

Ian Moir and Allan Seabridge Design and Development of Aircraft Systems

Second Edition

Aerospace Series Editors Peter Belobaba, Jonathan Cooper,

DESIGN AND DEVELOPMENT OF AIRCRAFT SYSTEMS

Aerospace Series List

Understanding Aerodynamics: Arguing from the Real Physics Introduction to UAV Systems, 4th Edition Theory of Lift: Introductory Computational Aerodynamics with MATLAB and Octave Sense and Avoid in UAS: Research and Applications Morphing Aerospace Vehicles and Structures Gas Turbine Propulsion Systems Basic Helicopter Aerodynamics, 3rd Edition Advanced Control of Aircraft, Spacecraft and Rockets Cooperative Path Planning of Unmanned Aerial Vehicles Principles of Flight for Pilots Air Travel and Health: A Systems Perspective Design and Analysis of Composite Structures: With applications to aerospace Structures Unmanned Aircraft Systems: UAVS Design, Development and Deployment Introduction to Antenna Placement & Installations Principles of Flight Simulation Aircraft Fuel Systems The Global Airline Industry Computational Modelling and Simulation of Aircraft and the Environment: Volume 1 -Platform Kinematics and Synthetic Environment Handbook of Space Technology Aircraft Performance Theory and Practice for Pilots Surrogate Modelling in Engineering Design: A Practical Guide Aircraft Systems, 3rd Edition Introduction to Aircraft Aeroelasticity And Loads Stability and Control of Aircraft Systems Military Avionics Systems Design and Development of Aircraft Systems Aircraft Loading and Structural Layout Aircraft Display Systems **Civil Avionics Systems**

McLean	November 2012
Fahlstrom and Gleason McBain	August 2012 August 2012
Angelov	April 2012
Valasek MacIsaac and Langton Seddon and Newman Tewari	April 2012 July 2011 July 2011 July 2011 July 2011
Tsourdos et al	November 2010
Swatton Seabridge et al Kassapoglou	October 2010 September 2010 September 2010
Austin	April 2010
Macnamara	April 2010
Allerton Langton et al Belobaba Diston	October 2009 May 2009 April 2009 April 2009
Ley, Wittmann Hallmann Swatton	April 2009 August 2008
Forrester, Sobester, Keane	August 2008
Moir & Seabridge Wright & Cooper Langton Moir & Seabridge Moir & Seabridge Howe Jukes Moir & Seabridge	March 2008 December 2007 September 2006 February 2006 June 2004 May 2004 December 2003 December 2002

DESIGN AND DEVELOPMENT OF AIRCRAFT SYSTEMS SECOND EDITION

Ian Moir *Moir Associates*

Allan Seabridge Aerospace Systems Consultant

This edition first published 2013 © 2013 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Moir, I. (Ian)

[Design and development of aircraft systems]

An introduction to aircraft systems design & development / Ian Moir, Allan Seabridge. – Second Edition pages cm

Includes bibliographical references and index.

ISBN 978-1-119-94119-4 (cloth)

1. Airplanes–Design and construction. 2. Aeronautics–Systems engineering. I. Seabridge, A. G. (Allan G.) II. Title.

TL671.2.S39 2013 629.134'1-dc23

2012031458

A catalogue record for this book is available from the British Library and the Library of Congress.

ISBN: 978-1-119-94119-4

Typeset in 10/12pt Times by Aptara Inc., New Delhi, India

Contents

Abo	ut the Au	thors	xiii
Serie	es Preface		XV
Ackı	nowledge	ments	xvi
Glos	sary		xvii
1	Introd	uction	1
1.1	Genera	1	1
1.2	System	s Development	3
1.3	Skills		7
1.4	Overvie	ew	9
	Referen		11
	Further	Reading	11
2	The Ai	rcraft Systems	13
2.1	Introdu	iction	13
2.2	Definit	ions	13
2.3	Everyd	ay Examples of Systems	14
2.4	Aircraf	t Systems of Interest	17
	2.4.1	Airframe Systems	22
	2.4.2	Vehicle Systems	22
	2.4.3	Interface Characteristics of Vehicle Systems	24
	2.4.4	Avionics Systems	25
	2.4.5	Characteristics of Vehicle and Avionics Systems	26
	2.4.6	Mission Systems	26
	2.4.7	Interface Characteristics of Mission Systems	27
2.5	Ground	1 Systems	27
2.6	Generie	c System Definition	28
	Referen	nces	31
	Further Reading		31

3	The De	sign and Development Process	33
3.1	Introduc	ction	33
3.2	Definiti	ons	34
3.3	The Pro	duct Life Cycle	35
3.4	Concep	t Phase	39
	3.4.1	Engineering Process	40
	3.4.2	Engineering Skills	42
3.5	Definiti	on Phase	43
	3.5.1	Engineering Process	43
	3.5.2	Engineering Skills	44
3.6	Design	47	
	3.6.1	Engineering Process	47
	3.6.2	Engineering Skills	48
3.7	Build P	hase	49
	3.7.1	Engineering Process	49
	3.7.2	Engineering Skills	49
3.8	Test Pha	ase	50
	3.8.1	Engineering Process	50
	3.8.2	Engineering Skills	50
3.9	Operate	51	
	3.9.1	Engineering Process	51
	3.9.2	Engineering Skills	52
3.10	Disposal or Retirement Phase		52
	3.10.1	Engineering Process	52
	3.10.2	Engineering Skills	53
3.11	Refurbi	53	
	3.11.1	Engineering Process	53
	3.11.2	Engineering Skills	53
3.12	Whole I	Life Cycle Tasks	54
	Exercise	es	55
	Referen	ces	55
	Further	Reading	56
4	Design	Drivers	57
4.1	Introduc	ction	57
4.2	Design	Drivers in the Business Environment	59
	4.2.1	Customer	59
	4.2.2	Market and Competition	60
	4.2.3	Capacity	61
	4.2.4	Financial Issues	61
	4.2.5	Defence Policy	61
	4.2.6	Leisure and Business Interests	62
	4.2.7	Politics	62
	4.2.8	Technology	63

4.3	Design	Drivers in the Project Environment	63		
	4.3.1	Standards and Regulations	63		
	4.3.2	Availability	64		
	4.3.3	Cost	65		
	4.3.4	Programme	65		
	4.3.5	Performance	65		
	4.3.6	Skills and Resources	66		
	4.3.7	Health, Safety and Environmental Issues	66		
	4.3.8	Risk	67		
4.4	Design	Drivers in the Product Environment	67		
	4.4.1	Functional Performance	67		
	4.4.2	Human/Machine Interface	68		
	4.4.3	Crew and Passengers	68		
	4.4.4	Stores and Cargo	69		
	4.4.5	Structure	69		
	4.4.6	Safety	70		
	4.4.7	Quality	70		
	4.4.8	Environmental Conditions	70		
4.5	Drivers in the Product Operating Environment				
	4.5.1	Heat	71		
	4.5.2	Noise	72		
	4.5.3	RF Radiation	72		
	4.5.4	Solar Energy	73		
	4.5.5	Altitude	73		
	4.5.6	Temperature	74		
	4.5.7	Contaminants/Destructive Substances	74		
	4.5.8	Lightning	75		
	4.5.9	Nuclear, Biological and Chemical	75		
	4.5.10	Vibration	75		
	4.5.11	Shock	76		
4.6	Interfac	es with the Sub-System Environment	76		
	4.6.1	Physical Interfaces	76		
	4.6.2	Power Interfaces	77		
	4.6.3	Data Communication Interfaces	77		
	4.6.4	Input/Output Interfaces	78		
	4.6.5	Status/Discrete Data	78		
4.7	Obsoles	scence	78		
	4.7.1	The Threat of Obsolescence in the Product Life Cycle	79		
	4.7.2	Managing Obsolescence	84		
	Referen	ces	85		
	Further	Reading	85		
5		s Architectures	87		
5.1	Introduc		87 88		
5.2	Definitions				

5.3	System	s Architectures	88
	5.3.1	General Systems	92
	5.3.2	Avionic Systems	92
	5.3.3	Mission Systems	92
	5.3.4	Cabin Systems	92
	5.3.5	Data Bus	92
5.4	Archite	cture Modelling and Trade-off	93
5.5		le of a Developing Architecture	95
5.6	Evoluti	on of Avionics Architectures	96
	5.6.1	Distributed Analogue Architecture	98
	5.6.2	Distributed Digital Architecture	100
	5.6.3	Federated Digital Architecture	101
	5.6.4	Integrated Modular Architecture	103
	Referen	nces	106
	Further	Reading	106
6	System	s Integration	107
6.1	Introdu		107
6.2	Definiti	ions	109
6.3	Exampl	les of Systems Integration	109
	6.3.1	Integration at the Component Level	109
	6.3.2	Integration at the System Level	110
	6.3.3	Integration at the Process Level	117
	6.3.4	Integration at the Functional Level	120
	6.3.5	Integration at the Information Level	123
	6.3.6	Integration at the Prime Contractor Level	123
	6.3.7	Integration Arising from Emergent Properties	124
6.4	System	Integration Skills	126
6.5	Manage	ement of Systems Integration	128
	6.5.1	Major Activities	128
	6.5.2	Major Milestones	129
	6.5.3	Decomposition and Definition Process	131
	6.5.4	Integration and Verification Process	131
	6.5.5	Component Engineering	131
6.6	Highly	Integrated Systems	132
	6.6.1	Integration of Primary Flight Control Systems	134
6.7	Discuss	sion	135
	Referen	nces	137
	Further	Reading	137
7	Verifica	ation of System Requirements	139
7.1	Introdu	• •	139
7.2	Gatheri	ng Qualification Evidence in the Life Cycle	140
7.3	Test Me		143
	7.3.1	Inspection of Design	143
	7.3.2	Calculation	143

	7.3.3	Analogy	144
	7.3.4	Modelling and Simulation	144
	7.3.5	Test Rigs	158
	7.3.6	Environmental Testing	159
	7.3.7	Integration Test Rigs	159
	7.3.8	Flight Test	161
	7.3.9	Trials	162
	7.3.10	Operational Test	163
	7.3.11	Demonstrations	163
7.4	An Example Using a Radar System		163
	Referen	ices	166
	Further	Reading	166
8		al Considerations	167
8.1	Introduc	ction	167
8.2	Stakeho		167
	8.2.1	5 5	167
	8.2.2	Classification of Stakeholders	169
8.3		inications	170
	8.3.1	The Nature of Communication	171
	8.3.2		173
	8.3.3		174
	8.3.4	A Lesson Learned	174
8.4	Giving	177	
	8.4.1	The Need for Criticism in the Design Process	177
	8.4.2	5	178
	8.4.3	Behaviours Associated with Criticism	178
	8.4.4	Conclusions	179
8.5	* *	r Relationships	179
8.6		ering Judgement	181
8.7	Comple	•	181
8.8	-	nt Properties	182
8.9		Wiring and Connectors	183
	8.9.1	Aircraft Wiring	183
	8.9.2	0	183
	8.9.3	Wiring Bundle Definition	185
	8.9.4	Wiring Routing	185
	8.9.5	Wiring Sizing	186
	8.9.6	Aircraft Electrical Signal Types	187
	8.9.7	Electrical Segregation	188
	8.9.8	The Nature of Aircraft Wiring and Connectors	189
	8.9.9	Use of Twisted Pairs and Quads	190
8.10		g and Grounding	192
	References		194
	Further Reading		194

9	Configu	uration Control	195
9.1	Introdu	ction	195
9.2	Configu	aration Control Process	195
9.3	A Simp	le Portrayal of a System	196
9.4	Varying	g System Configurations	197
	9.4.1	System Configuration A	198
	9.4.2	System Configuration B	199
	9.4.3	System Configuration C	200
9.5	Forward	ds and Backwards Compatibility	201
	9.5.1	Forwards Compatibility	202
	9.5.2	Backwards Compatibility	202
9.6	Factors	Affecting Compatibility	203
	9.6.1	Hardware	203
	9.6.2	Software	203
	9.6.3	Wiring	204
9.7	System	Evolution	205
9.8	Configu	aration Control	206
	9.8.1	Airbus A380 Example	208
9.9	Interfac	e Control	210
	9.9.1	Interface Control Document	210
	9.9.2	Aircraft Level Data Bus Data	213
	9.9.3	System Internal Data Bus Data	213
	9.9.4	Internal System Input/Output Data	213
	9.9.5	Fuel Component Interfaces	214
10	Aircraf	ft System Examples	215
10.1	Introdu		215
10.2	Design	Considerations	215
10.3	-	and Economic Considerations	217
10.4	Failure	Severity Categorisation	218
10.5	Design	Assurance Levels	218
10.6			219
	10.6.1	Architecture Options	220
	10.6.2	System Examples	223
10.7	Integrat	tion of Aircraft Systems	226
	10.7.1	Engine Control System	228
	10.7.2	Flight Control System	229
	10.7.3	Attitude Measurement System	230
	10.7.4	Air Data System	231
	10.7.5	Electrical Power System	232
	10.7.6	Hydraulic Power System	233
10.8	Integrat	tion of Avionics Systems	233
	Referen	nces	237

11	Power S	Systems Issues	239
11.1	Introduc		239
11.2	Electric	al System Description	239
11.3	Electric	al Power Distribution System	241
	11.3.1	Power Generation	241
	11.3.2	Primary Power Distribution	242
	11.3.3	Power Conversion	242
	11.3.4	Secondary Power Distribution	242
11.4	Electric	al System Design Issues	243
	11.4.1	Engine Power Off-Takes	244
	11.4.2	The Generator	244
	11.4.3	Power Feeders	244
	11.4.4	Generation Control	245
	11.4.5	Power Switching	245
11.5	Hydraul	ic System Description	246
	11.5.1	Engine-Driven Pump (EDP)	246
	11.5.2	Hydraulic Accumulator	247
	11.5.3	System Users	247
	11.5.4	Power Transfer Unit	247
11.6	Hydraul	ic System Design Considerations	248
	11.6.1	Hydraulic Power Generation	248
	11.6.2	System Level Issues	249
	11.6.3	Hydraulic Fluid	249
11.7	Aircraft	System Energy Losses	250
11.8		al System Power Dissipation	252
	11.8.1	Constant Frequency System	253
	11.8.2	Variable Frequency System	254
11.9	Hydraul	ic System Power Dissipation	254
	11.9.1	Hydraulic Power Calculations	256
	11.9.2	Operating Pressure	256
	11.9.3	Rated Delivery Capacity	258
	11.9.4	Boeing 767 – Entry into Service: 1982 (United Airlines)	258
	11.9.5	Boeing 787 – Entry into Service: 2011 [All Nippon Airways]	258
	11.9.6	Simple Hydraulic Power Models	259
11.10	More-E	lectric Aircraft Considerations	261
	Referen	ces	263
12	Key Ch	aracteristics of Aircraft Systems	265
12.1	Introduc	ction	265
12.2	Aircraft	Systems	267
12.3	Avionic	Systems	280
12.4	Mission	Systems	287
12.5			292

309

12.6	Analysis	s of the Fuel Penalties of Aircraft Systems	294
	12.6.1	Introduction	294
	12.6.2	Basic Formulation of Fuel Weight Penalties of Systems	295
	12.6.3	Application of Fuel Weight Penalties Formulation to Multi-Phase	
		Flight	297
	12.6.4	Analysis of Fuel Weight Penalties Formulation for Multi-Phase	
		Flight	298
	12.6.5	Use of Fuel Weight Penalties to Compare Systems	298
	12.6.6	Determining Input Data for Systems Weight Penalties Analysis	299
	Nomenc	clature Used	302
	References		303
13	Conclus	sions	305
	A Histor	rical Footnote	306
	References		307

Index

About the Authors

Ian Moir after 20 years in the Royal Air Force as an engineering officer, went on to Smiths Industries in the UK where he was involved in a number of advanced projects. Since retiring from Smiths [now GE Aviation] he is now in demand as a highly respected consultant. Ian has a broad and detailed experience working in aircraft avionics systems in both military and civil aircraft. From the RAF Tornado and Army Apache helicopter to the Boeing 777 Electrical Load Management System [ELMS], Ian's work has kept him at the forefront of new system developments and integrated systems in the areas of more-electric technology and system implementations. He has a special interest in fostering training and education and further professional development in aerospace engineering. Ian now has over 50 years of experience in Aerospace.

Allan Seabridge was until 2006 the Chief Flight Systems Engineer at BAE Systems at Warton in Lancashire in the UK. In over 45 years in the aerospace industry his work has included the opportunity to work on a wide range of BAE Systems projects including Canberra, Jaguar, Tornado, EAP, Typhoon, Nimrod and an opportunity for act as reviewer for Hawk, Typhoon and Joint Strike Fighter, as well being involved in project management, R&D and business development. In addition, Allan has been involved in the development of a range of flight and avionics systems on a wide range of fast jets, training aircraft and ground and maritime surveillance projects. From experience in BAE Systems with Systems Engineering education he is keen to encourage a further understanding of integrated engineering systems. An interest in engineering education continues since retirement with the design and delivery of systems and engineering courses at a number of UK universities at undergraduate and postgraduate level. Allan has been involved at Cranfield University for many years and has recently started a three year period as External Examiner for the M.Sc course in Aerospace Vehicle Design.

Between them the authors have been actively involved in undergraduate, postgraduate and continuing professional development courses and supervisory duties in aerospace at the Universities of Bristol, City, Cranfield, Lancaster, Loughborough, London Imperial, Manchester, and the University of the West of England.

Series Preface

Since the first publication of this book in 2004 there have been significant changes in the aerospace industry. Very large aircraft such as the A380 are in service and the Boeing 787 will introduce radical new technological solutions to improve its 'green' credentials. Long range, transpolar operations are common place and there is growing pressure from the environmentalist lobby to reduce emissions. Meanwhile passengers are faced with increasing fares and taxes that could threaten the viability of the aviation industry.

The supply industry has changed, partly as a result of mergers and acquisitions and partly from a desire of suppliers to acquire a greater share of the business available, altering the traditional prime contractor/subcontractor relationships. Another factor driving amalgamation is increased competitiveness in both commercial and military sectors and the aspirations of the aerospace sectors in the emerging nations such as Brazil, India and China. The dominance of domestic consumer markets has reduced the power of the aerospace industry to demand bespoke products in small volumes – a situation which is unlikely to be reversed. Emerging as a great challenge are unmanned air vehicles, used successfully in military theatres today but ultimately expected to appear in commercial applications. It is essential to move from development of vehicles towards developing total systems – the vehicle and the supporting ground systems – and their certification issues if unmanned air systems are to become as ubiquitous as manned aircraft are today.

These factors place great emphasis on an understanding of the customer's requirements and the implementation of development process that provides a product with technical excellence whilst meeting cost and schedule targets. This demands a measure of discipline in the design process to ensure that the requirements are analysed with competence, the design proceeds in an orderly and consistent fashion towards production and that the product is tested and certificated as fit for purpose. Of major importance is that the product includes all aspects of the total system in which it is operated.

The aim of this book is to provide a familiarity with a generic process that can be tailored to meet the needs of individual projects and to introduce project engineers to the complex interactions that need to be understood and managed in contemporary projects. The intention, as with the first edition, is to provide a text that will be of use to practitioners but is also aimed at students and engineers wishing to enter the aerospace industry, whilst providing those professionals in allied disciplines an understanding of the process of developing a complex system.

Acknowledgements

There is no invention that does not possess a history, none that does not build on, or learn from or owe a debt to the work of others.

Joseph Swan, 1828–1914.

From 'Swan, 1924' by Sean O'Brien, 'Litmus: Short Stories from Modern Science' Ed Ra Page, Comma Press, 2011.

This work is the culmination of many years of work by both authors in the field of military and civil aircraft systems engineering. Our work experiences have been enriched by the opportunity to work with a number of universities at undergraduate and postgraduate level to develop and add to degree courses, where the delegates unwittingly became critics and guinea pigs for our subject matter. Discussions during the courses with the academics and the students have broadened our knowledge considerably. In particular we would like to mention the Universities of Manchester, Loughborough, Cranfield, Bristol, University of the West of England and Lancaster for their M.Sc and short courses attended by students and engineers from industry. At Cranfield special thanks must go to Dr Craig Lawson and Dr Huamin Jia for inviting us to participate in their MSc modules and short courses in Aircraft Systems Design and Avionics. Their students from the UK, Europe and China have been most attentive and have made significant contributions to our knowledge. Dr Craig Lawson has also contributed an important section in Chapter 12 on the estimation of fuel penalties as part of the trade-off process.

Similarly at Bristol University and the University of the West of England where students from BAE Systems, Airbus, Rolls-Royce, Augusta Westland and European companies also have provided valuable inputs.

Cranfield University also gave us access to their group design project models, and our appreciation to Barry White for his model making skills.

The reviewers are to be congratulated for their diligence and for their constructive comments and criticism and our colleagues Malcolm Jukes, Roy Langton, Leon Skorczewski for their unstinting advice and encouragement.

We have received considerable help from the staff at Wiley especially Debbie Cox, Anne Hunt, Eric Willner and Liz Wingett as well as their proof readers, copy editors and publishing staff.

Ian Moir and Allan Seabridge April 2012

Glossary

Airlines for America
Automatic braking system
Alternating current
Airworthiness Circular – document offering advice on specific aircraft
operations
AC driven motor pump
Air data computer
Automatic direction finding
Air data module
Accident data recording
Avionics fast switched ethernet
Attitude heading and reference system
Aircraft information management system (Boeing)
Aluminium
Arithmetic logic unit
Air motor driven pump
Auxiliary power contactor
Auxiliary power unit
Air Radio INC (US)
Series of ARINC specifications providing a design foundation for avionic
equipment
Early ARINC standard relating to the packaging of avionic equipment
Widely used civil aviation data bus standard
Series of ARINC specifications relating to the design of analogue avionic
equipment
ARINC standard relating to the design of VHF omni-range (VOR)
ARINC standard relating to the design of instrument landing systems (ILS)
Series of ARINC specifications relating to Enabling technologies for
avionic equipment
Later ARINC standard relating to the packaging of avionic equipment
ARINC standard relating to a 2Mbit/s digital data bus
Series of ARINC specifications relating to the design of digital avionic
equipment
ARINC standard relating to the design of weather radar

ARINC 755	ARINC standard relating to the design of multi-mode receivers (MMR)
ARP	Aerospace recommended practice (SAE)
ASIC	Application specific integrated circuit
ATA	Air Transport Association
ATC	Air Traffic Control
ATI	Air transport instrument – a means of specifying the size of aircraft
	instruments
AWG	American wire gauge
Backwards	The ability of systems to be compatible with earlier developments/
	Compatibility configurations
BC	Bus controller (MIL-STD-1553B data bus)
BCAR	British civil airworthiness requirement
BIT	Built-in test
BMS	Business management system
BPCU	Bus power control unit
BTB	Bus tie breaker
CAD	Computer aided design
CADMID	UK MoD procurement process
CAIV	Cost as an independent variable
CANbus	Automotive data bus
СВ	Circuit breaker
CDR	Critical design review
CFC	Chloro-fluoro-carbon compounds
CG, cg	Centre of gravity
CNI	Communications, navigation, identification
Cold Soak	Prolonged exposure to cold temperatures
Com	Command channel
COTS	Commercial-off-the-shelf
CPIOM	Common processor input/output module
СРМ	Common processing module
CPU	Central processing unit
CSG	Computer symbol generator
Cu	Copper
DC	Direct current
DCMP	DC motor driven pump
Def Stan	Defence standard
DME	Distance measuring equipment
DMC	Display management computer
DoD	Department of Defense (US)
DOORS	A requirements management tool
Downey Cycle	Procurement model used in the UK MoD
DVI	Direct voice input
EASA	European Aviation Safety Administration
ECAM	Electronic check-out and maintenance (Airbus)
ECS	Environmental control system
EDP	Engine driven pump
	Engine arriven pump

EDR EEC	Engineering design requirements Electronic engine controller
EFIS	Electronic flight instrument system
EICAS	Engine indication and crew alerting system
ELMS	Electrical load management system
EMC	Electromagnetic compatibility
EMH	Electromagnetic health
EMI	Electromagnetic interference
EPB	External power breaker
ESM	Electronic support measures
ETOPS	Extended Twin operations
EUROCAE	European Organisation for Civil Aviation Equipment
FAA	Federal Aviation Administration (US)
FADEC	Full authority digital engine control
FAV	First article verification
FBW	Fly-by-wire
FCU	Flight control unit
FL	Flight level
FMECA	Failure mode and criticality analysis
FMQGC	Fuel management and quantity gauging computer
FMS	Flight management system
FOB	Fuel on board
Forwards	The ability of systems to be compatible with future developments/
1 of wards	Compatibility configurations
FRR	Final readiness review
Full duplex	A data bus that passes data in a bi-directional manner
G&C	Guidance and control
GCB	Generator control breaker
GCU	Generator control unit
GHz	10^9 Hertz (gigaHertz)
GPS	Global positioning system
GPWS	Ground proximity warning system- see also TAWS
GUI	Graphical user interface
gpm	Gallons per minute
Half duplex	A data bus that passes data in a unidirectional manner
HALT	Hardware accelerated life test
HF	High frequency
HIRF	High intensity radio frequency
HMI	Human machine interface
HOTAS	Hands on throttle and stick
Hot soak	Prolonged exposure to high temperatures
HP	Horse power
IAS	Indicated airspeed
IC	Integrated circuit
ICD	Interface control document
IDG	Integrated drive generator

IEEE 1498	High speed data bus
IFE	In-flight entertainment
ILS	Instrument landing system – an approach aid used for guiding the aircraft on
	a final approach to landing
IMA	Integrated modular architecture
INCOSE	International Council On Systems Engineering
INS	Inertial navigation system
I/O	Input/output
IPT	Integrated product team
IR	Infrared
IRS	Inertial reference system
ISIS	Integrated standby instrument system
IT	Information technology
JAA	Joint Aviation Authorities (Europe) See EASA
kbits	10^3 bits (kilobits)
LCD	Liquid crystal display
LED	Light emitting diode
LfE	Learning from experience
LRI	Line replaceable item
LRU	Line replaceable unit
LVDT	Linear variable differential transformer
Mach	The speed of an aircraft in relation to the speed of sound
MAD	Magnetic anomaly detector
MAU	Modular avionics unit
MBits	10 ⁶ bits (megabits)
MCDU	Multifunction control and display unit
MCU	Modular concept unit
MEA	More electric aircraft
MHz	10 ⁶ Hertz (megaHertz)
MIL-HBK	Military Handbook – A US military publication
MIL-STD-	Widely used military data bus standard
1553B	
MLS	Microwave landing system – an advanced approach aid used for guiding the
	aircraft on a final approach to landing
MMEL	Master minimum equipment list
MMR	Multimode receiver – a receiver containing GPS, ILS and MLS receivers
MoD	Ministry of Defence (UK)
Mode S	A communication system used to exchange flight data between adjacent
	aircraft and Air Traffic Control
Mon	Monitor channel
MPCDU	Multipurpose control and display unit
MPP	Master programme plan
NASA	National Aeronautics & Space Administration (US)
NATO	North Atlantic Treaty Organisation
ND	Navigation display
NDA	Non-disclosure agreement

NRC	Non-recurring costs
OAT	Outside air temperature
OOD	Object oriented design
PBS	Product breakdown structure
PC	Personal computer
PDR	Preliminary design review
PFD	Primary flight display
PHM	Prognostics and health management
PMA	Permanent magnet alternator
PoR	Point of regulation
PRR	Production readiness review
psi PTU	Pounds per square inch Power transfer unit
-	
Quadrax	A four-wire full duplex data bus connection arrangement that enables data to
	be passed each way thereby effectively achieving bi-directional data transfers
0146	(favoured by Airbus)
QMS	Quality management system
RAM	Random access memory
RASP	Recognised air surface picture
RAT	Ram air turbine
R&D	Research and development
RF	Radio frequency
RFI	Request for information
RFP	Request for proposal
ROM	Read only memory
RT	Remote terminal (MIL-STD-1553B data bus)
RTCA	Radio Technical Committee Association (US)
RVDT	Rotary variable differential transformer
SAE	Society of Automotive Engineers (US)
SAHRS	Secondary attitude and heading reference system
SARS	Severe acute respiratory syndrome
SATCOM	Satellite communications
SBAC	Society of British Aerospace Companies (UK)
SDD	System design document
SDR	System design review
sfc	Specific fuel consumption
SIGINT	Signals intelligence
SOW	Statement of work
SPC	Statistical process control
SRR	System requirements review
SSA	System safety analysis
SSPC	Solid state power controller
SSR	Software specification review
Stanag	Standardisation agreement (NATO)
SysML	System modelling language

System of	
Systems	A system embracing a collection of other systems
TAS	True airspeed
TAWS	Terrain avoidance warning system
TCAS	Traffic collision avoidance system
TRR	Test readiness review
TRU	Transformer rectifier unit
TV	Television
Twinax	A two wire half duplex data bus connection that allows unidirectional data
	transfers (favoured by Boeing)
UAV	Unmanned air vehicle
UK	United Kingdom
UML	Unified modelling language
US, USA	United States (of America)
USMS	Utility systems management system
UTP	Unshielded twisted pair
UV	Ultraviolet
VHF	Very high frequency
VMS	Vehicle management system
VOR	VHF omni-range; a commonly used navigation beacon in civil aerospace
VSCF	Variable speed constant frequency
WBS	Work breakdown structure

1

Introduction

1.1 General

In three companion books in the Aerospace Series – Aircraft Systems [1], Civil Avionic Systems [2], and Military Avionics [3] the authors described the technical aspect of systems for military and commercial aircraft use – in essence the engineering of systems and system products. Other books in the Series have also described the technical aspects of various systems, for example, fuel systems [4], and display systems [5]. However, we did not dwell on the mechanism by which such systems are designed and developed, and yet the process of systems development is a very important aspect that contributes to the consistency, quality and robustness of design.

The first edition of this book tried to make amends and described the design and development process and the life cycle of typical aircraft systems. Since its initial publication the material in the book has been used in a number of postgraduate courses and industrial short courses for aerospace systems engineers and has been developed to suit the engineering audience in response to questions received and discussions held during the course delivery.

This second edition is intended to be an introduction to aircraft systems and the systems development process for students studying systems or aerospace subjects and wishing to enter the aircraft industry or related industries, and for organisations sponsoring these people. The content is intended to be of interest to people intending to join or already working in:

- Organisations directly involved in the design, development and manufacture of manned and unmanned, fixed-wing and rotary-wing aircraft both military and commercial
- Systems and equipment supply companies involved in providing services, sub-systems, equipment and components to the manufacturers of aviation products
- Organisations involved in the repair, maintenance and overhaul of aircraft for their own use or on behalf of commercial or military operators
- · Commercial airlines and armed forces operating their own or leased aircraft on a daily basis
- Organisations involved in the training of personnel to work on aircraft

The book is also aimed at educational establishments involved in the teaching of systems engineering, aerospace engineering or specialist branches of the topic such as avionics or

© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

Design and Development of Aircraft Systems, Second Edition. Ian Moir and Allan Seabridge.

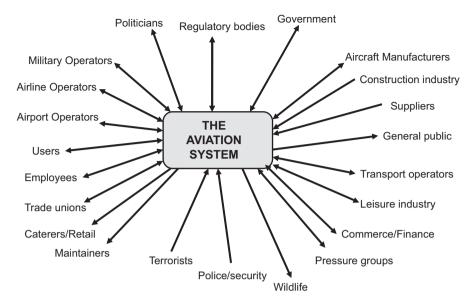


Figure 1.1 Stakeholders in the Aviation System.

equipment engineering at high school, university undergraduate or postgraduate level. It is also aimed at short courses suitable for the professional development of industry professionals and practitioners.

These are the sort of people who will be found in the broad range of stakeholders in complex aerospace projects. Figure 1.1 gives an example of the Aviation System and some of the people and groups affected by the systems or directly affecting the system. This diagram has been developed to illustrate the stakeholders in the development of an aircraft solution to meet environmental considerations. A specific project will have its own specific set of stakeholders.

Each of these stakeholders will have a different perspective of the design and development process and each is capable of exerting an influence on the process. For those directly involved it is vital that the design process is visible to all parties so that they can coordinate their contributions for maximum benefit to the project. A clear and well documented process is essential to allow the stakeholders to visualise the design and development path as a framework in which to discuss their different perspectives. This can be used to establish boundaries, to air differences of opinion and to arbitrate on differences of technical, commercial or legal understanding.

It is worth noting that since the first edition of this book there have been significant changes in business practice in the aerospace industry. Previously, the development of aircraft had been mainly in the hands of Prime Contractors appointed by the customer, with a supply chain competing for individual equipment and components. In modern aircraft development the first tier suppliers compete at the system level and in many cases the supplier teams work on-site at the prime contractor's base. In many cases of international collaboration this usually means a number of prime contractor partner bases in different countries. In this situation the supplier and the prime engineering teams develop equipment and component specifications together as integrated product teams (IPT). The system supplier is now typically responsible for system level and component level performance; and in many cases also responsible for direct maintenance costs associated with their system. This change in business practices demands that the supplier base becomes 'systems smart' and this book should provide a valuable insight

The principles established are equally applicable to other platforms, such as surface and subsurface naval vessels, commercial marine vessels and land vehicles. The aerospace industry is almost unique, given the nature of an aircraft, in having to address high integrity and availability, weight, volume, power consumption, cost and performance issues. The conflict of competing system drivers often makes trade-offs more acute when attempting to achieve the optimum balance of meeting the customer's requirements and achieving an affordable product. There are also differences between commercial and military solutions that may demand a subtly different interpretation of the process and the standards that apply. The emergence of Unmanned Air Vehicles broadens the system concept to incorporate ground stations for remotely piloted vehicles. The striving for autonomous unmanned vehicles will lead to more innovative approaches to design and will require more rigour in the certification of systems. Nevertheless, the process described in this book should be applicable, albeit with suitable tailoring.

for the business community to fulfil this need effectively [6].

Although the text is formed around examples that are mainly aeronautical platform based the reader may also apply them to other high value systems such as ground-based radar, communications, security systems, maritime and space vehicle based systems, or even manufacturing or industrial applications.

What makes all these platforms and systems similar is that they are all complex, high value products comprised of many interacting sub-systems, and they are intended to be used by a human operator. They also share a common characteristic of having long operational life cycles, often in excess of 25 years, usually with long gestation and development time-scales, the need for operator and maintenance training and full-life in-service support. Such time-scales demand a rigorous, controlled and consistent development process that can be used to maintain an understanding of the standard or configuration of the platform throughout its life, in order to support repair, maintenance and update programmes.

1.2 Systems Development

There are many valuable lessons to be learned from the field of Systems Engineering. The authors believe that much of the theory and practice of Systems Engineering can be applied to the engineering of hardware and software based systems for use in aircraft. It is a broad field of practice that covers the behaviour of systems across wide range of subjects including organisational, operational, political, commercial, economic, human and educational systems. The concept of Systems and Systems Engineering operates at many different levels in many different types of organisation. Much of the early analysis of systems behaviour was concerned with organisational or management issues – the so-called 'soft' systems. This work led to an understanding of the interactions of communications, people, processes and flows of information within complex organisations [7, 8].

An important outcome from this work was the emergence of 'systems thinking'. This term encompasses the ability to take a holistic or a total systems view of the development or analysis of any system. The key to this activity is the ability to take into account all influences or factors

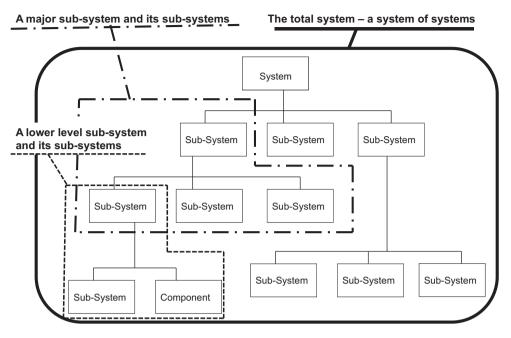


Figure 1.2 A hierarchy of systems, sub-systems and components.

which may affect the behaviour of a system. This is accomplished by viewing the system as existing in an environment in which certain factors of importance to the understanding of the system are present. In this book the concept of a single environment has been extend to encompass layers or shells of environments that allow people in an organisation to take their own viewpoint, and to examine aspects of prime importance to themselves. In this way it is possible to examine a system from the top down and to allow individuals such as politicians, marketing personnel, accountants, engineers, manufacturing and support staff to critically examine and develop their own particular requirements.

Another important property of systems is that they can be broken down into sub-systems, almost indefinitely. Thus Figure 1.2 shows how a system can be considered as a system of systems which is a grouping of several sub-systems, which may not require detailed definition at the level at which the system is being examined. The owners of the sub-systems, however, will regard their sub-system as being the system of prime importance and may choose to break it down into further sub-systems. This top down sub-division, or decomposition, can take place from an abstract concept of a system, right down to its hardware and software components. This hierarchy of systems, in which the top level systems are important and exert an influence on lower level systems, is the manner in which most complex systems are analysed and implemented. It is a way in which the key systems and systems architectural principles stated at the highest levels of system definition are preserved throughout the implementation and into the product.

For aircraft systems the ultimate and most elemental building blocks for a system are the components – physical components such as pumps, valves, sensors, effectors, and so on that determine the hardware characteristics of the system, or alternatively the software applications

or modules that contribute to the overall system performance. The human, in the form of the pilot, crew member, passenger or maintainer is also a vital part of the system.

The decision on how far to keep decomposing a system into sub-systems depends on the complexity of the system and the ability to view the functions and interfaces as a whole. At some stage it may become necessary to construct a boundary around a system in order to specify it to an external supplier for further analysis and design. An example of this is the definition of a sensor sub-system that will be more effectively developed and manufactured by a specialist supplier.

Such a breakdown of systems into sub-systems, and yet further sub-systems and components reinforces another important aspect of systems and their interconnections. The outputs from a system can form inputs to other systems. Indeed a system may produce an output, which is fed back to its own input as feedback. Feedback loops are not confined to one stage of a system, feedback may occur over several concatenated or interconnected systems in order to produce system condition status or stability. Feedback may also be implemented using a data bus and multiplexed processing units, which means that data latency must be taken into account. To enable this to happen effectively in a hard system, the system interfaces must be defined to ensure compatibility – that a system output is accepted and understood as an input so that it can be acted upon. This requires that interfaces are well defined and rigorously controlled throughout the development of the system.

It should also be noted that there have been significant changes in the aircraft supplier industry resulting in mergers and acquisitions leading to large organisations with aspirations to extend their business to tender for larger systems contracts. The mergers have increased the capability of suppliers to the extent that this is a feasible and sensible proposition. At the same time some major prime contractors have focussed their sights on major system of system management contracts, concentrating their capabilities on management of design, design of specialist integration tasks, final assembly and qualification of the product.

The 'top down' development of individual systems as practised in many line management organisations is shown in Figure 1.3 at point A.

This is the development path with which most engineers are familiar for all aircraft systems, avionics systems and mission systems treated as individual systems. However, there is often a need for something more than this straightforward development route. Point B on the figure illustrates a case where certain systems are interconnected to form a synergistic integrated function – in other words a function is performed that is more than the sum of the individual system functions. An example of such a function is that of guidance and control (G&C) as an integration of functions of flight control, hydraulics, automatic flight control and fuel systems, (See Chapter 6 for more detail). Also shown in this diagram is the integration of communications, navigation and identification (CNI) systems.

Point C in the figure illustrates an alternative view of integration – that of a design aspect that applies equally to all systems as a common discipline. Examples of this are safety, the human/machine interface (HMI), electromagnetic health (EMH) or maintainability. These disciplines are governed centrally, usually by the Chief Engineer's office, and their impact on the individual systems will be gathered together to form a statement of design for the complete product.

The systems concepts described above can be used in aircraft systems engineering. They can be used to develop, from an understanding of a customer's top level system requirements, a particular type of aircraft to perform a specific role and, after several successive analyses,

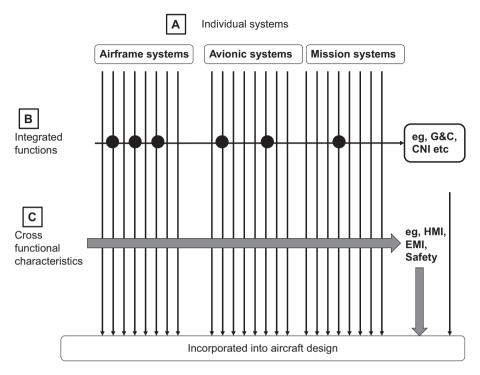


Figure 1.3 Some aspects of integration.

or decompositions, can lead to an implementation of a product. The top level system may be related to a need for National Defence or for a transportation system which can be expressed in terms of people, communication and processes, and eventually is expressed as a combination of various hardware products.

Such a top level system is one that is conceived by many customers as representing their highest level operational need. The role of systems engineering and systems integration is to ensure that the resulting combination of products can be shown to meet the overall requirements posed from this top level. The requirements set at the top level must flow down to the lowest level of product in a clearly traceable and testable manner, so that the integrity – or fitness for purpose – of the product can be demonstrated to the customer and to regulatory bodies governing adherence to mandatory national and international regulations.

Systems thinking encompasses a process for the development of a system. This has been defined by Checkland [7] and is based on a methodology defined by Hall [9] in 1962. Despite the age of this methodology its roots can be seen in many methods in use today. It is:

- Problem definition essentially the definition of a need
- Choice of objectives a definition of physical needs and of the value system within which they must be met
- Systems synthesis the creation of possible alternative systems
- Systems analysis analysis of the hypothetical systems in the light of different interpretations of the objectives