# Edible Oil SECOND EDITION Processing

Edited by Wolf Hamm, Richard J. Hamilton and Gijs Calliauw



**WILEY-BLACKWELL** 

**Edible Oil Processing** 

# **Edible Oil Processing**

### Second Edition

Edited by

**Wolf Hamm** *Harpenden, UK* 

Richard J. Hamilton Liverpool John Moores University, Liverpool, UK

Gijs Calliauw Desmet Ballestra Oils and Fats, Zaventem, Belgium



This edition first published 2013 © 2013 by John Wiley & Sons, Ltd

Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley's global Scientific, Technical and Medical business with Blackwell Publishing.

#### Registered office:

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

#### Editorial offices:

9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell.

The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data has been applied for

ISBN 978-1-4443-3684-9 (hardback)

A catalogue record for this book is available from the British Library.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Cover image: Main image © Desmet Ballestra Oil and water © Thomas Vogel/istockphoto.com Oilseed rape © Matthew Dixon/istockphoto.com Cover design by Meaden Creative

Set in 10.5/13pt Times by Laserwords Private Limited, Chennai, India

1 2013

### Contents

|     | List of | Contributo                               | rs                                       | xiii |
|-----|---------|------------------------------------------|------------------------------------------|------|
|     | List of | Abbreviati                               | ons                                      | xv   |
|     | Introdu | ıction                                   |                                          | xvii |
| 1   | -       | <b>sition and I</b><br>. <i>Gunstone</i> | Properties of Edible Oils                | 1    |
| 1.1 | Introdu | ction                                    |                                          | 1    |
| 1.2 | Compor  | nents of natu                            | ral fats                                 | 3    |
|     | 1.2.1   | Fatty acids                              | s and glycerol esters                    | 4    |
|     | 1.2.2   | Phospholi                                | pids                                     | 7    |
|     | 1.2.3   | Sterols                                  |                                          | 7    |
|     | 1.2.4   | Tocols and                               | l other phenolic compounds               | 9    |
|     | 1.2.5   | 1 5                                      |                                          | 12   |
|     | 1.2.6   | Hydrocarb                                | ons                                      | 13   |
|     |         | 1.2.6.1                                  | Alkanes                                  | 13   |
|     |         | 1.2.6.2                                  |                                          | 13   |
|     |         | 1.2.6.3                                  |                                          | 14   |
|     |         |                                          | Polycyclic aromatic hydrocarbons         | 15   |
|     |         | 1.2.6.5                                  | Contaminants and specifications          | 16   |
| 1.3 | Ų       | cid compositi                            | on                                       | 16   |
| 1.4 | -       | l properties                             |                                          | 19   |
|     | 1.4.1   | • •                                      | ism, crystal structure and melting point | 19   |
|     | 1.4.2   | J                                        |                                          | 21   |
|     | 1.4.3   | -                                        |                                          | 22   |
|     | 1.4.4   |                                          |                                          | 22   |
|     | 1.4.5   | -                                        | of gases in oils                         | 22   |
|     | 1.4.6   |                                          | sical properties                         | 24   |
| 1.5 |         | al properties                            |                                          | 25   |
|     | 1.5.1   | Hydrogena                                | ation                                    | 25   |

|      | 1.5.2 Oxidation                                                | 25       |
|------|----------------------------------------------------------------|----------|
|      | 1.5.3 Autoxidation                                             | 26       |
|      | 1.5.4 Photooxidation                                           | 27       |
|      | 1.5.5 Decomposition of hydroperoxides to short-chain compounds | 28       |
|      | 1.5.6 Antioxidants                                             | 28       |
|      | 1.5.6.1 Primary antioxidants                                   | 28       |
|      | 1.5.6.2 Secondary antioxidants                                 | 29       |
|      | 1.5.7 Stereomutation                                           | 31       |
|      | 1.5.8 Double-bond migration and cyclisation                    | 31       |
|      | 1.5.9 Hydrolysis                                               | 31       |
|      | 1.5.10 Ester formation                                         | 32       |
|      | 1.5.11 Methanolysis<br>1.5.12 Glycerolysis                     | 32       |
|      | 1.5.12 Glycerolysis<br>1.5.13 Interesterification              | 32<br>33 |
| 1.6  |                                                                | 33       |
|      | erences                                                        | 33<br>34 |
| Kere |                                                                | 54       |
| 2    | Bulk Movement of Edible Oils                                   | 41       |
| -    | Wolf Hamm                                                      |          |
| 2.1  | Oil production and exports                                     | 41       |
| 2.2  | Cargo damage                                                   | 45       |
| 2.3  | Quality of oils shipped                                        | 47       |
|      | 2.3.1 Palm oil                                                 | 47       |
|      | 2.3.2 Soybean oil and other seed oils                          | 47       |
|      | 2.3.3 Shipment of oils intended for production of FAMEs        | 48       |
| 2.4  | Codex Alimentarius                                             | 48       |
| 2.5  | Oil shipments: systems and regulations                         | 49       |
|      | 2.5.1 The parcel tanker                                        | 49       |
|      | 2.5.2 Parcel tanker categories: IMO classification             | 50       |
|      | 2.5.3 Trade regulation: the role of the FOSFA and NIOP         | 50       |
| 2.6  | Shore storage                                                  | 52       |
| 2.7  | 5                                                              | 53       |
| 2.8  | Refinery location                                              | 53       |
|      | Acknowledgement                                                | 53       |
| Refe | rences                                                         | 54       |
| 3    | Production of Oils                                             | 55       |
| 5    | Philippe van Doosselaere                                       |          |
| 3.1  | Introduction                                                   | 55       |
| 3.2  | Seed handling and storage                                      | 55       |
| 5.2  | 3.2.1 Seed arrival                                             | 56       |
|      | 3.2.1.1 Seed weighing                                          | 56       |
|      | 3.2.1.2 Sampling                                               | 57       |
|      | 3.2.2 Seed reception and precleaning                           | 57       |
|      | 3.2.3 Storage                                                  | 58       |
| 3.3  | Preparation of oilseeds                                        | 60       |
|      | 3.3.1 Reason for and purpose of preparation                    | 60       |
|      |                                                                |          |

|      | 3.3.2          | Milling defect                        | 61       |
|------|----------------|---------------------------------------|----------|
| 3.4  | Preparat       | ion of soybean                        | 61       |
|      | 3.4.1          | Cleaning and weighing                 | 62       |
|      | 3.4.2          | Cracking                              | 64       |
|      | 3.4.3          | Cooking-conditioning                  | 65       |
|      | 3.4.4          | Flaking                               | 65       |
|      | 3.4.5          | Expander                              | 66       |
|      | 3.4.6          | Soybean dehulling                     | 68       |
|      |                | 3.4.6.1 Traditional process           | 68       |
|      |                | 3.4.6.2 Hot dehulling process         | 69       |
| 3.5  | Preparat       | ion and pressing of rapeseed (canola) | 69       |
|      | 3.5.1          | Preparation                           | 70       |
|      | 3.5.2          | 5                                     | 71       |
|      | 3.5.3          | 1 5                                   | 71       |
|      |                | Press oil clarification               | 75       |
|      |                | Press cake treatment                  | 76       |
| 3.6  |                | ion and pressing of sunflower seed    | 77       |
| 3.7  | Full pres      | -                                     | 78       |
|      | 3.7.1          | Cold pressing                         | 79       |
|      | 3.7.2          |                                       | 80       |
|      | 3.7.3          | Cake treatment                        | 80       |
| 3.8  |                | other seeds                           | 81       |
|      | 3.8.1          |                                       | 81       |
|      | 3.8.2          | 5                                     | 82       |
|      | 3.8.3          | Coconut or copra oil                  | 83       |
|      | 3.8.4          | Linseed (flaxseed)                    | 83       |
|      | 3.8.5          | Safflower                             | 84       |
|      | 3.8.6<br>3.8.7 | Peanut (groundnut)<br>Rice bran       | 85<br>86 |
|      | 3.8.8          |                                       | 80       |
| 3.9  |                | production                            | 87       |
| 5.9  | 3.9.1          | Pressing                              | 89       |
|      | 3.9.2          | Centrifugation                        | 90       |
|      | 3.9.3          | Olive pomace extraction               | 90       |
| 3.10 |                | production                            | 91       |
| 5.10 |                | Before reaching the mill              | 92       |
|      | 3.10.2         |                                       | 93       |
|      | 3.10.3         | Threshing                             | 93       |
|      |                | Pressing                              | 94       |
|      | 3.10.5         | Crude oil clarification               | 94       |
|      | 3.10.6         | Oil drying                            | 94       |
|      | 3.10.7         | Fibre – fruit separation              | 95       |
|      | 3.10.8         | Nut conditioning                      | 95       |
|      | 3.10.9         | Nut cracking installation             | 95       |
|      | 3.10.10        | Kernel separation                     | 95       |
|      | 3.10.11        | Uses of secondary palm fruit products | 95       |
|      |                | 3.10.11.1 Palm kernel meal            | 95       |
|      |                | 3.10.11.2 Fibres and shell            | 96       |

| 4          |                             | Extraction<br>G. Kemper                                                                                                                          | 97         |
|------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 4.1        | Introduc                    | tion                                                                                                                                             | 97         |
| 4.2        |                             | extractor                                                                                                                                        | 99         |
|            | 4.2.1                       | Contact time                                                                                                                                     | 100        |
|            | 4.2.2                       | Particle thickness                                                                                                                               | 101        |
|            | 4.2.3                       | Extractor temperature                                                                                                                            | 102        |
|            | 4.2.4                       | Miscella flux rate                                                                                                                               | 103        |
|            | 4.2.5                       | Number of miscella stages                                                                                                                        | 105        |
|            | 4.2.6                       | Solvent retention                                                                                                                                | 107        |
| 4.3        | Meal des                    | solventiser toaster                                                                                                                              | 107        |
|            | 4.3.1                       |                                                                                                                                                  | 108        |
|            | 4.3.2                       | Countercurrent trays                                                                                                                             | 111        |
|            | 4.3.3                       | Sparge tray                                                                                                                                      | 111        |
| 4.4        | Meal dry                    | rer cooler                                                                                                                                       | 114        |
|            | 4.4.1                       | Steam-drying trays                                                                                                                               | 114        |
|            | 4.4.2                       | 5 5 5                                                                                                                                            | 114        |
|            | 4.4.3                       | Air-cooling trays                                                                                                                                | 116        |
| 4.5        | Miscella                    | distillation system                                                                                                                              | 117        |
| 4.6        | Solvent                     | recovery system                                                                                                                                  | 119        |
| 4.7        | Heat rec                    | overy                                                                                                                                            | 123        |
| Refe       | rences                      |                                                                                                                                                  | 125        |
| 5          | <b>Edible O</b><br>Wim De ( | <b>Dil Refining: Current and Future Technologies</b><br>Greyt                                                                                    | 127        |
| 5.1        | Introduc                    | tion                                                                                                                                             | 127        |
| 5.2        | Next-ger                    | neration chemical refining with nanoneutralisation                                                                                               | 128        |
| 5.3<br>5.4 |                             | ic degumming: a missing link in the physical refining of soft oils?<br>g: from single-stage colour removal to multistage adsorptive              | 131        |
|            | purificat                   | ion                                                                                                                                              | 136        |
| 5.5<br>5.6 | Short-pa                    | sation: much more than just a process for the removal of off-flavours<br>th distillation and supercritical processing: refining technologies for | 141        |
|            | the futu                    | re?                                                                                                                                              | 148        |
| Refe       | rences                      |                                                                                                                                                  | 150        |
| 6          |                             | <b>ification Processes</b><br>lens and Gijs Calliauw                                                                                             | 153        |
|            |                             | -                                                                                                                                                |            |
| 6.1        | Introduc                    |                                                                                                                                                  | 153        |
| 6.2        | Hydroge                     |                                                                                                                                                  | 154        |
|            | 6.2.1                       | Historical perspective                                                                                                                           | 154        |
|            | 6.2.2                       | Principle                                                                                                                                        | 155        |
|            |                             | Process parameters                                                                                                                               | 157        |
|            | 6.2.3                       |                                                                                                                                                  |            |
|            | 0.2.3                       | 6.2.3.1 Hydrogen pressure                                                                                                                        | 157        |
|            | 0.2.3                       | 6.2.3.1Hydrogen pressure6.2.3.2Temperature                                                                                                       | 157<br>157 |
|            | 6.2.4                       | 6.2.3.1 Hydrogen pressure                                                                                                                        | 157        |

6.2.4 Process design

|       | 6.2.5     | Future for  | hydrogenation technology                            | 163 |
|-------|-----------|-------------|-----------------------------------------------------|-----|
|       |           | 6.2.5.1     | Smarter combinations of the conventional technology | 163 |
|       |           | 6.2.5.2     | Alternative catalysts                               | 163 |
|       |           | 6.2.5.3     | Advanced process technology                         | 164 |
|       |           | 6.2.5.4     | Summary                                             | 166 |
| 6.3   | Intereste | erification | ,                                                   | 166 |
|       | 6.3.1     | Historical  | perspective                                         | 166 |
|       | 6.3.2     | Principle   |                                                     | 167 |
|       | 6.3.3     | Process pa  | rameters                                            | 169 |
|       |           | 6.3.3.1     | Oil quality                                         | 169 |
|       |           | 6.3.3.2     | Catalyst                                            | 169 |
|       |           | 6.3.3.3     | Oil losses                                          | 170 |
|       | 6.3.4     | Process de  | esign                                               | 171 |
|       |           | 6.3.4.1     | Processed product quality                           | 173 |
|       | 6.3.5     | Future for  | interesterification technology                      | 174 |
| 6.4   | Dry fract | ionation    |                                                     | 175 |
|       | 6.4.1     | Historical  | perspective                                         | 176 |
|       | 6.4.2     | Principle   |                                                     | 177 |
|       | 6.4.3     | Process pa  | rameters                                            | 180 |
|       |           | 6.4.3.1     | Cooling speed                                       | 180 |
|       |           | 6.4.3.2     | Agitation                                           | 183 |
|       | 6.4.4     | Process de  | sign                                                | 183 |
|       |           | 6.4.4.1     | Crystalliser design                                 | 183 |
|       |           | 6.4.4.2     | Filter design                                       | 184 |
|       |           | 6.4.4.3     | Plant design                                        | 185 |
|       | 6.4.5     | Future for  | fractionation technology                            | 188 |
|       |           | 6.4.5.1     | Optimised crystalliser designs                      | 188 |
|       |           | 6.4.5.2     | High-pressure filtrations                           | 189 |
|       |           | 6.4.5.3     | Continuous fractional crystallisation               | 190 |
|       |           | 6.4.5.4     | Alternative multistage processes for specialty fats |     |
|       |           |             | production                                          | 191 |
|       | 6.4.6     | Summary     |                                                     | 195 |
| Refer | ences     |             |                                                     | 195 |
|       |           |             |                                                     |     |
| 7     | -         | Processin   | g                                                   | 197 |
|       | David Co  | wan         |                                                     |     |
| 7.1   | Introduc  | tion        |                                                     | 197 |
|       |           |             | of enzyme processing                                | 198 |
| 7.2   |           |             | s before oil refining                               | 199 |
|       | 7.2.1     |             | sisted pressing                                     | 199 |
|       | 7.2.2     |             | degumming                                           | 200 |
|       | 7.2.3     |             | degumming process (phospholipase A <sub>1</sub> )   | 202 |
|       | 7.2.4     | -           | spholipases                                         | 205 |
|       | 7.2.5     |             | ry from gums                                        | 205 |
|       | 7.2.6     | Oil remedi  | · ·                                                 | 206 |
| 7.3   |           |             | edible oil modification                             | 208 |
|       | 7.3.1     |             | -scale enzymatic interesterification                | 209 |

| x | CONTENTS |
|---|----------|
|   |          |

|                   | 7.3.2                                                                                                                                                                                         | Factors influencing enzyme working life                                                                                                                                                                                                                                                                                                                                                                                                                      | 211                                                                                                                               |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                   | 7.3.3                                                                                                                                                                                         | Formulating with interesterified oils and fats                                                                                                                                                                                                                                                                                                                                                                                                               | 215                                                                                                                               |
|                   | 7.3.4                                                                                                                                                                                         | Enzyme reactions for speciality fats                                                                                                                                                                                                                                                                                                                                                                                                                         | 216                                                                                                                               |
|                   | 7.3.5                                                                                                                                                                                         | Production of fats high in omega-3 fatty acids                                                                                                                                                                                                                                                                                                                                                                                                               | 217                                                                                                                               |
| 7.4               | Improvi                                                                                                                                                                                       | ng processing sustainability through enzyme usage                                                                                                                                                                                                                                                                                                                                                                                                            | 219                                                                                                                               |
| Refe              | rences                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 221                                                                                                                               |
| 8                 | Annlica                                                                                                                                                                                       | tion of Edible Oils                                                                                                                                                                                                                                                                                                                                                                                                                                          | 223                                                                                                                               |
| 0                 |                                                                                                                                                                                               | ot and Eckhard Flöter                                                                                                                                                                                                                                                                                                                                                                                                                                        | 225                                                                                                                               |
|                   | 5                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                   |
| 8.1               | Introdu                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 223                                                                                                                               |
| 8.2               |                                                                                                                                                                                               | l chemistry of triacylglycerides                                                                                                                                                                                                                                                                                                                                                                                                                             | 225                                                                                                                               |
| 8.3               | 5                                                                                                                                                                                             | tal networks                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 228                                                                                                                               |
| 8.4               |                                                                                                                                                                                               | of functional TAG compositions                                                                                                                                                                                                                                                                                                                                                                                                                               | 229                                                                                                                               |
| 8.5               |                                                                                                                                                                                               | tion in fat-continuous emulsions (spreads)                                                                                                                                                                                                                                                                                                                                                                                                                   | 234                                                                                                                               |
| 8.6               |                                                                                                                                                                                               | tion in water-continuous emulsions                                                                                                                                                                                                                                                                                                                                                                                                                           | 237                                                                                                                               |
|                   | 8.6.1                                                                                                                                                                                         | J. J                                                                                                                                                                                                                                                                                                                                                                                                                     | 237                                                                                                                               |
|                   | 8.6.2                                                                                                                                                                                         | Nondairy (fat) creams and spreads                                                                                                                                                                                                                                                                                                                                                                                                                            | 238                                                                                                                               |
| 0 7               | 8.6.3                                                                                                                                                                                         | Ice cream                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 239                                                                                                                               |
| 8.7               | 8.7.1                                                                                                                                                                                         | tion in other fat-continuous products                                                                                                                                                                                                                                                                                                                                                                                                                        | 241                                                                                                                               |
|                   | 8.7.1                                                                                                                                                                                         | Baking fats<br>Chocolate                                                                                                                                                                                                                                                                                                                                                                                                                                     | 241<br>242                                                                                                                        |
| 8.8               | Conclus                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 242                                                                                                                               |
|                   | rences                                                                                                                                                                                        | 1011                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 245                                                                                                                               |
| Nere              | Tences                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 240                                                                                                                               |
|                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                   |
| 9                 | Quality                                                                                                                                                                                       | and Food Safety Assurance and Control                                                                                                                                                                                                                                                                                                                                                                                                                        | 251                                                                                                                               |
| 9                 | -                                                                                                                                                                                             | and Food Safety Assurance and Control<br>hoeff and Gerrit van Duijn                                                                                                                                                                                                                                                                                                                                                                                          | 251                                                                                                                               |
|                   | Mar Veri                                                                                                                                                                                      | hoeff and Gerrit van Duijn                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                   |
| 9.1               | Mar Veri<br>Introdu                                                                                                                                                                           | hoeff and Gerrit van Duijn<br>ction                                                                                                                                                                                                                                                                                                                                                                                                                          | 251                                                                                                                               |
| 9.1<br>9.2        | Mar Veri<br>Introdu<br>Analytic                                                                                                                                                               | <i>hoeff and Gerrit van Duijn</i><br>ction<br>cal methods for measuring oil and fat composition                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                   |
| 9.1               | Mar Veri<br>Introdu<br>Analytic                                                                                                                                                               | <i>hoeff and Gerrit van Duijn</i><br>ction<br>cal methods for measuring oil and fat composition<br>analyses                                                                                                                                                                                                                                                                                                                                                  | 251<br>252                                                                                                                        |
| 9.1<br>9.2        | Mar Veri<br>Introdu<br>Analytic<br>Quality                                                                                                                                                    | <i>hoeff and Gerrit van Duijn</i><br>ction<br>cal methods for measuring oil and fat composition                                                                                                                                                                                                                                                                                                                                                              | 251<br>252<br>252                                                                                                                 |
| 9.1<br>9.2        | Mar Veri<br>Introdu<br>Analytic<br>Quality<br>9.3.1                                                                                                                                           | hoeff and Gerrit van Duijn<br>ction<br>cal methods for measuring oil and fat composition<br>analyses<br>Free fatty acids                                                                                                                                                                                                                                                                                                                                     | 251<br>252<br>252<br>252                                                                                                          |
| 9.1<br>9.2        | Mar Veri<br>Introdu<br>Analytic<br>Quality<br>9.3.1<br>9.3.2                                                                                                                                  | hoeff and Gerrit van Duijn<br>ction<br>cal methods for measuring oil and fat composition<br>analyses<br>Free fatty acids<br>Peroxides                                                                                                                                                                                                                                                                                                                        | 251<br>252<br>252<br>252<br>252<br>254                                                                                            |
| 9.1<br>9.2        | Mar Veri<br>Introdu<br>Analytic<br>Quality<br>9.3.1<br>9.3.2<br>9.3.3                                                                                                                         | hoeff and Gerrit van Duijn<br>ction<br>cal methods for measuring oil and fat composition<br>analyses<br>Free fatty acids<br>Peroxides<br>Phosphorus                                                                                                                                                                                                                                                                                                          | 251<br>252<br>252<br>252<br>254<br>254                                                                                            |
| 9.1<br>9.2        | Mar Veri<br>Introdu<br>Analytic<br>Quality<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4                                                                                                                | hoeff and Gerrit van Duijn<br>ction<br>cal methods for measuring oil and fat composition<br>analyses<br>Free fatty acids<br>Peroxides<br>Phosphorus<br>Moisture and dirt                                                                                                                                                                                                                                                                                     | 251<br>252<br>252<br>252<br>254<br>254<br>254                                                                                     |
| 9.1<br>9.2        | Mar Veri<br>Introdu<br>Analytic<br>Quality<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4<br>9.3.5                                                                                                       | hoeff and Gerrit van Duijn<br>ction<br>cal methods for measuring oil and fat composition<br>analyses<br>Free fatty acids<br>Peroxides<br>Phosphorus<br>Moisture and dirt<br>Colour                                                                                                                                                                                                                                                                           | 251<br>252<br>252<br>252<br>254<br>254<br>254<br>255<br>256                                                                       |
| 9.1<br>9.2        | Mar Veri<br>Introdu<br>Analytic<br>Quality<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4<br>9.3.5<br>9.3.6                                                                                              | hoeff and Gerrit van Duijn<br>ction<br>cal methods for measuring oil and fat composition<br>analyses<br>Free fatty acids<br>Peroxides<br>Phosphorus<br>Moisture and dirt<br>Colour<br>Metals                                                                                                                                                                                                                                                                 | 251<br>252<br>252<br>254<br>254<br>254<br>255<br>256<br>256                                                                       |
| 9.1<br>9.2        | Mar Veri<br>Introdu<br>Analytic<br>Quality<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4<br>9.3.5<br>9.3.6<br>9.3.7<br>9.3.8                                                                            | hoeff and Gerrit van Duijn<br>ction<br>cal methods for measuring oil and fat composition<br>analyses<br>Free fatty acids<br>Peroxides<br>Phosphorus<br>Moisture and dirt<br>Colour<br>Metals<br>Deterioration of Bleachability Index                                                                                                                                                                                                                         | 251<br>252<br>252<br>254<br>254<br>254<br>255<br>256<br>256<br>256<br>256                                                         |
| 9.1<br>9.2<br>9.3 | Mar Veri<br>Introdu<br>Analytic<br>Quality<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4<br>9.3.5<br>9.3.6<br>9.3.7<br>9.3.8                                                                            | hoeff and Gerrit van Duijn<br>ction<br>cal methods for measuring oil and fat composition<br>analyses<br>Free fatty acids<br>Peroxides<br>Phosphorus<br>Moisture and dirt<br>Colour<br>Metals<br>Deterioration of Bleachability Index<br>Tocopherols<br>chain contaminants<br>Polycyclic aromatic hydrocarbons                                                                                                                                                | 251<br>252<br>252<br>254<br>254<br>254<br>255<br>256<br>256<br>256<br>256                                                         |
| 9.1<br>9.2<br>9.3 | Mar Veri<br>Introdu<br>Analytic<br>Quality<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4<br>9.3.5<br>9.3.6<br>9.3.7<br>9.3.8<br>Supply of                                                               | hoeff and Gerrit van Duijn<br>ction<br>cal methods for measuring oil and fat composition<br>analyses<br>Free fatty acids<br>Peroxides<br>Phosphorus<br>Moisture and dirt<br>Colour<br>Metals<br>Deterioration of Bleachability Index<br>Tocopherols<br>chain contaminants<br>Polycyclic aromatic hydrocarbons<br>Pesticide residues                                                                                                                          | 251<br>252<br>252<br>254<br>254<br>254<br>255<br>256<br>256<br>256<br>256<br>257<br>257                                           |
| 9.1<br>9.2<br>9.3 | Mar Veri<br>Introdu<br>Analytic<br>Quality<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4<br>9.3.5<br>9.3.6<br>9.3.7<br>9.3.8<br>Supply 9<br>9.4.1                                                       | hoeff and Gerrit van Duijn<br>ction<br>cal methods for measuring oil and fat composition<br>analyses<br>Free fatty acids<br>Peroxides<br>Phosphorus<br>Moisture and dirt<br>Colour<br>Metals<br>Deterioration of Bleachability Index<br>Tocopherols<br>chain contaminants<br>Polycyclic aromatic hydrocarbons<br>Pesticide residues<br>Hydrocarbons of mineral origin                                                                                        | 251<br>252<br>252<br>254<br>254<br>255<br>256<br>256<br>256<br>256<br>257<br>257<br>257                                           |
| 9.1<br>9.2<br>9.3 | Mar Veri<br>Introdu<br>Analytic<br>Quality<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4<br>9.3.5<br>9.3.6<br>9.3.7<br>9.3.8<br>Supply 0<br>9.4.1<br>9.4.2<br>9.4.3<br>9.4.4                            | hoeff and Gerrit van Duijn<br>ction<br>cal methods for measuring oil and fat composition<br>analyses<br>Free fatty acids<br>Peroxides<br>Phosphorus<br>Moisture and dirt<br>Colour<br>Metals<br>Deterioration of Bleachability Index<br>Tocopherols<br>chain contaminants<br>Polycyclic aromatic hydrocarbons<br>Pesticide residues<br>Hydrocarbons of mineral origin<br>Mycotoxins                                                                          | 251<br>252<br>252<br>254<br>254<br>255<br>256<br>256<br>256<br>256<br>257<br>257<br>257<br>257<br>258<br>259<br>260               |
| 9.1<br>9.2<br>9.3 | Mar Veri<br>Introdu<br>Analytic<br>Quality<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4<br>9.3.5<br>9.3.6<br>9.3.7<br>9.3.8<br>Supply<br>9.4.1<br>9.4.2<br>9.4.3<br>9.4.4<br>9.4.5                     | hoeff and Gerrit van Duijn<br>ction<br>cal methods for measuring oil and fat composition<br>analyses<br>Free fatty acids<br>Peroxides<br>Phosphorus<br>Moisture and dirt<br>Colour<br>Metals<br>Deterioration of Bleachability Index<br>Tocopherols<br>chain contaminants<br>Polycyclic aromatic hydrocarbons<br>Pesticide residues<br>Hydrocarbons of mineral origin<br>Mycotoxins<br>Other contaminants                                                    | 251<br>252<br>252<br>254<br>254<br>255<br>256<br>256<br>256<br>256<br>257<br>257<br>257<br>257<br>258<br>259<br>260<br>261        |
| 9.1<br>9.2<br>9.3 | Mar Veri<br>Introdu<br>Analytic<br>Quality<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4<br>9.3.5<br>9.3.6<br>9.3.7<br>9.3.8<br>Supply<br>9.4.1<br>9.4.2<br>9.4.3<br>9.4.4<br>9.4.5<br>Quality          | hoeff and Gerrit van Duijn<br>ction<br>cal methods for measuring oil and fat composition<br>analyses<br>Free fatty acids<br>Peroxides<br>Phosphorus<br>Moisture and dirt<br>Colour<br>Metals<br>Deterioration of Bleachability Index<br>Tocopherols<br>chain contaminants<br>Polycyclic aromatic hydrocarbons<br>Pesticide residues<br>Hydrocarbons of mineral origin<br>Mycotoxins<br>Other contaminants<br>and food safety assurance                       | 251<br>252<br>252<br>254<br>254<br>255<br>256<br>256<br>256<br>256<br>257<br>257<br>257<br>258<br>259<br>260<br>261<br>261        |
| 9.1<br>9.2<br>9.3 | Mar Veri<br>Introdu<br>Analytic<br>Quality<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4<br>9.3.5<br>9.3.6<br>9.3.7<br>9.3.8<br>Supply<br>9.4.1<br>9.4.2<br>9.4.3<br>9.4.4<br>9.4.5<br>Quality<br>9.5.1 | hoeff and Gerrit van Duijn<br>ction<br>cal methods for measuring oil and fat composition<br>analyses<br>Free fatty acids<br>Peroxides<br>Phosphorus<br>Moisture and dirt<br>Colour<br>Metals<br>Deterioration of Bleachability Index<br>Tocopherols<br>chain contaminants<br>Polycyclic aromatic hydrocarbons<br>Pesticide residues<br>Hydrocarbons of mineral origin<br>Mycotoxins<br>Other contaminants<br>and food safety assurance<br>Crude oil analyses | 251<br>252<br>252<br>254<br>254<br>255<br>256<br>256<br>256<br>256<br>257<br>257<br>257<br>257<br>259<br>260<br>261<br>261<br>261 |
| 9.1<br>9.2<br>9.3 | Mar Veri<br>Introdu<br>Analytic<br>Quality<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4<br>9.3.5<br>9.3.6<br>9.3.7<br>9.3.8<br>Supply<br>9.4.1<br>9.4.2<br>9.4.3<br>9.4.4<br>9.4.5<br>Quality          | hoeff and Gerrit van Duijn<br>ction<br>cal methods for measuring oil and fat composition<br>analyses<br>Free fatty acids<br>Peroxides<br>Phosphorus<br>Moisture and dirt<br>Colour<br>Metals<br>Deterioration of Bleachability Index<br>Tocopherols<br>chain contaminants<br>Polycyclic aromatic hydrocarbons<br>Pesticide residues<br>Hydrocarbons of mineral origin<br>Mycotoxins<br>Other contaminants<br>and food safety assurance                       | 251<br>252<br>252<br>254<br>254<br>255<br>256<br>256<br>256<br>256<br>257<br>257<br>257<br>258<br>259<br>260<br>261<br>261        |

|       | 9.5.4      | Oil processing link tables                                                             | 263        |
|-------|------------|----------------------------------------------------------------------------------------|------------|
|       | 9.5.5      | Food safety control points                                                             | 264        |
| Refer | ences      |                                                                                        | 266        |
| 10    | Oil Proce  | essing Design Basics                                                                   | 267        |
|       | Gerrit var | n Duijn and Gerrit den Dekker                                                          |            |
| 10.1  | Introduct  | tion                                                                                   | 267        |
| 10.2  | Refining   | and modification process routes for most common oil types                              | 268        |
|       | 10.2.1     | Process step definitions                                                               | 268        |
|       |            | 10.2.1.1 Degumming or water degumming (degummed)                                       | 268        |
|       |            | 10.2.1.2 Deep degumming (ddg)                                                          | 268        |
|       |            | 10.2.1.3 Neutralisation (n)                                                            | 269        |
|       |            | 10.2.1.4 One-step bleaching (osb)                                                      | 269        |
|       |            | 10.2.1.5 Two-step bleaching (tsb)                                                      | 269        |
|       |            | 10.2.1.6 Deodorisation (d)                                                             | 269        |
|       |            | 10.2.1.7 Deodorisation/stripping (ds)                                                  | 269        |
|       |            | 10.2.1.8 Hydrogenation (h)                                                             | 269        |
|       |            | 10.2.1.9 Interesterification (ie)                                                      | 270        |
|       |            | 10.2.1.10 Dewaxing/winterisation (wi)                                                  | 270        |
|       |            | 10.2.1.11 Dry fractionation (df)                                                       | 270        |
|       |            | 10.2.1.12 Soapstock splitting (ss)                                                     | 270        |
|       | 10.2.2     | Process routes for straight refined oils and fats                                      | 270        |
|       | 10.2.3     | Process routes pre- and post-hydrogenation                                             | 272        |
|       | 10.2.4     | Process routes pre- and post-IEC                                                       | 273        |
|       | 10.2.5     | Process routes pre- and post-IEE                                                       | 274        |
|       | 10.2.6     | Process routes in dry fractionation and dewaxing                                       | 274        |
| 10.3  |            | ssing block diagram design                                                             | 274        |
|       | 10.3.1     | Standard oil processing block diagrams                                                 | 274        |
|       | 10.3.2     | Batch and continuous processes                                                         | 275        |
|       |            | 10.3.2.1 Batch processes                                                               | 276        |
|       |            | 10.3.2.2 Continuous processes                                                          | 276        |
|       | 10.3.3     | Refining of straight oils and fats                                                     | 277        |
|       |            | 10.3.3.1 Chemical refining                                                             | 277        |
|       | 10.2 (     | 10.3.3.2 Physical refining                                                             | 278        |
|       | 10.3.4     | Refining combined with hydrogenation                                                   | 279        |
|       | 10.3.5     | Refining combined with interesterification                                             | 279        |
|       | 10.3.6     | Refining and dewaxing                                                                  | 281        |
|       | 10.3.7     | Refining and fractionation<br>Production of <i>trans</i> -free hard fats               | 281<br>281 |
| 10 /  | 10.3.8     |                                                                                        | 281        |
| 10.4  | 10.4.1     | equipment capacity<br>Example: calculation of effective times for 5- and 7-days-a-week | 203        |
|       | 10.4.1     |                                                                                        | 205        |
|       |            | operations                                                                             | 285        |
|       |            | 10.4.1.1 5 days a week                                                                 | 285        |
| 10 F  | Taple new  | 10.4.1.2 7 days a week                                                                 | 285        |
| 10.5  | 10.5.1     | < design rules<br>Storage capacity                                                     | 285<br>285 |
|       | 10.5.1     | Storage capacity                                                                       |            |
|       | 10.3.2     | Degradation during storage<br>10.5.2.1 Hydrolysis                                      | 286<br>287 |
|       |            | 10.5.2.1 Hydrolysis                                                                    | 207        |

xi

|       |          | 10.5.2.2     | Oxidation                                        | 287 |
|-------|----------|--------------|--------------------------------------------------|-----|
|       |          | 10.5.2.3     | 5                                                | 288 |
|       |          | 10.5.2.4     | Contamination by chemicals or impurities         | 288 |
|       | 10.5.3   | Tank desig   | jn rules                                         | 288 |
|       |          | 10.5.3.1     | Tank shape and material of construction          | 288 |
|       |          | 10.5.3.2     | Tank heating                                     | 290 |
|       |          | 10.5.3.3     |                                                  | 290 |
|       |          | 10.5.3.4     | 5                                                | 290 |
|       | 10.5.4   | Piping des   |                                                  | 291 |
|       |          | 10.5.4.1     |                                                  | 291 |
|       |          | 10.5.4.2     | 5                                                | 291 |
|       |          | 10.5.4.3     | 5                                                | 291 |
| 10.6  | Design e |              | r utilities consumptions and effluent production | 291 |
|       | 10.6.1   | Introducti   | on                                               | 291 |
|       | 10.6.2   | Utilities    |                                                  | 292 |
|       |          | 10.6.2.1     | Heating                                          | 292 |
|       |          | 10.6.2.2     | Open steam and vacuum                            | 294 |
|       |          | 10.6.2.3     | 55                                               | 294 |
|       |          | 10.6.2.4     | Cooling water                                    | 295 |
|       |          | 10.6.2.5     | Gases                                            | 295 |
|       | 10.6.3   | Effluent     |                                                  | 296 |
|       |          | 10.6.3.1     |                                                  | 296 |
|       |          | 10.6.3.2     |                                                  | 296 |
|       |          | 10.6.3.3     | 5                                                | 298 |
|       | 10.6.4   | -            | sumption and effluent data per process           | 298 |
|       |          | 10.6.4.1     | Storage                                          | 298 |
|       |          | 10.6.4.2     |                                                  | 299 |
|       |          | 10.6.4.3     | Modification processes                           | 301 |
| 10.7  |          | ional safety |                                                  | 301 |
|       | 10.7.1   |              |                                                  | 301 |
|       | 10.7.2   |              |                                                  | 303 |
|       | 10.7.3   |              | pational hazards of oil refining                 | 304 |
|       |          | 10.7.3.1     | 1 1 5                                            | 304 |
|       |          | 10.7.3.2     | 5 1 5                                            | 305 |
|       |          | 10.7.3.3     | 5                                                | 306 |
|       | 10.7.4   |              | pational hazards of oil modification             | 306 |
|       |          | 10.7.4.1     | 5 5 5                                            | 306 |
|       |          | 10.7.4.2     | Safety of IEC                                    | 308 |
|       | 10.7.5   |              | pational hazards of oil storage and handling     | 308 |
|       |          | 10.7.5.1     | Access to tanks and processing vessels           | 308 |
|       |          | 10.7.5.2     | Top access to tank cars                          | 309 |
| Refer | ences    |              |                                                  | 310 |
|       | Further  | Reading      |                                                  | 311 |
|       | Index    |              |                                                  | 313 |

### **List of Contributors**

Dr ARJEN BOT, Unilever R&D Vlaardingen, Vlaardingen, The Netherlands

- Dr GIJS CALLIAUW, Development Manager Modification, Desmet Ballestra Oils and Fats, Zaventem, Belgium
- Dr DAVID COWAN, CS Application Scientist/Global Coordinator, Novozymes, Chesham, UK
- Dr WIM DE GREYT, R&D Manager, Desmet Ballestra Oils and Fats, Zaventem, Belgium
- GERRIT den Dekker, Retired, Unilever R&D Vlaardingen, Vlaardingen, The Netherlands
- Professor ECKHARD FLÖTER, Technical University Berlin, Berlin, Germany
- FRANK D. GUNSTONE, Professor emeritus, St Andrews University, St Andrews, UK
- WOLF HAMM, Retired, Harpenden, UK
- Dr MARC KELLENS, Group Technical Director, Desmet Ballestra Oils and Fats, Zaventem, Belgium
- Тімотну G. Кемрек, Global Technical Director, Solvent Extraction, Desmet Ballestra, Marietta, GA, USA
- PHILIPPE VAN DOOSSELAERE, Retired (formerly Product Manager, Crushing, Desmet Ballestra Oils and Fats), Brussels, Belgium
- Dr GERRIT VAN DUIJN, Maas Refinery, Rotterdam, The Netherlands
- MAR VERHOEFF, Laboratory Dr A. Verwey B.V., Rotterdam, The Netherlands

### **List of Abbreviations**

|       | Acceptable Daily Intake                         |
|-------|-------------------------------------------------|
| ARfD  | Acute Reference Dose                            |
| AMF   | Anhydrous Milk Fat                              |
| ALARA | As Low As Reasonably Achievable                 |
| ATEX  | Atmospheres Explosive                           |
| AES   | Atomic Emission Spectroscopy                    |
| Barg  | Bar gauge                                       |
| CBE   | Cocoa Butter Equivalents                        |
| CBI   | Cocoa Butter Improvers                          |
| CBS   | Cocoa Butter Substitutes                        |
| DSC   | Differential Scanning Calorimetry               |
| DHA   | 4,7,10,13,16,19-Docosahexaenoic acid            |
| DACC  | Donor Accepted Column Chromatographic           |
| DOBI  | Deterioration of Bleachability Index            |
| EPA   | 5,8,11,14,17-Eicosapentaenoic Acid              |
| ECD   | Electron Capture Detection                      |
| EDTA  | Ethylene Diamine Tetra-acetic Acid              |
| EU-27 | European Union – 27                             |
| FOSFA | Federation of Oils, Seeds and Fats Associations |
| FID   | Flame Ionisation Detection                      |
| FFA   | Free Fatty Acids                                |
| GCFID | Gas Chromatography–Flame Ionisation Detection   |
| GC-MS | Gas Chromatography–Mass Spectrometry            |
| GPC   | Gel Permeation Chromatography                   |
| HACCP | Hazard Analysis and Critical Control Points     |
| HAZOP | Hazard and Operational Study                    |
| HPLC  | High-Performance Liquid Chromatography          |
| ICP   | Inductively Coupled Plasma                      |
| IMO   | International Maritime Organization             |

| XVI             |                                                                        |
|-----------------|------------------------------------------------------------------------|
| MARPOL          | International Convention for the Prevention of<br>Pollution from Ships |
| ISO             | International Organization for Standardization                         |
| LOD             | Limit of Determination                                                 |
| LDL             | Low-Density Lipoprotein                                                |
| MRL             | Maximum Residue Limits (s)                                             |
| 3-MCPD          | 3-Monochloropropane-diol                                               |
| NIOP            | National Institute of Oilseeds Products                                |
| NORES           | Neutral Oil Recovery System                                            |
| NPD             | Nitrogen Phosphorus Detection                                          |
| BOB             | 2-Oleo-1.3-dibehenin                                                   |
| EO              | Operational Efficiency                                                 |
| PFAD            | Palm Fatty Acid Distillate                                             |
| PFR             | Plug-Flow Reactor                                                      |
| PAHs            | Polycyclic Aromatic Hydrocarbons                                       |
| PG              | Propyl allate                                                          |
| POP             | Oleo-dipalmitin                                                        |
| POS             | Oleo-palmitin – stearin                                                |
| POSt            | Oleo-palmitin – stearin                                                |
| PStP            | Stearo-dipalmitin                                                      |
| SSHEs           | Scraped-Surface Heat Exchangers                                        |
| Silver-ion HPLC | Silver ion High Performance Liquid Chromatography                      |
| SFC             | Solid Fat Content                                                      |
| SBDD            | Soybean Deodoriser Distillate                                          |
| SOS             | Oleo-distearin                                                         |
| SUS             | Saturated Unsaturated Saturated triglyceride                           |
| StOSt           | Oleo-distearin                                                         |
| UUS             | Unsaturated Unsaturated Saturated triglyceride                         |
| USU             | Unsaturated Saturated Unsaturated triglyceride                         |
| USS             | Unsaturated Saturated Saturated triglyceride                           |
| TBHQ            | Tertiary Butyl hydroquinone                                            |
|                 |                                                                        |

LIST OF ABBREVIATIONS

xvi

### Introduction

In the years since the first edition of *Edible Oil Processing* was published (in 2000), there have been many changes in the processing of oils. Two major factors have been involved: first, the need to reduce the hydrogenated fats in food products, and second, the move to use enzymes. These two issues both originate from an overall increased awareness of the possible impact of processing on consumers' health and on the environment. This edition tries to bring this awareness, and the way in which it has altered the nature of edible oil processing, to the forefront of the discussion.

In Chapter 1, Gunstone outlines the makeup of fats and oils, from the major components such as triacylglycerols (TAGs) to minor constituents such as squalene. He illustrates the changes in oils that have been obtained by seed breeding procedures, such as Nu Sun oil. He also deals with the physical properties on which much of the processing of oils is based.

In Chapter 2, Hamm explains how multi-compartmented parcel tankers play a major role in the transport of oils and fats. He highlights the systems and regulations pertaining to oil shipments, and he deals with the role of FOSFA and NIOP in greater detail than in the first edition.

In Chapter 3, van Doosselaere describes how important seed handling and storage are to the overall production of good-quality oils. In sampling incoming seeds, moisture, foreign material, damaged or broken seeds, protein content and oil content must all be controlled. He explains the methods of storing seeds used to maintain their high quality. Preparation and extraction of seeds are covered in a general way before the special care that must be taken for soybean, rapeseed, cottonseed, corn germ, copra, peanut, rice bran, olive and of course palm oils is discussed.

In Chapter 4, Kemper describes how hexane became the industry's solvent of choice for the extraction of oils, and considers the effects of various plant and processing parameters on solvent extraction plant performance. He also records how important solvent recovery and heat recovery are to the overall economy of the process. The chapter provides a comprehensive overview of solvent extraction as used in edible oil production.

In Chapter 5, De Greyt deals with the refining of food oils in a sustainable manner. He explains how new technologies have become available and how some have been employed commercially, such as hydrodynamic Nano Reactors and enzymatic degumming. Some processes are still at the pilot plant stage, such as the use of chlorophyllases. He finishes with a look at the future for short-path distillation and supercritical processing, and what this might bring to this field of oil processing.

In Chapter 6, Kellens and Calliauw describe how hydrogenation, interesterification and fractional crystallisation are still used to modify oils and fats. Health concerns have led to a large reduction (6-30 million tonnes) in the amount of oil being hydrogenated, and the authors touch on the proposed newer methods of cutting down on *trans* fatty acid composition. They elaborate on the discussion of fractional crystallisation given in the first edition, examining everything from intersolubility to industrial practice, and noting that multistage processing and continuous operation hold the most promise for oil modification technology.

In Chapter 7, Cowan shows the considerable change that has occurred in the use of enzymes since the first edition of this book. By using gene transfer between microorganisms and low-cost immobilisation techniques, it has been possible to move the technology from one restricted to high-value products to one with much wider applications. He covers the use of cellulases, proteolytic enzymes, phospholipases, esterase and lipases, and considers their environmental impacts.

Chapter 8 deals with the applications of edible oils and the considerable reformulation resulting from the reduction of the use of hydrogenated oils. Bot and Flöter also explain fat crystal networks, the polymorphic changes in spreads, the lower-fat versions of mayonnaises and the use of tropical fats in nondairy creams.

Verhoeff and van Duijn concisely describe in Chapter 9 the methods used to measure the natural components of edible oils, including free fatty acids (FFA), peroxides, phosphorus, moisture, dirt, colour, metals and tocopherols, as well as contaminants such as polycyclic aromatic hydrocarbons, pesticides, hydrocarbons and mycotoxins. The authors go on to describe the crude oil risk matrix and finish with a consideration of hazard analysis and critical control points (HACCP).

In Chapter 10, van Duijn and den Dekker explain the steps needed to decide whether the building of a new refinery can be justified. They outline the process routes to a fully refined oil based on lowest costs. Batch and continuous processes and chemical and physical refining are contrasted, and the design parameters for storage tanks and piping are fully covered. The authors provide estimates based on best-practice data, which can be used for first-design purposes. They then explain that occupational safety hazards must be considered from an early stage in the planning.

Wolf Hamm Richard J. Hamilton Gijs Calliauw

# **1** Composition and Properties of Edible Oils

Frank D. Gunstone Professor emeritus, St Andrews University, St Andrews, UK

### 1.1 Introduction

According to US Department of Agriculture (USDA) statistics, the production of nine vegetable oils from seven seeds and from palm fruit and olive was 153 million tonnes worldwide in 2010/11 (Table 1.1). In addition, production of four animal fats (butter, lard, tallow and fish oil) amounted to about 25 million tonnes. Over time, animal fats have fallen in market share, and they now make up only 15% of total annual production. Among vegetable oils, palm, soya, rape and sun oils have become increasingly important, with palm and soya dominant (Table 1.1). It is interesting that these four vegetable oils are produced in different parts of the world (Table 1.2). It should also be noted that crops grown in the southern and northern hemispheres are harvested at different times of the year, with the exception that palm oil is produced in all months of the year. This is particularly significant for soybeans, grown predominately in North and South America. Palm oil and olive oil are obtained by pressing the fruits in the countries where they grow, and trade is confined to the oil or to downstream products. Exports/imports of vegetable oils represent 41% of total production, but there is also considerable trade in unprocessed seeds (24%), especially in soybeans, with extraction occurring in the importing country.

Oils and fats are used mainly for food purposes, but both oilseeds and extracted oil are also used in some part as animal feed. Oils also have industrial uses. Traditionally, these have been mainly in the production of soap and other surface-active molecules, but increasingly they are for energyproducing purposes, such as transport use by automobiles, trains, aeroplanes

*Edible Oil Processing*, Second Edition. Edited by Wolf Hamm, Richard J. Hamilton and Gijs Calliauw. © 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

|             | 07/08  | 08/09  | 09/10  | 10/11  | 11/12 (e) | 12/13 (f) |
|-------------|--------|--------|--------|--------|-----------|-----------|
| Palm        | 41.08  | 44.02  | 45.87  | 47.95  | 50.67     | 52.77     |
| Soya bean   | 37.83  | 35.90  | 38.88  | 41.24  | 41.85     | 43.62     |
| Rapeseed    | 18.43  | 20.56  | 22.44  | 23.58  | 23.76     | 23.52     |
| Sunflower   | 10.03  | 11.95  | 12.11  | 12.21  | 14.14     | 14.52     |
| Cottonseed  | 5.21   | 4.78   | 4.62   | 4.99   | 5.32      | 5.24      |
| Groundnut   | 4.86   | 5.08   | 4.74   | 5.10   | 5.24      | 5.37      |
| Palm kernel | 4.88   | 5.17   | 5.50   | 5.56   | 5.84      | 6.09      |
| Coconut     | 3.53   | 3.54   | 3.63   | 3.83   | 3.56      | 3.52      |
| Olive       | 2.78   | 2.78   | 3.05   | 3.04   | 3.10      | 3.09      |
| Total       | 128.62 | 133.78 | 140.84 | 147.50 | 153.48    | 157.74    |

**Table 1.1** Annual production of major vegetable oils (million tonnes) between 2007/08 and 2010/11, 2011/12 (estimate) and 2012/13 (forecast).

Source: USDA figures (June 2012).

**Table 1.2**Major geographical regions for the production of oilseeds and vegetable oils in2011/12.

| Product                   | Weight<br>(million tonnes) | Major producing countries/regions<br>(percentage of total)                 |  |
|---------------------------|----------------------------|----------------------------------------------------------------------------|--|
|                           |                            | Seven oilseeds                                                             |  |
| Total                     | 437.0                      |                                                                            |  |
| Soya                      | 236.4                      | USA (35), Brazil (28), Argentina (18), China (6),<br>India (5)             |  |
| Rape                      | 60.7                       | EU-27 (31), Canada (23), China (21), India (11)                            |  |
| Sunflower                 | 39.1                       | Russia (25), Ukraine (24), EU-27 (21), Argentina (9)                       |  |
| Cottonseed                | 46.6                       | China, India, USA, Pakistan                                                |  |
| Groundnut                 | 35.5                       | China, India                                                               |  |
| Palm kernel               | 13.3                       | Indonesia, Malaysia                                                        |  |
| Copra <sup><i>a</i></sup> | 5.5                        | Philippines, Indonesia, India                                              |  |
|                           |                            | Nine vegetable oils <sup>b</sup>                                           |  |
| Total                     | 153.48                     | -                                                                          |  |
| Palm                      | 50.67                      | Indonesia (50), Malaysia (37), Thailand (3)                                |  |
| Soya                      | 41.85                      | China (25), USA (21), Argentina (17), Brazil (17),<br>EU-27 (5), India (4) |  |
| Rape                      | 23.76                      | EU-27 (37), China (23), Canada (12), India (10),<br>Japan (4)              |  |
| Sunflower                 | 14.14                      | Ukraine (26), Russia (23), EU-27 (21), Argentina (10)                      |  |
| Cottonseed                | 5.32                       | China (28), India (23), USA (6)                                            |  |
| Groundnut                 | 5.24                       | China (48), India (26)                                                     |  |
| Palm kernel               | 5.84                       | Indonesia, Malaysia                                                        |  |
| Coconut                   | 3.56                       | Philippines, Indonesia, India                                              |  |
| Olive                     | 3.10                       | EU-27 (77)                                                                 |  |

<sup>*a*</sup>Copra is the source of coconut oil.

<sup>b</sup>Vegetable oils may be extracted from indigenous and/or imported seeds.

Source: USDA figures (June 2012).

|                    | Population<br>(millions) | Million tonnes  | Percentage of<br>world total | kg/person/year |
|--------------------|--------------------------|-----------------|------------------------------|----------------|
| China              | 1345                     | 29.05           | 19.2                         | 21.6           |
| EU-27              | 502                      | 23.99           | 15.9                         | 47.8           |
| India              | 1198                     | 16.93           | 11.2                         | 14.1           |
| USA<br>World total | 315<br>7022              | 12.94<br>151.16 | 8.6                          | 41.1<br>21.5   |

Table 1.3 Consumption of vegetable oils in 2011/12 in China, EU-27, India and the USA.

Source: USDA figures (June 2012).

or boats, or the direct production of energy. These new uses underlie the food versus fuel debate (Gunstone, 2011).

Total consumption covers all these differing uses and is not to be equated with food consumption. It should also be remembered that dietary intake of fat goes beyond these commodity oils and includes sources such as nuts, meat products and dairy products other than butter (milk and cheese). The major consuming countries/regions of vegetable oils are China, EU-27, USA and India, as shown in Table 1.3. It is sometimes convenient to express consumption (for all purposes) on a *per capita* basis by dividing it by population. In 2011/12, the world average was 21.5 kg for vegetable oils, but the figure shows great variation for individual countries/regions. The world figure has grown steadily over the last 60 years and production of vegetable oils has grown more quickly than population. The figure for China has increased recently and is now close to the world average. The Indian figure has changed less and remains well below average. Higher figures are apparent for the USA and Europe, with the European figure inflated by the significant production of biodiesel, made mainly from rapeseed oil. The very large kg/person figure of 159 for Malaysia reflects the presence of a large oleochemical industry in a country with modest population (27.5 million).

The lower section of Table 1.2 shows the major producing countries/regions for nine vegetable oils. Since these oils can be produced, in some part, from imported seeds, the upper part of the table is a better indication of their geographical origin.

### **1.2** Components of natural fats

The oils and fats of commerce are mixtures of organic molecules. They are mainly triacylglycerols (commonly referred to as triglycerides), accompanied by lower levels of diacylglycerols (diglycerides), monoacylglycerols (monoglycerides) and free fatty acids, and by other minor components, some of which are important materials in their own right. Materials (1-3%) that are not soluble in aqueous alkali after hydrolysis are sometimes referred to as nonsaponifiable or unsaponifiable material. Although oils and fats are the source of dietary lipids, they are also an important source of other essential dietary requirements. These minor components include phospholipids, phytosterols, tocols (tocopherols and tocotrienols, including vitamin E) and hydrocarbons. Phospholipids are recovered during degumming and sterols and tocols are enriched in deodoriser distillate. Thus soybeans are not only the source of soybean oil and soybean meal (protein) but are also the major source of lecithin (a crude mixture containing phospholipids), sterols and sterol esters, and of natural vitamin E (Clark, 1996; Ghosh and Bhattacharyya, 1996; Gunstone, 2011; Walsh *et al.*, 1998).

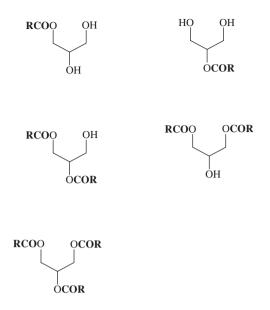
#### 1.2.1 Fatty acids and glycerol esters

Over 1000 natural fatty acids have been identified. These vary in chain length (commonly  $C_{12}-C_{22}$ ), degree of unsaturation (usually in the range 0–6 *cis* olefinic centres) and the presence or absence of other functional groups such as hydroxy or epoxy. However, only a limited number – perhaps 25-50 – are likely to be important to most lipid scientists and technologists. The most common members of this group are detailed in Table 1.4. They are divided into four categories: saturated acids, monounsaturated acids

| Common name           | Systematic name <sup>a</sup>         | Shorthand <sup>b</sup> |
|-----------------------|--------------------------------------|------------------------|
| Saturated             |                                      |                        |
| Lauric                | Dodecanoic                           | 12:0                   |
| Myristic              | Tetradecanoic                        | 14:0                   |
| Palmitic              | Hexadecanoic                         | 16:0                   |
| Stearic               | Octadecanoic                         | 18:0                   |
| Monounsaturated       |                                      |                        |
| Oleic                 | 9-octadecenoic                       | 18:1                   |
| Erucic                | 13-dodecenoic                        | 22:1                   |
| Polyunsaturated (n-6) |                                      |                        |
| Linoleic              | 9,12-octadecadienoic                 | 18:2                   |
| γ-linolenic           | 6,9,12-octadecatrienoic              | 18:3                   |
| Arachidonic           | 5,8,11,14-eicosatetraenoic           | 20:4                   |
| Polyunsaturated (n-3) |                                      |                        |
| α-linolenic           | 9,12,15-octadecatrienoic             | 18:3                   |
| EPA                   | 5,8,11,14,17-eicosapentaenoic acid   | 20:5                   |
| DHA                   | 4,7,10,13,16,19-docosahexaenoic acid | 22:6                   |

 Table 1.4
 Structures of the most common fatty acids.

<sup>a</sup>The unsaturated centres in these acids have *cis* configuration.


<sup>b</sup>The shorthand designation indicates the number of carbon atoms and of *cis* unsaturated centres in the molecule. It is not necessary to prefix the numbers with the letter 'C'.

and polyunsaturated acids of the n-6 and n-3 families (also referred to as omega-6 and omega-3 acids). The terms 'n-6' and 'n-3' refer to the positions of the first double bond with respect to the end methyl group. For the most part, unsaturation is confined to olefinic systems with *cis* configuration, and the polyunsaturated fatty acids (PUFAs) have methylene-interrupted patterns of unsaturation. They will thus contain one or more pentadiene group (-CH=CHCH<sub>2</sub>CH=CH-) with a doubly activated CH<sub>2</sub> function, which has an important influence on their properties. The (largely unnatural) trans acids differ from their cis isomers in their physical properties (especially higher melting points) and in their nutritional properties. There has been wide recognition of the undesirable nutritional properties of most trans acids in the past 10 years, which has had important consequences for food processors. In some countries, the content of *trans* acids above a certain level has to be reported on the packaging; even where this is not required by law, processors have sought to keep levels to a minimum. This has had important consequences for the blends of fats used in spreads and in the production of baking fats, as processors have struggled to maintain desirable physical properties while achieving higher nutritional status. Another nutritional factor that has become more significant in the last 10 years is the recognition of the importance of omega-3 (n-3) acids, particularly those with more than 18 carbon atoms.

These common fatty acids are easily recognised and separated by gas chromatography of their methyl esters, and this technique is a standard analytical procedure in quality-control laboratories (see Chapter 9). Other analytical procedures used in research laboratories, including mass spectrometry (MS) and nuclear magnetic resonance (NMR), are also starting to be used in some quality-control centres.

An oil or fat will usually contain at least 95% triacylglycerols before refining. After refining, this number will generally be in the range 97–99%, depending on the level of unsaponifiable material the oil or fat still contains. Triacylglycerols are fatty acid esters of the trihydric alcohol glycerol (1,2,3trihydroxypropane) and contain three acyl chains in each molecule, usually from two or three different fatty acids (Figure 1.1). In the biosynthesis of a vegetable oil, acylation of a glycerol phosphate is enzyme-promoted, and the fatty acids are not distributed in a random manner. If the natural mixture is randomised, the resulting material has the same total amount of fatty acids but different triacylglycerols and, consequently, different melting behaviour (see Chapter 6). In vegetable oils, the *sn*-2 position is esterified almost entirely by unsaturated fatty acids, while saturated acids and the remaining unsaturated acids are in the *sn*-1(3) positions.

An oil with *n* different fatty acids could contain  $(n^3 + 3n^2 + 2n) \div 6$  triacylglycerols if all possibilities of isomerism were included. This corresponds to values of 10, 20 and 35 for 3, 4 and 5 fatty acids, respectively. In reality,

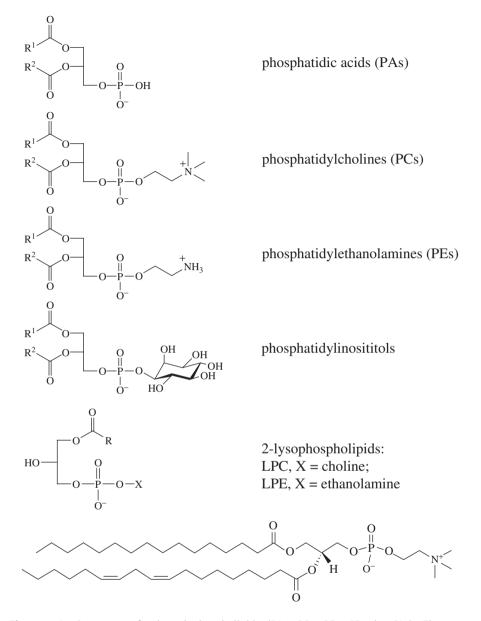


**Figure 1.1** Glycerol esters (1- and 2-monoacylglycerols, 1,2- and 1,3-diacylglycerols and triacylglycerols). **RCO** represents the acyl group from the fatty acid **RCOOH**. All other letters relate to atoms derived from the glycerol molecule.

these values are too low, since all the minor acids have been ignored. The number becomes very much greater in fats, such as dairy fats, fish oils and partially hydrogenated oils, with very complex fatty acid compositions. There are methods of triacylglycerol analysis, but these are not trivial, and the results can be complex. This level of analysis is therefore not routine. There are, however, standardised procedures for distinguishing fatty acids in the *sn*-2 position from those in the *sn*-1(3) positions.

Accompanying the triacylglycerols are low levels of diacylglycerols, monoacylglycerols and free acids. These can result from incomplete biosynthesis in immature seeds or from post-harvest lipolysis. Almost all of the free acids and most of the monoacylglycerols will be removed by refining, but diacylglycerols tend to remain in the product. These are usually in the range 0-2%, but refined palm oil contains 3-8% diacylglycerols (Wai-Lin & Wee-Lam, 1995).

After conventional refining, some oils, such as rape/canola, corn, rice bran and sunflower, contain high-melting material that slowly crystallises during storage at ambient temperature. This causes a haze, which – though harmless from a nutritional standpoint – does not find favour with users of salad oil and frying oil. This haze is caused mainly by wax esters and can be removed by holding the oil at ~5 °C for several hours and then filtering (at a slightly higher temperature, to reduce viscosity) with the assistance of a filter aid. Undesirable solids present in some biodiesel samples have been identified as monoacylglycerols and sterol glucosides (Tang *et al.*, 2008).


### 1.2.2 Phospholipids

Crude oils generally contain phospholipids, which are removed during refining at the degumming stage (Chapter 4). The valuable crude product containing phospholipids and other lipid molecules is termed 'lecithin'. It is the basis of the phospholipid industry, and phospholipids are used extensively in food products, animal feed and industrial products; their uses are based mainly on their amphiphilic properties (i.e. different parts of the molecule show lipophilic and hydrophilic properties). The major components (phosphatidylcholines, phosphatidylethanolamines and phosphatidylinositols) are accompanied by smaller proportions of other phospholipids (Figure 1.2). Sovbean oil, rapeseed oil and sunflower seed oil contain 1.5-2.5%, <2.5%and  $\sim 1\%$  phospholipids, respectively. Soybean oil is the major source of commercial lecithin, and this raises a problem in that most soybean oil now comes from genetically modified sources. Those who want to avoid GM products must either find identity-preserved soybean lecithin or use sunflower lecithin from non-GM seeds. The typical composition of a commercial deoiled soybean lecithin is 81% phospholipids (mainly PCs, PEs and PIs), 10% glycolipids and 6% carbohydrates (Gunstone, 2008). Palm oil contains little or no phospholipid.

#### 1.2.3 Sterols

Most vegetable oils contain 1000-5000 ppm (1-5 g/kg) of sterols, partly as free sterols and partly as esterified sterols. Higher levels are present in rapeseed oil  $(5-11 \text{ g/kg}, \text{ mean } \sim 7.5 \text{ g/kg})$  and in corn oil (8-22 g/kg, mean)14 g/kg).  $\beta$ -sitosterol (Figure 1.3) is generally the major phytosterol (50–80%) of total sterol), with campesterol, stigmasterol and  $\Delta^5$ -avenasterol frequently attaining significant levels (Tables 1.5 and 1.6). Brassicasterol is virtually absent from the major seed oils, apart from rapeseed oil, in which it makes up 10% of total sterol. Kochhar (1983) reviewed sterol composition and sterol content in edible vegetable oils and the changes that take place in these as a result of processing (Section 1.6). Verleyen et al. (2002a, 2002b) have described an analytical procedure by which to measure free sterols and sterol esters and have examined the changes that occur during refining. Cholesterol (Figure 1.3) is considered to be a zoosterol and is not present in plant systems at a significant level. The normal value of 20-50 ppm in vegetable oils is much lower than the levels reported for animal fats (up to 1000 ppm), fish oils (up to 7000 ppm), dairy fats (2000–3000 ppm) and egg yolk (12 500 ppm).

Phytosterol (plant sterol) esters are now being added to spreads at significant levels up to 10% because they are considered to reduce cholesterol levels (Sato *et al.*, 2003). These phytosterols are recovered during wood



**Figure 1.2** Structures of selected phospholipids (PAs, PCs, PEs, PIs, lysoPLs). These are correctly named in the plural because natural products are mixtures of compounds which vary in the nature of the acyl groups  $R^1CO$  and  $R^2CO$ . The final structure is an alternative representation of a PC containing palmitic acid and linoleic acid. These molecules (apart from phosphatidic acid) contain four ester bonds. On complete hydrolysis they furnish fatty acids, glycerol, phosphoric acid and a hydroxy compound (choline etc.). A series of phospholipases which catalyse selective hydrolysis (lipolysis) of these ester groups exists.

Source: Most of these structures have been taken from "Lipid Glossary 2" (The Oily Press, 2000) which can be downloaded free via The Oily Press website by permission of the authors and the publisher.