Related Titles

Thomas, S., Joseph, K., Malhotra, S. K., Goda, K., Sreekala, M. S. (eds.)
Polymers Composites
Series: Polymer Composites
Volume 1
2012
ISBN: 978-3-527-32624-2

Volume 3
2014
ISBN: 978-3-527-32980-9

3 Volume Set
2014
ISBN: 978-3-527-32985-4

Thomas, S., Durand, D., Chassenieux, C., Jyotishkumar, P. (eds.)
Handbook of Biopolymer-Based Materials
From Blends and Composites to Gels and Complex Networks
2 Volumes
2013
ISBN: 978-3-527-32884-0

Decher, G., Schlenoff, J. (eds.)
Multilayer Thin Films
Sequential Assembly of Nanocomposite Materials
Second, completely revised and enlarged edition
2012
ISBN: 978-3-527-31648-9

Kumar, C. S. S. R. (ed.)
Nanocomposites
Series: Nanomaterials for the Life Sciences (Volume 8)
2010
ISBN: 978-3-527-32168-1

Thomas, S., Stephen, R.
Rubber Nanocomposites
Preparation, Properties and Applications
2010

Mittal, V. (ed.)
Optimization of Polymer Nanocomposite Properties
2010
ISBN: 978-3-527-32521-4

Mittal, V. (ed.)
In-situ Synthesis of Polymer Nanocomposites
Series: Polymer Nano-, Micro- and Macrocomposites (Volume 2)
2011
ISBN: 978-3-527-32879-6

Mittal, V. (ed.)
Characterization Techniques for Polymer Nanocomposites
Series: Polymer Nano-, Micro- and Macrocomposites (Volume 3)
2012
ISBN: 978-3-527-33148-2

Mittal, V. (ed.)
Modeling and Prediction of Polymer Nanocomposite Properties
Series: Polymer Nano-, Micro- and Macrocomposites (Volume 4)
2013
ISBN: 978-3-527-33150-5
Contents

The Editors XIII
List of Contributors XV

1 State of the Art – Nanomechanics 1
Amrita Saritha, Sant Kumar Malhotra, Sabu Thomas, Kuruvilla Joseph, Koichi Goda, and Meyyarappallil Sadasivan Sreekala
1.1 Introduction 1
1.2 Nanoplatelet-Reinforced Composites 3
1.3 Exfoliation–Adsorption 4
1.4 In Situ Intercalative Polymerization Method 5
1.5 Melt Intercalation 6
1.6 Nanofiber-Reinforced Composites 7
1.7 Characterization of Polymer Nanocomposites 7
1.8 Recent Advances in Polymer Nanocomposites 8
1.9 Future Outlook 9
References 9

2 Synthesis, Surface Modification, and Characterization of Nanoparticles 13
Liaosha Wang, Jianhua Li, Ruoyu Hong, and Hongzhong Li
2.1 Introduction 13
2.2 Synthesis and Modification of Nanoparticles 13
2.2.1 Synthesis of Nanoparticles 13
2.2.2 Synthesis of Titania Nanoparticles 14
2.2.3 Microwave Synthesis of Magnetic Fe₃O₄ Nanoparticles 15
2.2.4 Magnetic Field Synthesis of Fe₃O₄ Nanoparticles 15
2.2.5 Synthesis of Fe₃O₄ Nanoparticles without Inert Gas Protection 16
2.2.6 Synthesis of ZnO Nanoparticles by Two Different Methods 16
2.2.7 Synthesis of Silica Powders by Pressured Carbonation 17
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.8 MW-Assisted Synthesis of Bisubstituted Yttrium Garnet Nanoparticles</td>
<td>18</td>
</tr>
<tr>
<td>2.2.9 Molten Salt Synthesis of Bisubstituted Yttrium Garnet Nanoparticles</td>
<td>18</td>
</tr>
<tr>
<td>2.3 Modification of Nanoparticles</td>
<td>19</td>
</tr>
<tr>
<td>2.3.1 Surface Modification of ZnO Nanoparticles</td>
<td>20</td>
</tr>
<tr>
<td>2.3.2 Surface Modification of Fe₃O₄ Nanoparticles</td>
<td>20</td>
</tr>
<tr>
<td>2.3.3 Surface Modification of Silica Nanoparticles</td>
<td>23</td>
</tr>
<tr>
<td>2.4 Preparation and Characterization of Polymer–Inorganic Nanocomposites</td>
<td>23</td>
</tr>
<tr>
<td>2.4.1 Nanopolymer Matrix Composites</td>
<td>23</td>
</tr>
<tr>
<td>2.5 Preparation of Polymer–Inorganic Nanocomposites</td>
<td>26</td>
</tr>
<tr>
<td>2.5.1 Sol–Gel Processing</td>
<td>26</td>
</tr>
<tr>
<td>2.5.2 In Situ Polymerization</td>
<td>27</td>
</tr>
<tr>
<td>2.5.3 Particle In Situ Formation</td>
<td>27</td>
</tr>
<tr>
<td>2.5.4 Blending</td>
<td>28</td>
</tr>
<tr>
<td>2.5.4.1 Solution Blending</td>
<td>28</td>
</tr>
<tr>
<td>2.5.4.2 Emulsion or Suspension Blending</td>
<td>30</td>
</tr>
<tr>
<td>2.5.4.3 Melt Blending</td>
<td>31</td>
</tr>
<tr>
<td>2.5.4.4 Mechanical Grinding/Blending</td>
<td>31</td>
</tr>
<tr>
<td>2.5.5 Others</td>
<td>31</td>
</tr>
<tr>
<td>2.6 Characterization of Polymer–Inorganic Nanocomposites</td>
<td>32</td>
</tr>
<tr>
<td>2.6.1 X-Ray Diffraction</td>
<td>32</td>
</tr>
<tr>
<td>2.6.2 Infrared Spectroscopy</td>
<td>33</td>
</tr>
<tr>
<td>2.6.3 Mechanical Property Test</td>
<td>34</td>
</tr>
<tr>
<td>2.6.4 Abrasion Resistance Test</td>
<td>35</td>
</tr>
<tr>
<td>2.6.5 Impact Strength</td>
<td>36</td>
</tr>
<tr>
<td>2.6.6 Flexural Test</td>
<td>37</td>
</tr>
<tr>
<td>2.6.7 Others</td>
<td>38</td>
</tr>
<tr>
<td>2.7 Applications of Polymer–Inorganic Nanocomposites</td>
<td>39</td>
</tr>
<tr>
<td>2.7.1 Applications of Bi-YIG Films and Bi-YIG Nanoparticle-Doped PMMA</td>
<td>39</td>
</tr>
<tr>
<td>2.7.1.1 Magneto-Optical Isolator</td>
<td>40</td>
</tr>
<tr>
<td>2.7.1.2 Magneto-Optical Sensor</td>
<td>41</td>
</tr>
<tr>
<td>2.7.1.3 Tuned Filter</td>
<td>42</td>
</tr>
<tr>
<td>2.7.1.4 Magneto-Optical Recorder</td>
<td>42</td>
</tr>
<tr>
<td>2.7.1.5 Magneto-Optic Modulator</td>
<td>43</td>
</tr>
<tr>
<td>2.7.1.6 Magneto-Optic Switch</td>
<td>44</td>
</tr>
<tr>
<td>2.8 Application of Magnetic Fe₃O₄-Based Nanocomposites</td>
<td>44</td>
</tr>
<tr>
<td>2.9 Applications of ZnO-Based Nanocomposites</td>
<td>46</td>
</tr>
<tr>
<td>2.9.1 Gas Sensing Materials</td>
<td>46</td>
</tr>
<tr>
<td>2.9.2 Photocatalyst for Degradation of Organic Dye</td>
<td>46</td>
</tr>
<tr>
<td>2.9.3 Benard Convection Resin Lacquer Coating</td>
<td>47</td>
</tr>
<tr>
<td>2.10 Applications of Magnetic Fluid</td>
<td>48</td>
</tr>
<tr>
<td>References</td>
<td>49</td>
</tr>
</tbody>
</table>
Table of Contents

4.4 Light Scattering

References 99

5 Mechanical–Viscoelastic Characterization in Nanocomposites

Vera Realinho, Marcelo Antunes, David Arencón, and José I. Velasco

5.1 Introduction 117
5.2 Factors Affecting the Mechanical Behavior of Nanocomposites 118
 5.2.1 Influence of the Filler’s Aspect Ratio and Dispersion 118
 5.2.2 Influence of the Filler–Matrix Interphase 120
5.3 Micromechanical Models for Nanocomposites 121
 5.3.1 Basic Assumptions and Preliminary Concepts 122
 5.3.1.1 Continuum Models 122
 5.3.1.2 Equivalent Continuum Model and Self-Similar Model 123
 5.3.1.3 Finite Element Modeling 123
 5.3.2 Micromechanical Nanocomposites Modeling 125
5.4 Mechanical Characterization of Nanocomposites under Static Loading 127
 5.4.1 Polymer-Layered Silicate Nanocomposites 127
 5.4.2 Polymer–CNT Nanocomposites 129
 5.4.3 Particulate Polymer Nanocomposites 130
5.5 Characterization by Dynamic Mechanical Thermal Analysis 131
5.6 Mechanical Characterization by Means of Indentation Techniques 133
5.7 Fracture Toughness Characterization of Nanocomposites 135
5.8 Conclusions 139

References 140

6 Characterization of Nanocomposites by Optical Analysis

Lucilene Betega de Paiva and Ana Rita Morales

6.1 Introduction 147
6.2 Influence of Nanoparticles on the Visual Aspect of Nanocomposites 148
6.3 Characterization of Appearance 151
 6.3.1 Gloss 152
 6.3.2 Haze 153
 6.3.3 Color 154
6.4 Characterization by UV–Visible Spectrophotometry 156
6.5 Characterization by Optical Microscopy 158

References 160

7 Characterization of Mechanical and Electrical Properties of Nanocomposites

Iren E. Kuznetsova, Boris D. Zaitsev, and Alexander M. Shikhabudinov

7.1 Introduction 163
7.2 The Influence of the Molding Temperature on the Density of the Nanocomposite Samples Based on the Low-Density Polyethylene 164
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Experimental Study of the Temperature Dependence of the Permittivity of the Nanocomposite Materials</td>
<td>168</td>
</tr>
<tr>
<td>7.4</td>
<td>Elastic and Viscous Properties of the Nanocomposite Films Based on the Low-Density Polyethylene Matrix</td>
<td>172</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Technology of Producing the Nanocomposite Polymeric Films</td>
<td>172</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Determination of the Coefficients of Elasticity and Viscosity of Nanocomposite Polymeric Films</td>
<td>173</td>
</tr>
<tr>
<td>7.5</td>
<td>Effect of the Nanoparticle Material Density on the Acoustic Parameters of Nanocomposites Based on the Low-Density Polyethylene</td>
<td>179</td>
</tr>
<tr>
<td>7.6</td>
<td>Conclusions</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>183</td>
</tr>
<tr>
<td>8</td>
<td>Barrier Properties of Nanocomposites</td>
<td>185</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>185</td>
</tr>
<tr>
<td>8.2</td>
<td>Nanocomposites from Ceramic Oxides</td>
<td>186</td>
</tr>
<tr>
<td>8.3</td>
<td>Nanocomposites from Nanotubes</td>
<td>186</td>
</tr>
<tr>
<td>8.4</td>
<td>Layered Silicate Nanocomposites</td>
<td>187</td>
</tr>
<tr>
<td>8.5</td>
<td>Composite Models of Permeation</td>
<td>191</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Nielsen Model</td>
<td>191</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Bharadwaj Model</td>
<td>191</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Fredrickson and Bicerano Model</td>
<td>192</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Cussler Model</td>
<td>193</td>
</tr>
<tr>
<td>8.5.5</td>
<td>Gusev and Lusti Model</td>
<td>193</td>
</tr>
<tr>
<td>8.6</td>
<td>Techniques Used to Study the Permeability of Polymers and Nanocomposites</td>
<td>195</td>
</tr>
<tr>
<td>8.7</td>
<td>Calculation of Breakthrough Time</td>
<td>196</td>
</tr>
<tr>
<td>8.8</td>
<td>Applications</td>
<td>197</td>
</tr>
<tr>
<td>8.9</td>
<td>Conclusions</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>198</td>
</tr>
<tr>
<td>9</td>
<td>Polymer Nanocomposites Characterized by Thermal Analysis Techniques</td>
<td>201</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>201</td>
</tr>
<tr>
<td>9.2</td>
<td>Thermal Analysis Methods</td>
<td>202</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Differential Scanning Calorimetry</td>
<td>202</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Thermogravimetric Analysis</td>
<td>209</td>
</tr>
<tr>
<td>9.3</td>
<td>Dynamic Mechanical Thermal Analysis</td>
<td>211</td>
</tr>
<tr>
<td>9.4</td>
<td>Thermal Mechanical Analysis</td>
<td>214</td>
</tr>
<tr>
<td>9.5</td>
<td>Conclusions</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>215</td>
</tr>
</tbody>
</table>
10 Carbon Nanotube-Filled Polymer Composites 219
Dimitrios Tasis and Kostas Papagelis

10.1 Introduction 219
10.2 Processing Methods 220
10.2.1 Common Approaches 220
10.3 Novel Approaches 223
10.3.1 CNT-Based Membranes and Networks 223
10.3.2 CNT-Based Fibers 229
10.4 Mechanical Properties of Composite Materials 232
10.5 Basic Theory of Fiber-Reinforced Composite Materials 232
10.6 Stress Transfer Efficiency in Composites 234
10.7 Mechanical Properties: Selected Literature Data 236
10.8 Electrical Properties of Composite Materials 236
10.9 Electrical Properties: Selected Literature Data 240
10.10 CNT–Polymer Composite Applications 243
References 244

11 Applications of Polymer-Based Nanocomposites 249
Thien Phap Nguyen

11.1 Introduction 249
11.2 Preparation of Polymer-Based Nanocomposites 250
11.3 Applications of Nanocomposites 251
11.3.1 Mechanical Properties and Applications 251
11.3.2 Thermal Properties and Applications 253
11.3.3 Electrical Properties and Applications 255
11.3.4 Optical Properties and Applications 257
11.3.4.1 Transmission of Light 257
11.3.4.2 Energy Conversion 259
11.4 Energy Conversion and Storage Capacity and Applications 265
11.5 Biodegradability and Applications 266
11.5.1 Nanocomposites for Medical Applications 266
11.5.2 Nanocomposites for Drug Release Applications 268
11.5.3 Nanocomposites for Food Packaging 268
11.6 Conclusion and Outlook 269
References 270

12 Health Hazards and Recycling and Life Cycle Assessment of Nanomaterials and Their Composites 279
Lucas Reijnders

12.1 Introduction 279
12.2 Health Hazards of Inorganic Nanoparticles 280
12.3 Nanocomposite Life Cycles and Life Cycle Assessment in Practice 281
12.4 Life Cycle Assessment of Nanoparticles and Nanocomposites 284
References 294
12.5 Nanocomposite Life Cycle Management, Including Recycling 285
12.6 Reducing Nanoparticle-Based Health Hazards and Risks Associated with Nanocomposite Life Cycles 289
12.7 Conclusion 291
References 291

Index 295
The Editors

Sabu Thomas is a Professor of Polymer Science and Engineering at Mahatma Gandhi University (India). He is a Fellow of the Royal Society of Chemistry and a Fellow of the New York Academy of Sciences. Thomas has published over 430 papers in peer reviewed journals on polymer composites, membrane separation, polymer blend and alloy, and polymer recycling research and has edited 17 books. He has supervised 60 doctoral students.

Kuruvilla Joseph is a Professor of Chemistry at Indian Institute of Space Science and Technology (India). He has held a number of visiting research fellowships and has published over 50 papers on polymer composites and blends.

S. K. Malhotra is Chief Design Engineer and Head of the Composites Technology Centre at the Indian Institute of Technology, Madras. He has published over 100 journal and proceedings papers on polymer and alumina-zirconia composites.

Koichi Goda is a Professor of Mechanical Engineering at Yamaguchi University. His major scientific fields of interest are reliability and engineering analysis of composite materials and development and evaluation of environmentally friendly and other advanced composite materials.

M. S. Sreekala is an Assistant Professor of Chemistry at Post Graduate Department of Chemistry, SreeSankara College, Kalady (India). She has published over 40 paperson polymer composites (including biodegradable and green composites) in peer reviewed journals and has held a number of Scientific Positions and Research Fellowships including those from the Humboldt Foundation, Germany and Japan Society for Promotion of Science, Japan.
List of Contributors

Marcelo Antunes
Universitat Politècnica de Catalunya (UPC)
Departament de Ciència dels Materials i Enginyeria Metallúrgica
Centre Català del Plàstic
C. Jordi Girona, 31
08034 Barcelona
Spain

David Arencón
Universitat Politècnica de Catalunya (UPC)
Departament de Ciència dels Materials i Enginyeria Metallúrgica
Centre Català del Plàstic
C. Jordi Girona, 31
08034 Barcelona
Spain

Lucilene Betega de Paiva
Institute for Technological Research (IPT)
Laboratory of Chemical Process and Particle Technology
Group for Bionanomanufacturing
Avenida Professor Almeida Prado, 532, Butantã
05508-901, São Paulo, SP
Brazil

Valerio Causin
Università degli Studi di Padova
Dipartimento di Scienze Chimiche
Via Marzolo, 1
35131 Padova
Italy

Carola Esposito Corcione
Università del Salento
Dipartimento di Ingegneria dell’Innovazione
Complesso Ecotekne – edificio “Corpo O”
Via per Monteroni
73100 Lecce
Italy

Marlaenrca Frigione
Università del Salento
Dipartimento di Ingegneria dell’Innovazione
Complesso Ecotekne – edificio “Corpo O”
Via per Monteroni
73100 Lecce
Italy

Koichi Goda
Yamaguchi University
Faculty of Engineering
Tokiwadai 2-16-1
Ube, Yamaguchi 755-8611
Japan
Antonio Greco
Università del Salento
Dipartimento di Ingegneria
dell’Innovazione
Complesso Ecotekne – edificio
“Corpo O”
Via per Monteroni
73100 Lecce
Italy

Ruoyu Hong
Soochow University
College of Chemistry, Chemical
Engineering and Materials Science
Key Laboratory of Organic Synthesis
of Jiangsu Province
Suzhou Industrial Park
Suzhou 215123
Jiangsu
China
and
Kailuan Energy Chemical Co., Ltd.
Coal Chemical R&D Center
Seaport Economic Development
Zone
Tangshan 063611
Hebei
China

Kuruvilla Joseph
Peringattu House
Thellakom
Kottayam 686016
Kerala
India
and
Indian Institute of Space Science and
Technology
Department of Space
Government of India Valiyamala P. O.
Nedumangadu
Thiruvananthapuram
Kerala
India

Iren E. Kuznetsova
Institute of Radio Engineering and
Electronics of RAS
Saratov Branch
Zelyonaya str., 38
Saratov 410019
Russia

Jianhua Li
Kailuan Energy Chemical Co., Ltd.
Coal Chemical R&D Center
Seaport Economic Development
Zone
Tangshan 063611
Hebei
China

Hongzhong Li
Chinese Academy of Sciences
Institute of Process Engineering
State Key Laboratory of Multiphase
Complex Systems
Beijing 100080
China

Alfonso Maffezzoli
Università del Salento
Dipartimento di Ingegneria
dell’Innovazione
Complesso Ecotekne – edificio
“Corpo O”
Via per Monteroni
73100 Lecce
Italy

Sant Kumar Malhotra
Flat-YA, Kings Mead
Srinagar Colony
14/3, South Mada Street
Saidafet, Chennai 60015
Tamil Nadu
India
Ana Rita Morales
School of Chemical Engineering
Department of Materials Engineering and Bioprocess
State University of Campinas - UNICAMP
P.O. Box 6066
Avenida Albert Einstein, 500
13083-852, Campinas, SP
Brazil

Thien Phap Nguyen
Université de Nantes
CNRS
Institut des Matériaux Jean Rouxel
2 rue de la Houssinière
44322 Nantes Cedex 3
France

Kostas Papagelis
University of Patras
Department of Materials Science
26504 Rio Patras
Greece

Vera Realinho
Universitat Politècnica de Catalunya (UPC)
Departament de Ciència dels Materials i Enginyeria Metallúrgica
Centre Català del Plàstic
C. Jordi Girona, 31
08034 Barcelona
Spain

Lucas Reijnders
University of Amsterdam
IBED
Science Park 904
1090 GE Amsterdam
The Netherlands

Amrita Saritha
Amrita Vishwavidyapeetham
University
Amritapuri
Kollam 690525
Kerala
India

Alexander M. Shikhabudinov
Institute of Radio Engineering and Electronics of RAS
Saratov Branch
Zelyonaya str., 38
Saratov 410019
Russia

Meyyarappallil Sadasivan Sreekala
Sree Sankara College
Graduate Department of Chemistry
Sankar Nagar
Mattoor, Ernakulam 683574
Kerala
India

Dimitrios Tasis
University of Patras
Department of Materials Science
26504 Rio Patras
Greece

Sabu Thomas
Mahatma Gandhi University
Centre for Nanoscience and Nanotechnology
Priyadarshini Hills
Kottayam 686560
Kerala
India
José I. Velasco
Universitat Politècnica de Catalunya (UPC)
Departament de Ciència dels Materials i Enginyeria Metallúrgica
Centre Català del Plastic
C. Jordi Girona, 31
08034 Barcelona
Spain

Liaosha Wang
Soochow University
College of Chemistry, Chemical Engineering and Materials Science
Key Laboratory of Organic Synthesis of Jiangsu Province
Suzhou Industrial Park
Suzhou 215123
Jiangsu
China

Aibing Yu
The University of New South Wales
School of Materials Science and Engineering
Sydney
NSW 2052
Australia

Boris D. Zaitsev
Institute of Radio Engineering and Electronics of RAS
Saratov Branch
Zelyonaya str., 38
Saratov 410019
Russia

Qinghua Zeng
University of Western Sydney
School of Engineering
Penrith South DC
NSW 1797
Australia
1 State of the Art – Nanomechanics

Amrita Saritha, Sant Kumar Malhotra, Sabu Thomas, Kuruvilla Joseph, Koichi Goda, and Meyyarappallil Sadasivan Sreekala

1.1 Introduction

Nanomechanics, a branch of nanoscience, focuses on the fundamental mechanical properties of physical systems at the nanometer scale. It has emerged on the crossroads of classical mechanics, solid-state physics, statistical mechanics, materials science, and quantum chemistry. Moreover, it provides a scientific foundation for nanotechnology. Often, it is looked upon as a branch of nanotechnology, that is, an applied area with a focus on the mechanical properties of engineered nanostructures and nanosystems that include nanoparticles, nanopowders, nanowires, nanorods, nanoribbons, nanotubes, including carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs), nanoshells, nanomembranes, nanocoatings, nanocomposites, and so on.

Nanotechnology can be broadly defined as “The creation, processing, characterization, and utilization of materials, devices, and systems with dimensions on the order of 0.1–100 nm, exhibiting novel and significantly enhanced physical, chemical, and biological properties, functions, phenomena, and processes due to their nanoscale size” [1]. Nanobiotechnology, nanosystems, nanoelectronics, and nanostructured materials, especially nanocomposites, are of current interest in nanotechnology. Polymer nanocomposites have gained attention as a means of improving polymer properties and extending their utility by using molecular or nanoscale reinforcements rather than conventional particulate fillers. The transition from microparticles to nanoparticles yields dramatic changes in physical properties.

Recently, the advances in synthesis techniques and the ability to characterize materials on atomic scale have led to a growing interest in nanosized materials. The invention of nylon 6/clay nanocomposites by the Toyota Research Group of Japan heralded a new chapter in the field of polymer composites. Polymer nanocomposites combine these two concepts, that is, composites and nanosized materials. Polymer nanocomposites are materials containing inorganic components that have dimensions in nanometers. In this chapter, the discussion is restricted to polymer
nanocomposites made by dispersing two-dimensional layered nanoclays as well as nanoparticles into polymer matrices. In contrast to the traditional fillers, nanofillers are found to be effective even at as low as 5 wt% loading. Nanosized clays have dramatically higher surface area compared to their macrosized counterparts such as china clay or talc. This allows them to interact effectively with the polymer matrix even at lower concentrations. As a result, polymer–nanoclay composites show significantly higher modulus, thermal stability, and barrier properties without much increase in the specific gravity and sometimes retaining the optical clarity to a great extent. As a result, the composites made by mixing layered nanoclays in polymer matrices are attracting increasing attention commercially. Thus, the understanding of the links between the microstructure, the flow properties of the melt, and the solid-state properties is critical for the successful development of polymer–nanoclay composite products.

Nevertheless, these promising materials exhibit behavior different from conventional composite materials with microscale structure due to the small size of the structural unit and high surface area/volume ratio. Nanoscale science and technology research is progressing with the use of a combination of atomic scale characterization and detailed modeling [2]. In the early 1990s, Toyota Central Research Laboratories in Japan reported work on a nylon 6 nanocomposite [3], for which a very small amount of nanofiller loading resulted in a pronounced improvement in thermal and mechanical properties. Common particle geometries and their respective surface area/volume ratios are shown in Figure 1.1. For the fiber and the layered material, the surface area/volume ratio is dominated, especially for nanomaterials, by the first term in the equation. The second term ($2/l$ and $4/l$) has a very small influence (and is often omitted) compared to the first term. Therefore, logically, a change in particle diameter, layer thickness, or fibrous material diameter from the micrometer to nanometer range will affect the surface area/volume ratio by three orders of magnitude [4]. Typical nanomaterials currently under investigation include

![Figure 1.1 Common particle reinforcements and their respective surface area/volume ratios [4].](image)
nanoparticles, nanotubes, nanofibers, fullerenes, and nanowires. In general, these materials are classified by their geometries; broadly, the three classes are particle, layered, and fibrous materials [4,5]. Carbon black, silica nanoparticles, and polyhedral oligomeric silsesquioxanes (POSS) can be classified as nanoparticle reinforcing agents while nanofibers and carbon nanotubes are examples of fibrous materials [5]. When the filler has a nanometer thickness and a high aspect ratio (30–1000) plate-like structure, it is classified as a layered nanomaterial (such as an organosilicate) [6]. The change of length scales from meters (finished woven composite parts), micrometers (fiber diameter), and submicrometers (fiber/matrix interphase) to nanometers (nanotube diameter) presents tremendous opportunities for innovative approaches in the processing, characterization, and analysis/modeling of this new generation of composite materials. As scientists and engineers seek to make practical materials and devices from nanostructures, a thorough understanding of the material behavior across length scales from the atomistic to macroscopic levels is required. Knowledge of how the nanoscale structure influences the bulk properties will enable design of the nanostructure to create multifunctional composites.

Wang et al. synthesized poly(styrene–maleic anhydride) (PSMA)/TiO$_2$ nanocomposites via the hydrolysis and condensation reactions of multicomponent sol since the PSMA has functional groups that can anchor TiO$_2$ and prevent it from aggregating [7]. Polystyrene or polycarbonate rutile nanocomposites have been synthesized by Nussbaumer et al. [8]. Singh et al. [9] studied the variation in fracture toughness of polyester resin due to the addition of aluminum particles of 20, 3.5, and 100 nm diameter. Results indicate an initial enhancement in fracture toughness followed by decrease at higher particle volume fraction. This phenomenon is attributed to the agglomeration of nanoparticles at higher particle volume content. Lopez et al. [10] examined the elastic modulus and strength of vinyl ester composites after the addition of 1, 2, and 3 wt% of alumina particles of 40 nm, 1 μm, and 3 μm size. For all particle sizes, the composite modulus increases monotonically with particle weight fraction. However, the strengths of composites are all below the strength of neat resin due to nonuniform particle size distribution and particle aggregation. The mechanical behavior of alumina-reinforced poly(methyl methacrylate) (PMMA) composites was studied by Ash et al. [11].

1.2 Nanoplatelet-Reinforced Composites

In the case of layered silicates, the filler is present in the form of sheets one to a few nanometer thick and hundreds to thousands nanometer long. In general, the organically modified silicate nanolayers are referred to as “nanoclays” or “organosilicates” [12]. It is important to know that the physical mixture of a polymer and layered silicate may not form nanocomposites [13]. Pristine-layered silicates usually contain hydrated Na$^+$ or K$^+$ ions [13]. To render layered silicates miscible with other polymer matrices, it is required to convert the normally hydrophilic silicate surface into an organophilic one, which can be carried out by ion-exchange reactions with
cationic surfactants [13]. Sodium montmorillonite (Na-MMT, \(Na_{(Al_{2-x}Mg_x)}\) \((Si_4O_{10})(OH)_{2-n}H_2O\)-type layered silicate clays are available as micron-sized tactoids, which consist of several hundred individual plate-like structures with dimensions of \(1 \mu m \times 1 \mu m \times 1 \text{nm}\). These are held together by electrostatic forces (the gap in between two adjacent particles is \(0.3 \text{nm}\)). The MMT particles, which are not separated, are often referred to as tactoids. The most difficult task is to break down the tactoids to the scale of individual particles in the dispersion process to form true nanocomposites, which has been a critical issue in current research [14,15–24]. Natural flake graphite (NFG) is also composed of layered nanosheets [25], where carbon atoms positioned on the NFG layer are tightened by covalent bonds, while those positioned in adjacent planes are bound by much weaker van der Waals forces. The weak interplanar forces allow for certain atoms, molecules, and ions to intercalate into the interplanar spaces of the graphite. The interplanar spacing is thus increased [25]. As it does not bear any net charge, intercalation of graphite cannot be carried out by ion-exchange reactions in the galleries like layered silicates [25]. The original graphite flakes with a thickness of \(0.4–60 \text{nm}\) may expand up to \(2–20 000 \text{nm}\) in length [26]. These sheets/layers get separated down to \(1 \text{nm}\) thickness, forming high aspect ratio (200–1500) and high modulus (\(~1 \text{TPa}\)) graphite nanosheets. Furthermore, when dispersed in the matrix, the nanosheet exposes an enormous interface surface area (2630 m\(^2\)/g) and plays a key role in the improvement of both the physical and mechanical properties of the resultant nanocomposite [27]. The various preparative techniques for this type of nanocomposites are discussed below.

1.3 Exfoliation–Adsorption

This technique is based on a solvent system in which the polymer or prepolymer is soluble and the silicate layers are swellable. The layered silicates, owing to the weak forces that stack the layers together, can be easily dispersed in an adequate solvent such as water, acetone, chloroform, or toluene. When the polymer and the layered silicate are mixed, the polymer chains intercalate and displace the solvent within the interlayer of the silicate. The solvent is evaporated and the intercalated structure remains. For the overall process, in which polymer is exchanged with the previously intercalated solvent in the gallery, a negative variation in Gibbs free energy is required. The driving force for polymer intercalation into layered silicate from solution is the entropy gained by desorption of solvent molecules, which compensates for the decreased entropy of the intercalated chains. This method is good for the intercalation of polymers with little or no polarity into layered structures and facilitates production of thin films with polymer-oriented clay intercalated layers. The major disadvantage of this technique is the nonavailability of compatible polymer–clay systems. Moreover, this method involves the copious use of organic solvents, which is environmentally unfriendly and economically prohibitive. Biomedical poly(urethane–urea) (PUU)/MMT (MMT modified with
dimethyl ditallow ammonium cation) nanocomposites were prepared by adding OMLS (organically modified layered silicate) suspended in toluene dropwise to the solution of PUU in N,N-dimethylacetamide (DMAC). The mixture was then stirred overnight at room temperature, the solution was degassed, and the films were cast on round glass Petri dishes. The films were air dried for 24 h, and subsequently dried under vacuum at 50 °C for 24 h. Wide-angle X-ray diffraction (WAXD) analysis indicated the formation of intercalated nanocomposites [28]. The effects of heat and pressure on microstructures of isobutylene–isoprene rubber/clay nanocomposites prepared by solution intercalation (S-IIRCNs) were investigated [29]. A comparison of the WAXD patterns of untreated S-IIRCN and nanocomposites prepared by melt intercalation (M-IIRCN) reveals that the basal spacing of the intercalated structures in untreated M-IIRCN (i.e., 5.87 nm) is much larger than that in S-IIRCN (i.e., 3.50 nm), which is likely a result of the different methods of preparation. Tolle and Anderson [30] investigated the sensitivity of exfoliation for processing. They found that both lower temperatures for isothermal curing and higher heating rates for nonisothermal curing cause an inhibition of exfoliated morphology. There are several reports regarding the preparation of nanocomposites using the solvents [31–36]. Kornmann et al. [37] investigated the effect of three different curing agents upon the organoclay exfoliation in the diglycidyl ether of bisphenol A (DGEBA)-based system. In their work, exfoliation of organoclay occurred in cycloaliphatic diamine-cured DGEBA nanocomposites only at higher temperatures. Messermith and Giannelis [38] prepared exfoliated layered silicate epoxy nanocomposites from DGEBA and a nadic methyl anhydride curing agent and found that the dynamic storage modulus improved. The Toyota Research Group has been the first to use this method to produce polyimide (PI) nanocomposites [39,40]. Du et al. [41] prepared expandable polyaniline/graphite nanocomposites by chemical and physical treatments, especially by microwave irradiation. Instead of the usual HNO₃–H₂SO₄ route, they prepared the nanocomposites through the H₂O₂–H₂SO₄ route to avoid the evolution of poisonous NOₓ. Shioyama [42] reported improved exfoliation at weight fractions of graphite below 1 wt% through polymerization with vaporized monomers such as styrene and isoprene. Fukushima and Drazal [43] used O₂ plasma-treated graphite nanoplatelets in an acrylamide/benzene solution. Improved mechanical and electrical properties were achieved using this technique. In the case of graphite, the term “complete exfoliation” has no exact meaning. It does not mean a single layer sheet as in the case of polymer–clay nanocomposites; it may mean a separated graphite flake that is completely delaminated layer by layer.

1.4

In Situ Intercalative Polymerization Method

In this method, the layered silicate is swollen within the liquid monomer or a monomer solution, so the formation cannot occur between the intercalated sheets. Polymerization can be initiated by heat or radiation, by the diffusion of a suitable initiator, or by an organic initiator or catalyst fixed through cation exchange inside
the interlayer before the swelling step. Yao et al. [44] reported the preparation of a novel kind of PU/MMT nanocomposite using a mixture of modified 4,4’-diphenylmethane diisocyanate (MMDI), modified polyether polyl (MPP), and Na-MMT. In a typical synthetic route, a known amount of Na-MMT was first mixed with 100 ml of MPP and then stirred at 50 °C for 72 h. Then, the mixture of MPP and Na-MMT was blended with a known amount of MMDI and stirred for 30 s at 20 °C, and finally cured at 78 °C for 168 h. Wang and Pinnavaia [45] reported the preparation of polyurethane–MMT nanocomposites using this technique. It can be seen that the extent of gallery expansion is mainly determined by the chain length of the gallery onium ions and is independent of the functionality or molecular weight of the polyols and the charge density of the clay. These nanocomposites exhibit an improvement in elasticity, as well as in modulus. In another study, Pinnavaia and Lan [46] reported the preparation of nanocomposites with a rubber/epoxy matrix obtained from DGEBA derivatives cured with a diamine so as to reach subambient glass transition temperatures. It has been shown that depending on the alkyl chain length of modified MMT, an intercalated and partially exfoliated or a totally exfoliated nanocomposite can be obtained.

1.5 Melt Intercalation

Recently, the melt intercalation technique has become the standard for the preparation of polymer nanocomposites. During polymer intercalation from solution, a relatively large number of solvent molecules have to be desorbed from the host to accommodate the incoming polymer chains. The desorbed solvent molecules gain one translational degree of freedom, and the resulting entropic gain compensates for the decrease in conformational entropy of the confined polymer chains. There are many advantages to direct melt intercalation over solution intercalation. Direct melt intercalation is highly specific for the polymer, leading to new hybrids that were previously inaccessible. In addition, the absence of solvent makes the process economically favorable method for industries from a waste perspective. On the other hand, during this process only a slow penetration (transport) of polymer takes place within the confined gallery. Polyamide 66/SEBS-g-MA alloys and their nanocomposites were prepared by melt compounding using a twin-screw extruder. Morphological investigations with different methods show pseudo-one-phase-type morphology for these prepared alloys at all percentages of rubber. Impact and tensile test results showed that rubber-toughened samples exhibit significantly more impact strength and elongation at break compared to virgin polyamide. Samples with 20% of rubber show impact strength about 15 times and elongation at yield several times more than those of virgin polyamide. So, these rubber-modified polyamides can be considered as supertoughened rubber. A general type organoclay at 4 and 8% has been used with rubber-toughened samples to tolerate their modulus and tensile strength. Obtained results show that nanoclay could significantly increase modulus and tensile strength of rubber-modified
polyamide 66 without considerable effects on impact strength. WAXD and scanning electron microscopy (SEM) results show that the polyamide 66 nanocomposites are better exfoliated in the presence of SEBS-g-MA. The reduced modulus and strength of alloys with functional rubber addition were counteracted by incorporation of organoclay without significant negative effects on the impact strength. Comparison of mechanical properties of these rubber-toughened polyamides with virgin polyamides shows an increase of about 1200 and 240% for impact strength and elongation at break, respectively, which is a very interesting result and shows excellent toughening of polyamide 66 with SEBS-g-MA rubber [47].

1.6 Nanofiber-Reinforced Composites

Vapor-grown carbon nanofibers (CNFs) have been used to reinforce a variety of polymers, including polypropylene (PP), polycarbonate, nylon, poly(ether sulfone), poly(ethylene terephthalate), poly(phenylene sulfide), acrylonitrile–butadiene–styrene (ABS), and epoxy. Carbon nanofibers are known to have wide-ranging morphologies, including structures with a disordered bamboo-like structure [48]. Finegan et al. [49,50] have investigated the processing and properties of carbon nanofiber/PP nanocomposites. In their work, they used a variety of as-grown nanofibers. Carbon nanofibers that were produced with longer gas-phase feedstock residence times were less graphitic but adhered better to the PP matrix, with composites showing improved tensile strength and Young’s modulus. Oxidation of the carbon nanofiber was found to increase adhesion to the matrix and increase composite tensile strength, but extended oxidation deteriorated the properties of the fibers and their composites. In their investigation on the nanofiber composite damping properties, Finegan et al. [50] concluded that the trend of stiffness variation with fiber volume content is opposite to the trend of loss factor and damping in the composite is matrix dominated. Ma et al. [51] have spun polymer fibers with carbon nanofibers as reinforcement.

1.7 Characterization of Polymer Nanocomposites

Characterization tools are crucial to comprehend the basic physical and chemical properties of polymer nanocomposites. The commonly used powerful techniques are WAXD, small-angle X-ray scattering (SAXS), SEM, and transmission electron microscopy (TEM). The SEM provides images of surface features associated with a sample. However, there are two other techniques, scanning probe microscopy (SPM) and scanning tunneling microscopy (STM), that are indispensable in nanotube research. The SPM uses the interaction between a sharp tip and a surface to obtain an image. In STM, a sharp conducting tip is held sufficiently close to a surface (typically about 0.5 nm) such that electrons can “tunnel” across the gap. This method provides surface structural and electronic information at atomic level. The
invention of the STM inspired the development of other “scanning probe” microscopes, such as the atomic force microscope (AFM).

Due to its simplicity and availability, WAXD is most commonly used to probe the nanocomposite structure \([52–58]\) and occasionally to study the kinetics of the polymer melt intercalation \([59]\). By monitoring the position, shape, and intensity of the basal reflections from the distributed silicate layers, the nanocomposite structure (intercalated or exfoliated) may be identified. For example, in an exfoliated nanocomposite, the extensive layer separation associated with the delamination of the original silicate layers in the polymer matrix results in the eventual disappearance of any coherent X-ray diffraction from the distributed silicate layers. On the other hand, for intercalated nanocomposites, the finite layer expansion associated with the polymer intercalation results in the appearance of a new basal reflection corresponding to the larger gallery height. Although WAXD offers a convenient method to determine the interlayer spacing of the silicate layers in the original layered silicates and in the intercalated nanocomposites (within 1–4 nm), little can be said about the spatial distribution of the silicate layers or any structural nonhomogeneities in nanocomposites. On the other hand, TEM allows a qualitative understanding of the internal structure, spatial distribution of the various phases, and views of the defect structure through direct visualization. However, special care must be exercised to guarantee a representative cross section of the sample. However, TEM is time intensive and gives only qualitative information on the sample as a whole, while low-angle peaks in WAXD allow quantification of changes in layer spacing.

1.8 Recent Advances in Polymer Nanocomposites

The effects of the coating amount of surfactant and the particle concentration on the impact strength of PP/CaCO\(_3\) nanocomposites were investigated \([60]\). The morphological features and the free volume properties of an acrylic resin/laponite nanocomposite are investigated using X-ray diffraction and positron annihilation lifetime spectroscopy \([61]\). Structure and rheological properties of hybrids with polymer matrix and layered silicates as filler were studied. The peculiarity of this study is that the matrix depending on temperature can form different phase states including liquid crystalline (LC). So, a possibility of coexistence and superposition of different ordered structures can be realized at different temperatures. Three different fillers were used, natural Na-MMT and organoclays obtained by treating MMT with surfactants varying in polarity of their molecules. Depending on the type of clay, materials with different morphologies can be obtained. X-ray data showed that polyethylene glycol (PEG) intercalates all types of clay used whereas penetration of hydroxypropyl cellulose (HPC) macromolecules into clay galleries during mixing does not occur. Clay modified with more polar surfactants should be treated as the most convenient material to be intercalated by PEG \([62]\). With the incorporation of less than 9 wt% nano clay, the dynamic storage modulus above the glass transition region of such a blend increases from 2 to 54 MPa. This tremendous reinforcing as well as the compatibilization effect of the nano clay was understood by
thermodynamically driven preferential framework-like accumulation of exfoliated nanoclay platelets in the phase border of CR and EPDM, as observed, that is, from TEM [63]. A modified method for interconnecting multiwalled carbon nanotubes (MWCNTs) was put forward. Interconnected MWCNTs were obtained by reaction of acyl chloride and amino groups. SEM shows that heterojunctions of MWCNTs with different morphologies were formed. Then specimens of pristine MWCNTs, chemically functionalized MWCNTs, and interconnected MWCNT-reinforced epoxy resin composites were fabricated by cast molding. Tensile properties and fracture surfaces of the specimens were investigated [64]. A model to simulate the conductivity of carbon nanotube/polymer nanocomposites is presented. The proposed model is based on hopping between the fillers. A parameter related to the influence of the matrix in the overall composite conductivity is defined. It is demonstrated that increasing the aspect ratio of the fillers will increase the conductivity. Finally, it is demonstrated that the alignment of the filler rods parallel to the Measurement direction results in higher conductivity values, in agreement with results from recent experimental work done by Silva and coworkers. [65]. Polybutadiene (PB)/allylisobutyl polyhedral oligomeric silsesquioxane (A-POSS) nanocomposites have been prepared by using A-POSS and butadiene (Bd) as comonomers, n-BuLi as initiator, cyclohexane as solvent, and ethyl tetrahydrofurfuryl ether as structure modifier through the anionic polymerization technique. The reaction conditions, the type and content of the modifier and POSS, and so on affecting the copolymerization process and the microstructure of the nanocomposites were also investigated. The results showed that POSS incorporation obviously decreased the rate of polymerization and the molecular weight of the copolymers and increased polydispersity index of the copolymers. The reaction conditions (the reaction time and reaction temperature) had little effect on copolymerization [66].

1.9 Future Outlook

Biodegradable polymer-based nanocomposites have a great deal of future promise for potential applications as high-performance biodegradable materials. Scientists must continue to investigate strategies to optimize the fabrication of nanotube-enabled materials to achieve both improved mechanical and transport properties. The nanoscale of the reinforcement also presents additional challenges in mechanics research since we now must account for interactions at the atomic scale. Ultimately, a basic understanding of the structure–property relations will enable the nanoscale design of multifunctional materials for engineering applications ranging from structural and functional materials to biomaterials and beyond.

References

Aerospace Applications (pp. 1-1 – 1-2). Educational Notes RTO-EN-AVT-129.

