementation of a participatory climate change adaptation process. It focuses on practical issues and experiences in the case study of Kalundborg. For further reading related to the broad scientific and theoretical discussion on citizen participation the literature mentioned in this chapter can serve as a starting point.

2.2 Climate data

Solid facts are not abundant in climate change research, and relating to them in a planning perspective involves a number of both practical and political choices.

At the outset of BaltCICA, GEUS made a series of calculations of the expected sea level, storm surges and precipitation patterns in 2090. This year was chosen both because of the availability of climate model figures and because the main interest of the municipality was a long-term planning horizon. The starting point for the calculations was the A2 scenario developed by the Intergovernmental Panel on Climate Change (IPCC, 2000). The A2 scenario is the most pessimistic of the two development scenarios recommended by the Danish government for planning purposes. At that time, though, new research on the ablation of the ice cap on Greenland was emerging with estimates of sea level rise between 90 cm and, worst case scenario, up to two meters for A2 (DMI, 2009). Although those estimates were subject to a great deal of uncertainty, the Danish partners agreed to choose what we considered a conservative estimate of 80 cm sea level rise in 2090.

On this basis, the municipality itself made some modelling, using advanced 3D software. This led to the production of maps, showing potential consequences of storm surges in the future, partly in combination with incidents of heavy precipitation.

Rather than working with different IPCC scenarios, the Danish partners agreed that it would be better to work only with the one chosen. One might argue that by doing so, the uncertainty of future developments reflected by the different IPCC scenarios was downplayed. The counter argument was that for practical purposes it would be too difficult to relate to multiple scenarios in the decision-making process, and that uncertainties would be a prominent fact, regardless of how many climate scenarios were addressed. Thus, throughout the study, the uncertainties were highlighted while maintaining a combination of the A2 scenario and the latest research on the expected sea level rise.

2.3 The case study area

The case study area around Reersø and Tissø is an exemplarily Danish rural area, and there are many more like it along the Danish coastline. It is dominated by farmland and to a lesser extent by protected nature areas, scattered settlements and summer cottage areas. It is inhabited by approximately 12,000 residents (out of which 321 live all year round in their summer cottages), including 6839 in the hamlets of Gørlev and Høng, two areas that are not, however, expected to be seriously affected by future floods.

The summer cottages in the low-lying areas by Ornum Strand, Bjerre Sydstrand, Bjerre Nordstrand and on the peninsula of Reersø are expected to get most seriously affected by future floods. Altogether, there are 3036 summer cottages in the area. Equally exposed are some permanent residences, large farmland areas and internationally protected nature areas with meadows, bogs, streams and lakes. The area around Flasken and Vejlen is particularly vulnerable.

2Encom Discover 3D – extension module for MapInfo.
at the mouth of the stream called Nedre Halleby Å, currently almost unregulated and with a delta and lagoon-like character.

The infrastructure in the area holds public roads, sewage systems, electrical supply, water supply and drainage. It holds groundwater supplies for drinking water and fresh water from Tissø Lake (the source of Nedre Halleby Å) is used for industrial purposes in Kalundborg. The area is somewhat important for tourism in the municipality of Kalundborg and includes several locations of interest with regards to cultural heritage. A large part of the rain falling on the middle and western parts of Zealand flows through this area before reaching the sea.

The map above shows how the case study area is foreseen to be affected in 2090 (Figure 2.1). In particular, residences in the town of Reersø and summer cottages on the peninsula of Reersø, Ornum Strand, Bjerre Nordstrand and Bjerre Sydstrand are exposed to future floods. In a situation of flooding from the sea combined with heavy precipitation, low-lying summer cottages at Bjerre Sydstrand will be particularly exposed, because rain water from a large catchment area in the hinterland will flow in that direction and meet salt water from the flooding. This scenario is not pictured on the map below, though. The accumulated cost of damages to private properties by 2090 is estimated by a private consultancy, NIRAS.
to be approximately 242 million Euro (Municipality of Kalundborg, 2011).

2.4 Methods in general – the entire process

DBT was among the first organisations in Denmark to initiate a public and political debate on climate change adaptation.3 One of the early lessons learned was that decisions with regards to spatial planning in future flood-prone areas are often of a political nature, although they may seem only technical in nature to the people making them. Protecting an area from flooding may benefit landowners, but may not be sustainable from a societal perspective in the long run. Thus, small decisions about the introduction of protective measures increase expectations and demands for future decisions about additional protective measures and exclude a democratic debate on alternative possible futures, for example on whether one should continue protecting current land use or let nature take its course. The methods chosen for the decision-making process in Kalundborg were designed to stimulate such democratic debate.

Two specific methods were chosen in combination in order to build up a deliberative decision-making process: A scenario workshop and a citizen summit. The scenario workshop was designed to involve local stakeholders in the development of different possible future land uses and adaptation measures. The scenario workshop method was first developed in the early 1990s to find ways of developing urban ecology (Andersen & Jæger, 1999). The citizen summit was designed to consult ordinary citizens about their views on the abovementioned possible futures, adaptation measures and principles for an adaptation strategy. The methodology was developed by America Speaks around the year 2000 and has been used and moderated by the DBT since 2005 (DBT, 2006). The idea was that while the scenario workshop involved stakeholders from the case study area, the citizen summit should involve citizens from the entire municipality. The rationale for this combination of approaches was partly that, although local stakeholders could contribute with local knowledge and innovative solutions, they may have a tendency to look for (costly) protective solutions, whereas citizens with no personal stake in the case study area may give higher priority to other adaptation options. As the project developed, it was decided that the citizen summit should also address adaptation options in other parts of the municipality, thus allowing citizens to compare and prioritize adaptation options in different parts of the municipality.

Throughout 2009, the climate modelling was made and the scenario workshop took place in autumn 2009. In 2010, the adaptation options developed at the scenario workshop were further elaborated by DBT and Kalundborg. Through dialogue with the administration and the politicians, adaptation options for other parts of the municipality vulnerable to future flooding (including the city of Kalundborg) were developed, and alternative (sometimes conflicting) guidelines for an adaptation strategy were identified. In March 2011, a citizen summit with 350 participants took place, in which citizens deliberated and voted for general adaptation guidelines and for different adaptation options for both the case study area (developed by the scenario workshop) and for other parts of the municipality. In 2011, the results were analysed, debated by the politicians, and the administration started drafting up an adaptation strategy, based partly on the results from the citizen summit, partly on further assessments of climate impacts in the municipality, and partly on fairly general guidelines from government agencies and ministries. The whole decision-making process is illustrated in Figure 2.2. The following part of the chapter describes the different project phases and the methodological approach in more detail.

3Read more about DBT climate change adaptation scenario workshops in 2003 at http://www.tekno.dk/subpage.php?article=1089&toppic=kategori11&language=uk
2.5 Scenario workshop – in detail

Scenario workshops ensure a participatory involvement at a very early stage of the development of concrete adaptation measures, thus increasing the likelihood of their implementation by the stakeholders involved, although such results cannot be guaranteed no matter how well the involvement is organized. They require a limited amount of technical data and can set the stage for the subsequent development of concrete adaptation options. They can do so by developing more general developmental visions for the local society, and by identifying more concrete technical issues and conflicts of interest that need to be dealt with.

Preparations for the scenario workshop in the case study area commenced four to six months prior to the workshop and included two main tasks besides the practical preparations:

1. Development of future scenarios to raise awareness and to provoke creativity at the workshop.
2. Identification of local stakeholders to participate in the workshop.

2.5.1 Development of scenarios

The starting point of the scenarios was the preparation of maps pointing out the effects of severe floods and other climate change impacts in 2090. As described above, it involves a number of practical and political choices to choose data, but making the maps also requires a significant amount of local knowledge; for example, knowing the precise height of various infrastructural constructions (roads, sluices, dykes, etc.).

After the maps had been created, the consequences for the local community became clearer, and preparations of the scenarios, to be presented to the stakeholders at the scenario workshop, began. These preparations involved telephone interviews with local stakeholders who would presumably be affected by future floods, and they involved extensive discussions among the Danish BaltCICA partners. Local stakeholders had knowledge about previous flood events and the possible effects of future flooding, and they had experience in and ideas of how to meet the challenge. This knowledge was used to develop the scenarios (DBT, 2009).

The scenarios used at the scenario workshop are short (two to four pages each) and explain in a journalistic style the effects of having chosen different strategies to deal with future flooding. They are science fiction made to provoke debate among stakeholders and, thus serve as a starting point for the development of adaptation options at the scenario workshop. Thus, the word ‘scenario’ is used rather differently for this method, than it is in climate modelling and foresight studies.

The scenarios were written by a science journalist who took part in the research among local stakeholders. It was eventually decided to develop three future scenarios:

1. A basic scenario or ‘laissez-faire’ scenario based on the assumption that it is not desirable to do anything special in advance to alleviate the impact of future climate changes, beyond what is within immediate economic reach. Initiatives will be taken ad hoc.
2. A so-called ‘protection scenario’ based on an attempt to protect current land uses as much as possible, including residential areas, infrastructure, commerce and agriculture, against the consequences of future climate changes. Initiatives will be launched in order to protect existing economic interests, even if this has negative consequences for the environment and nature.
3. A so-called ‘adaptation scenario’ based on the need to adapt to future climate changes rather than fight against them. Current land uses, such as farming practices, will be re-evaluated and adjusted to the changing environment, and more space will be allocated to wetlands. The scenario also assumes that much consideration will be given to environment and nature.

Each of the three scenarios is an attempt to describe the pros and cons of the different adaptation options involved as well as the possible effect of these options on the local stakeholders and community at large. Approximately three weeks prior to the workshop, the scenarios were sent to the participating stakeholders.

2.5.2 Identification of stakeholders

While researching for the development of the scenarios, a simultaneous research was carried out to identify potential participants in the scenario workshop. Participants should be local stakeholders with an interest likely to be affected by climate change and with a position in the local community investing them with
the power required to push for the implementation of adaptation measures, if needed. Thus, a ‘stakeholder’ can be more narrowly or broadly defined depending on what one would define as a relevant stake in the future development of the area in question. The DBT are strong advocates of a rather broad and inclusive definition, for both practical and principled reasons (Bedsted, 2007).

The key to a successful involvement process is to consider carefully, when and how to involve who and to communicate precisely and up front about, what kind of influence those involved will have on the decision-making process. Eventually, 28 participants were invited to participate in the scenario workshop, including local politicians, local and regional officials (technicians, civil servants), farmers and representatives from home owners’ associations, nature and environmental organizations, outdoor organizations, harbour authorities, youth (from secondary school), the tourist and business committee, the water supply sector, dyke and pump associations and the archaeological society. They all received written invitations and were contacted by telephone in order to explain to them the kind of process they were invited to take part in. Only a few declined, and if so, pointed to a more relevant participant. Great care was taken both before and during the workshop to explain to the participants what their input would be used for in the decision-making process. They were told explicitly that they would have no privileged say in the future decision-making process, but that most of their suggestions for adaptation measures would be discussed at a citizen summit.

2.5.3 The scenario workshop programme
The scenario workshop took place over two days with three weeks in between in the autumn of 2009. The working method alternated between group work and plenaries. The programme was structured around three consecutive phases: the Critical analysis phase, the Visionary phase and the Implementation phase. Groups of four to six participants were brought together representing different and presumably conflicting interests. One could also choose to make the groups including members with similar, rather than conflicting interests. One could also choose to alternate between these two group constructions throughout the workshop. There are many pros and cons of each procedure, the description of which exceeds the limits of this article.

The scenario workshop form and rules are there to ensure that everyone is heard, that all ideas are included in the debate and that participants work towards formulating an action plan.

- **Critical analysis phase** (day 1)

 The task of the critical analysis phase is to criticize the scenarios – to provide both positive and negative criticism based on the views, knowledge and experiences of the participants. The scenarios represent different possible futures. They are not predictions, and the task does not involve choosing the preferred scenario or assessing which is the most probable. The scenarios are there to inspire criticism, which can lead to the development of new visions and adaptation measures.

- **Visionary phase** (day 1)

 Using the knowledge gained from the critical analysis phase, the purpose of the visionary phase was to have the groups develop their own visions for the future. Participants could include elements of the pre-constructed future scenarios and make up their own. Groups were allowed to come up with more than one vision for the future.

 In the time span of three weeks in between day one and day two, the results of the first workshop day were analysed and the visions developed in the different groups merged into four different visions. These four visions were sent to the participants prior to day two, and they were invited to state in advance which of the visions they would prefer to elaborate on during the second day of the workshop. Day two started with corrections and acceptance of the merged visions.

- **Implementation phase** (day 2)

 The purpose of the implementation phase was an action plan for the implementation of each of the four visions. Taking into consideration how to implement a vision in real life, a number of barriers became apparent. These barriers may be economic, cultural, social, organizational, political or technical (for a discussion of barriers specific to climate change adaptation see, for example, Adger et al., 2009). Dealing with these barriers may lead to adjustments of the vision to be elaborated on. The action plans were drawn out along a timeline displaying who was responsible for what.