Business Risk and Simulation Modelling in Practice
For other titles in the Wiley Finance series please see www.wiley.com/finance
Business Risk and Simulation Modelling in Practice

Using Excel, VBA and @RISK

MICHAEL REES
To my wife and children
Preface xvii
About the Author xxiii
About the Website xxv

PART I
An Introduction to Risk Assessment – Its Uses, Processes, Approaches, Benefits and Challenges

CHAPTER 1
The Context and Uses of Risk Assessment 3
1.1 Risk Assessment Examples 3
 1.1.1 Everyday Examples of Risk Management 4
 1.1.2 Prominent Risk Management Failures 5
1.2 General Challenges in Decision-Making Processes 7
 1.2.1 Balancing Intuition with Rationality 7
 1.2.2 The Presence of Biases 9
1.3 Key Drivers of the Need for Formalised Risk Assessment in Business Contexts 14
 1.3.1 Complexity 14
 1.3.2 Scale 15
 1.3.3 Authority and Responsibility to Identify and Execute Risk-Response Measures 16
 1.3.4 Corporate Governance Guidelines 16
 1.3.5 General Organisational Effectiveness and the Creation of Competitive Advantage 18
 1.3.6 Quantification Requirements 18
 1.3.7 Reflecting Risk Tolerances in Decisions and in Business Design 19
1.4 The Objectives and Uses of General Risk Assessment 19
 1.4.1 Adapt and Improve the Design and Structure of Plans and Projects 20
 1.4.2 Achieve Optimal Risk Mitigation within Revised Plans 20
 1.4.3 Evaluate Projects, Set Targets and Reflect Risk Tolerances in Decision-Making 21
1.4.4 Manage Projects Effectively 21
1.4.5 Construct, Select and Optimise Business and Project Portfolios 22
1.4.6 Support the Creation of Strategic Options and Corporate Planning 25

CHAPTER 2
Key Stages of the General Risk Assessment Process 29
2.1 Overview of the Process Stages 29
2.2 Process Iterations 30
2.3 Risk Identification 32
 2.3.1 The Importance of a Robust Risk Identification Step 32
 2.3.2 Bringing Structure into the Process 32
 2.3.3 Distinguishing Variability from Decision Risks 34
 2.3.4 Distinguishing Business Issues from Risks 34
 2.3.5 Risk Identification in Quantitative Approaches: Additional
 Considerations 35
2.4 Risk Mapping 35
 2.4.1 Key Objectives 35
 2.4.2 Challenges 35
2.5 Risk Prioritisation and Its Potential Criteria 36
 2.5.1 Inclusion/Exclusion 36
 2.5.2 Communications Focus 37
 2.5.3 Commonality and Comparison 38
 2.5.4 Modelling Reasons 39
 2.5.5 General Size of Risks, Their Impact and Likelihood 39
 2.5.6 Influence: Mitigation and Response Measures, and Management
 Actions 40
 2.5.7 Optimising Resource Deployment and Implementation Constraints 41
2.6 Risk Response: Mitigation and Exploitation 42
 2.6.1 Reduction 42
 2.6.2 Exploitation 42
 2.6.3 Transfer 42
 2.6.4 Research and Information Gathering 43
 2.6.5 Diversification 43
2.7 Project Management and Monitoring 44

CHAPTER 3
Approaches to Risk Assessment and Quantification 45
3.1 Informal or Intuitive Approaches 46
3.2 Risk Registers without Aggregation 46
 3.2.1 Qualitative Approaches 46
 3.2.2 Quantitative Approaches 48
3.3 Risk Register with Aggregation (Quantitative) 50
 3.3.1 The Benefits of Aggregation 50
 3.3.2 Aggregation of Static Values 51
 3.3.3 Aggregation of Risk-Driven Occurrences and Their Impacts 52
 3.3.4 Requirements and Differences to Non-Aggregation Approaches 54
3.4 Full Risk Modelling 56
 3.4.1 Quantitative Aggregate Risk Registers as a First Step to Full Models 56

CHAPTER 4

Full Integrated Risk Modelling: Decision-Support Benefits 59
 4.1 Key Characteristics of Full Models 59
 4.2 Overview of the Benefits of Full Risk Modelling 61
 4.3 Creating More Accurate and Realistic Models 62
 4.3.1 Reality is Uncertain: Models Should Reflect This 62
 4.3.2 Structured Process to Include All Relevant Factors 63
 4.3.3 Unambiguous Approach to Capturing Event Risks 63
 4.3.4 Inclusion of Risk Mitigation and Response Factors 66
 4.3.5 Simultaneous Occurrence of Uncertainties and Risks 66
 4.3.6 Assessing Outcomes in Non-Linear Situations 67
 4.3.7 Reflecting Operational Flexibility and Real Options 67
 4.3.8 Assessing Outcomes with Other Complex Dependencies 71
 4.3.9 Capturing Correlations, Partial Dependencies and Common Causalities 73
 4.4 Using the Range of Possible Outcomes to Enhance Decision-Making 74
 4.4.1 Avoiding “The Trap of the Most Likely” or Structural Biases 76
 4.4.2 Finding the Likelihood of Achieving a Base Case 78
 4.4.3 Economic Evaluation and Reflecting Risk Tolerances 82
 4.4.4 Setting Contingencies, Targets and Objectives 83
 4.5 Supporting Transparent Assumptions and Reducing Biases 84
 4.5.1 Using Base Cases that are Separate to Risk Distributions 85
 4.5.2 General Reduction in Biases 85
 4.5.3 Reinforcing Shared Accountability 85
 4.6 Facilitating Group Work and Communication 86
 4.6.1 A Framework for Rigorous and Precise Work 86
 4.6.2 Reconcile Some Conflicting Views 86

CHAPTER 5

Organisational Challenges Relating to Risk Modelling 87
 5.1 “We Are Doing It Already” 87
 5.1.1 “Our ERM Department Deals with Those Issues” 88
 5.1.2 “Everybody Should Just Do Their Job Anyway!” 88
 5.1.3 “We Have Risk Registers for All Major Projects” 89
 5.1.4 “We Run Sensitivities and Scenarios: Why Do More?” 89
 5.2 “We Already Tried It, and It Showed Unrealistic Results” 89
 5.2.1 “All Cases Were Profitable” 90
 5.2.2 “The Range of Outcomes Was Too Narrow” 90
 5.3 “The Models Will Not Be Useful!” 91
 5.3.1 “We Should Avoid Complicated Black Boxes!” 91
 5.3.2 “All Models Are Wrong, Especially Risk Models!” 91
 5.3.3 “Can You Prove that It Even Works?” 92
PART II

The Design of Risk Models – Principles, Processes and Methodology

CHAPTER 6

Principles of Simulation Methods

6.1 Core Aspects of Simulation: A Descriptive Example
 6.1.1 The Combinatorial Effects of Multiple Inputs and Distribution of Outputs
 6.1.2 Using Simulation to Sample Many Diverse Scenarios

6.2 Simulation as a Risk Modelling Tool
 6.2.1 Distributions of Input Values and Their Role
 6.2.2 The Effect of Dependencies between Inputs
 6.2.3 Key Questions Addressable using Risk-Based Simulation
 6.2.4 Random Numbers and the Required Number of Recalculations or Iterations

6.3 Sensitivity and Scenario Analysis: Relationship to Simulation
 6.3.1 Sensitivity Analysis
 6.3.2 Scenario Analysis
 6.3.3 Simulation using DataTables
 6.3.4 GoalSeek

6.4 Optimisation Analysis and Modelling: Relationship to Simulation
 6.4.1 Uncertainty versus Choice
 6.4.2 Optimisation in the Presence of Risk and Uncertainty
 6.4.3 Modelling Aspects of Optimisation Situations

6.5 Analytic and Other Numerical Methods
 6.5.1 Analytic Methods and Closed-Form Solutions
 6.5.2 Combining Simulation Methods with Exact Solutions

6.6 The Applicability of Simulation Methods
CHAPTER 7

Core Principles of Risk Model Design 137

7.1 Model Planning and Communication 138
 7.1.1 Decision-Support Role 138
 7.1.2 Planning the Approach and Communicating the Output 138
 7.1.3 Using Switches to Control the Cases and Scenarios 139
 7.1.4 Showing the Effect of Decisions versus Those of Uncertainties 140
 7.1.5 Keeping It Simple, but not Simplistic: New Insights versus Modelling Errors 144

7.2 Sensitivity-Driven Thinking as a Model Design Tool 146
 7.2.1 Enhancing Sensitivity Processes for Risk Modelling 150
 7.2.2 Creating Dynamic Formulae 151
 7.2.3 Example: Time Shifting for Partial Periods 153

7.3 Risk Mapping and Process Alignment 154
 7.3.1 The Nature of Risks and Their Impacts 155
 7.3.2 Creating Alignment between Modelling and the General Risk Assessment Process 156
 7.3.3 Results Interpretation within the Context of Process Stages 157

7.4 General Dependency Relationships 158
 7.4.1 Example: Commonality of Drivers of Variability 159
 7.4.2 Example: Scenario-Driven Variability 160
 7.4.3 Example: Category-Driven Variability 162
 7.4.4 Example: Fading Impacts 168
 7.4.5 Example: Partial Impact Aggregation by Category in a Risk Register 170
 7.4.6 Example: More Complex Impacts within a Category 171

7.5 Working with Existing Models 173
 7.5.1 Ensuring an Appropriate Risk Identification and Mapping 173
 7.5.2 Existing Models using Manual Processes or Embedded Procedures 174
 7.5.3 Controlling a Model Switch with a Macro at the Start and End of a Simulation 175
 7.5.4 Automatically Removing Data Filters at the Start of a Simulation 176
 7.5.5 Models with DataTables 178

CHAPTER 8

Measuring Risk using Statistics of Distributions 181

8.1 Defining Risk More Precisely 181
 8.1.1 General Definition 181
 8.1.2 Context-Specific Risk Measurement 181
 8.1.3 Distinguishing Risk, Variability and Uncertainty 182
 8.1.4 The Use of Statistical Measures 183

8.2 Random Processes and Their Visual Representation 184
 8.2.1 Density and Cumulative Forms 184
 8.2.2 Discrete, Continuous and Compound Processes 186

8.3 Percentiles 187
 8.3.1 Ascending and Descending Percentiles 188
 8.3.2 Inversion and Random Sampling 189
Measures of the Central Point

8.4 Measures of the Central Point

8.4.1 Mode

8.4.1 Mode 190

8.4.2 Mean or Average

8.4.2 Mean or Average 191

8.4.3 Median

8.4.3 Median 193

8.4.4 Comparisons of Mode, Mean and Median

8.4.4 Comparisons of Mode, Mean and Median 193

Measures of Range

8.5 Measures of Range

8.5.1 Worst and Best Cases, and Difference between Percentiles

8.5.1 Worst and Best Cases, and Difference between Percentiles 194

8.5.2 Standard Deviation

8.5.2 Standard Deviation 195

Skewness and Non-Symmetry

8.6 Skewness and Non-Symmetry

8.6.1 The Effect and Importance of Non-Symmetry

8.6.1 The Effect and Importance of Non-Symmetry 201

8.6.2 Sources of Non-Symmetry

8.6.2 Sources of Non-Symmetry 202

Other Measures of Risk

8.7 Other Measures of Risk

8.7.1 Kurtosis

8.7.1 Kurtosis 203

8.7.2 Semi-Deviation

8.7.2 Semi-Deviation 204

8.7.3 Tail Losses, Expected Tail Losses and Value-at-Risk

8.7.3 Tail Losses, Expected Tail Losses and Value-at-Risk 205

Measuring Dependencies

8.8 Measuring Dependencies

8.8.1 Joint Occurrence

8.8.1 Joint Occurrence 207

8.8.2 Correlation Coefficients

8.8.2 Correlation Coefficients 208

8.8.3 Correlation Matrices

8.8.3 Correlation Matrices 209

8.8.4 Scatter Plots (X-Y Charts)

8.8.4 Scatter Plots (X-Y Charts) 210

8.8.5 Classical and Bespoke Tornado Diagrams

8.8.5 Classical and Bespoke Tornado Diagrams 211

The Selection of Distributions for Use in Risk Models

CHAPTER 9

9.1 Descriptions of Individual Distributions

9.1.1 The Uniform Continuous Distribution

9.1.1 The Uniform Continuous Distribution 215

9.1.2 The Bernoulli Distribution

9.1.2 The Bernoulli Distribution 216

9.1.3 The Binomial Distribution

9.1.3 The Binomial Distribution 217

9.1.4 The Triangular Distribution

9.1.4 The Triangular Distribution 218

9.1.5 The Normal Distribution

9.1.5 The Normal Distribution 219

9.1.6 The Lognormal Distribution

9.1.6 The Lognormal Distribution 220

9.1.7 The Beta and Beta General Distributions

9.1.7 The Beta and Beta General Distributions 221

9.1.8 The PERT Distribution

9.1.8 The PERT Distribution 222

9.1.9 The Poisson Distribution

9.1.9 The Poisson Distribution 223

9.1.10 The Geometric Distribution

9.1.10 The Geometric Distribution 224

9.1.11 The Negative Binomial Distribution

9.1.11 The Negative Binomial Distribution 225

9.1.12 The Exponential Distribution

9.1.12 The Exponential Distribution 226

9.1.13 The Weibull Distribution

9.1.13 The Weibull Distribution 227

9.1.14 The Gamma Distribution

9.1.14 The Gamma Distribution 228

9.1.15 The General Discrete Distribution

9.1.15 The General Discrete Distribution 229

9.1.16 The Integer Uniform Distribution

9.1.16 The Integer Uniform Distribution 230

9.1.17 The Hypergeometric Distribution

9.1.17 The Hypergeometric Distribution 231

9.1.18 The Pareto Distribution

9.1.18 The Pareto Distribution 232

9.1.19 The Extreme Value Distributions

9.1.19 The Extreme Value Distributions 233

9.1.20 The Logistic Distribution

9.1.20 The Logistic Distribution 234

9.1.21 The Log-Logistic Distribution

9.1.21 The Log-Logistic Distribution 235

9.1.22 The Student (t), Chi-Squared and F-Distributions

9.1.22 The Student (t), Chi-Squared and F-Distributions 236
9.2 A Framework for Distribution Selection and Use
 9.2.1 Scientific and Conceptual Approaches
 9.2.2 Data-Driven Approaches
 9.2.3 Industry Standards
 9.2.4 Pragmatic Approaches: Distributions, Parameters and Expert Input

9.3 Approximation of Distributions with Each Other
 9.3.1 Modelling Choices
 9.3.2 Distribution Comparison and Parameter Matching
 9.3.3 Some Potential Pitfalls Associated with Distribution Approximations

CHAPTER 10
Creating Samples from Distributions

10.1 Readily Available Inverse Functions
 10.1.1 Functions Provided Directly in Excel
 10.1.2 Functions Whose Formulae Can Easily Be Created

10.2 Functions Requiring Lookup and Search Methods
 10.2.1 Lookup Tables
 10.2.2 Search Methods

10.3 Comparing Calculated Samples with Those in @RISK

10.4 Creating User-Defined Inverse Functions
 10.4.1 Normal Distribution
 10.4.2 Beta and Beta General Distributions
 10.4.3 Binomial Distribution
 10.4.4 Lognormal Distribution
 10.4.5 Bernoulli Distribution
 10.4.6 Triangular Distribution
 10.4.7 PERT Distribution
 10.4.8 Geometric Distribution
 10.4.9 Weibull Distribution
 10.4.10 Weibull Distribution with Percentile Inputs
 10.4.11 Poisson Distribution
 10.4.12 General Discrete Distribution

10.5 Other Generalisations
 10.5.1 Iterative Methods using Specific Numerical Techniques
 10.5.2 Creating an Add-In

CHAPTER 11
Modelling Dependencies between Sources of Risk

11.1 Parameter Dependency and Partial Causality
 11.1.1 Example: Conditional Probabilities
 11.1.2 Example: Common Risk Drivers
 11.1.3 Example: Category Risk Drivers
 11.1.4 Example: Phased Projects
 11.1.5 Example: Economic Scenarios for the Price of a Base Commodity
 11.1.6 Example: Prices of a Derivative Product
 11.1.7 Example: Prices of Several Derivative Products
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1.8 Example: Oil Price and Rig Cost</td>
<td>297</td>
</tr>
<tr>
<td>11.1.9 Example: Competitors and Market Share</td>
<td>298</td>
</tr>
<tr>
<td>11.1.10 Example: Resampling or Data-Structure-Driven Dependence</td>
<td>299</td>
</tr>
<tr>
<td>11.1.11 Implied Correlations within Parameter Dependency Relationships</td>
<td>302</td>
</tr>
<tr>
<td>11.2 Dependencies between Sampling Processes</td>
<td>302</td>
</tr>
<tr>
<td>11.2.1 Correlated Sampling</td>
<td>303</td>
</tr>
<tr>
<td>11.2.2 Copulas</td>
<td>304</td>
</tr>
<tr>
<td>11.2.3 Comparison and Selection of Parameter-Dependency and Sampling Relationships</td>
<td>306</td>
</tr>
<tr>
<td>11.2.4 Creating Correlated Samples in Excel using Cholesky Factorisation</td>
<td>309</td>
</tr>
<tr>
<td>11.2.5 Working with Valid Correlation Matrices</td>
<td>313</td>
</tr>
<tr>
<td>11.2.6 Correlation of Time Series</td>
<td>315</td>
</tr>
<tr>
<td>11.3 Dependencies within Time Series</td>
<td>316</td>
</tr>
<tr>
<td>11.3.1 Geometric Brownian Motion</td>
<td>317</td>
</tr>
<tr>
<td>11.3.2 Mean-Reversion Models</td>
<td>319</td>
</tr>
<tr>
<td>11.3.3 Moving Average Models</td>
<td>321</td>
</tr>
<tr>
<td>11.3.4 Autoregressive Models</td>
<td>321</td>
</tr>
<tr>
<td>11.3.5 Co-Directional (Integrated) Processes</td>
<td>323</td>
</tr>
<tr>
<td>11.3.6 Random State Switching and Markov Chains</td>
<td>323</td>
</tr>
</tbody>
</table>

PART III

Getting Started with Simulation in Practice

CHAPTER 12

Using Excel/VBA for Simulation Modelling

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Description of Example Model and Uncertainty Ranges</td>
<td>327</td>
</tr>
<tr>
<td>12.2 Creating and Running a Simulation: Core Steps</td>
<td>327</td>
</tr>
<tr>
<td>12.2.1 Using Random Values</td>
<td>328</td>
</tr>
<tr>
<td>12.2.2 Using a Macro to Perform Repeated Recalculations and Store the Results</td>
<td>330</td>
</tr>
<tr>
<td>12.2.3 Working with the VBE and Inserting a VBA Code Module</td>
<td>330</td>
</tr>
<tr>
<td>12.2.4 Automating Model Recalculation</td>
<td>331</td>
</tr>
<tr>
<td>12.2.5 Creating a Loop to Recalculate Many Times</td>
<td>331</td>
</tr>
<tr>
<td>12.2.6 Adding Comments, Indentation and Line Breaks</td>
<td>332</td>
</tr>
<tr>
<td>12.2.7 Defining Outputs, Storing Results, Named Ranges and Assignment Statements</td>
<td>333</td>
</tr>
<tr>
<td>12.2.8 Running the Simulation</td>
<td>334</td>
</tr>
<tr>
<td>12.3 Basic Results Analysis</td>
<td>335</td>
</tr>
<tr>
<td>12.3.1 Building Key Statistical Measures and Graphs of the Results</td>
<td>335</td>
</tr>
<tr>
<td>12.3.2 Clearing Previous Results</td>
<td>336</td>
</tr>
<tr>
<td>12.3.3 Modularising the Code</td>
<td>338</td>
</tr>
<tr>
<td>12.3.4 Timing and Progress Monitoring</td>
<td>339</td>
</tr>
<tr>
<td>12.4 Other Simple Features</td>
<td>339</td>
</tr>
<tr>
<td>12.4.1 Taking Inputs from the User at Run Time</td>
<td>339</td>
</tr>
<tr>
<td>12.4.2 Storing Multiple Outputs</td>
<td>340</td>
</tr>
</tbody>
</table>
12.5 Generalising the Core Capabilities
 12.5.1 Using Selected VBA Best Practices 340
 12.5.2 Improving Speed 341
 12.5.3 Creating User-Defined Functions 342
12.6 Optimising Model Structure and Layout 343
 12.6.1 Simulation Control Sheet 343
 12.6.2 Output Links Sheet 344
 12.6.3 Results Sheets 344
 12.6.4 Use of Analysis Sheets 346
 12.6.5 Multiple Simulations 348
12.7 Bringing it All Together: Examples Using the Simulation Template 350
 12.7.1 Model 1: Aggregation of a Risk Register using Bernoulli and PERT Distributions 351
 12.7.2 Model 2: Cost Estimation using Lognormal Distributions 352
 12.7.3 Model 3: Cost Estimation using Weibull Percentile Parameters 352
 12.7.4 Model 4: Cost Estimation using Correlated Distributions 353
 12.7.5 Model 5: Valuing Operational Flexibility 353
12.8 Further Possible uses of VBA 354
 12.8.1 Creating Percentile Parameters 354
 12.8.2 Distribution Samples as User-Defined Functions 354
 12.8.3 Probability Samples as User-Defined Array Functions 355
 12.8.4 Correlated Probability Samples as User-Defined Array Functions 356
 12.8.5 Assigning Values from VBA into Excel 358
 12.8.6 Controlling the Random Number Sequence 359
 12.8.7 Sequencing and Freezing Distribution Samples 363
 12.8.8 Practical Challenges in using Arrays and Assignment Operations 364
 12.8.9 Bespoke Random Number Algorithms 364
 12.8.10 Other Aspects 364

CHAPTER 13
Using @RISK for Simulation Modelling 365
13.1 Description of Example Model and Uncertainty Ranges 365
13.2 Creating and Running a Simulation: Core Steps and Basic Icons 366
 13.2.1 Using Distributions to Create Random Samples 368
 13.2.2 Reviewing the Effect of Random Samples 369
 13.2.3 Adding an Output 370
 13.2.4 Running the Simulation 370
 13.2.5 Viewing the Results 370
 13.2.6 Results Storage 373
 13.2.7 Multiple Simulations 373
 13.2.8 Results Statistics Functions 374
13.3 Simulation Control: An Introduction 377
 13.3.1 Simulation Settings: An Overview 377
 13.3.2 Static View 377
 13.3.3 Random Number Generator and Sampling Methods 379
 13.3.4 Comparison of Excel and @RISK Samples 381
 13.3.5 Number of Iterations 382
13.3.6 Repeating a Simulation and Fixing the Seed 382
13.3.7 Simulation Speed 383
13.4 Further Core Features 384
13.4.1 Alternate Parameters 384
13.4.2 Input Statistics Functions 384
13.4.3 Creating Dependencies and Correlations 385
13.4.4 Scatter Plots and Tornado Graphs 385
13.4.5 Special Applications of Distributions 395
13.4.6 Additional Graphical Outputs and Analysis Tools 400
13.4.7 Model Auditing and Sense Checking 405
13.5 Working with Macros and the @RISK Macro Language 405
13.5.1 Using Macros with @RISK 405
13.5.2 The @RISK Macro Language or Developer Kit: An Introduction 407
13.5.3 Using the XDK to Analyse Random Number Generator and Sampling Methods 409
13.5.4 Using the XDK to Generate Reports of Simulation Data 417
13.6 Additional In-Built Applications and Features: An Introduction 417
13.6.1 Optimisation 419
13.6.2 Fitting Distributions and Time Series to Data 420
13.6.3 MS Project Integration 421
13.6.4 Other Features 421
13.7 Benefits of @RISK over Excel/VBA Approaches: A Brief Summary 421

Index 425
This book aims to be a practical guide to help business risk managers, modelling analysts and general management to understand, conduct and use quantitative risk assessment and uncertainty modelling in their own situations. It is intended to provide a solid foundation in the most relevant aspects of quantitative modelling and the associated statistical concepts in a way that is accessible, intuitive, pragmatic and applicable to general business and corporate contexts. It also discusses the interfaces between quantitative risk modelling activities and the organisational context within which such activities take place. In particular, it covers links with general risk assessment processes and issues relating to organisational cultures, incentives and change management. Some knowledge of these issues is generally important in order to ensure the success of quantitative risk assessment approaches in practical organisational contexts.

The text is structured into three parts (containing 13 chapters in total):

- Part I provides an introduction to the topic of risk assessment in general terms.
- Part II covers the design and use of quantitative risk models.
- Part III provides an introduction to key ways to implement the repeated calculation steps that are required when conducting simulation, covering the use of VBA macros and that of the @RISK add-in.

The text has been written to be software independent as far as reasonably practical. Indeed (apart from an assumption that the reader wishes to use Excel to build any models), most of the text in Parts I and II would be identical whichever platform is used to actually perform the simulation process (i.e. whether it is VBA or @RISK). Thus, although some of the example files use Excel functionality only, and others use features of @RISK, essentially all could be readily built in either platform if necessary (there are a handful of exceptions): One would have to make a few simple formula changes in each case, with the tools presented in this text showing the reader how to do so. On the other hand, in the context of presenting data arising from probabilistic processes and simulation results, @RISK’s graphical capabilities are generally more flexible (and quicker to implement) than those in Excel. Thus, for purposes of quality, consistency and convenience, many of the illustrations in the book use @RISK in order to show associated graphs, even where the model itself does not require @RISK per se. Thus, a reader is not required to have a copy of @RISK at that point in the text. Indeed, apart from when working with the examples in Chapter 13, there is no fundamental requirement for a reader to own a copy (or a trial version) of @RISK in order to gain value from the text. In fact, readers who wish to use other implementation platforms for the simulation itself may find many aspects of this text of relevance.
The choice to present both Excel/VBA and @RISK approaches serves a number of purposes:

- Whichever platform is used for the simulation, the core concepts, most of the modelling techniques and issues concerning process alignment and other organisational challenges are essentially the same. An integrated approach allows a reinforcement of some of the concepts from different perspectives, and provides a comparison between the possible implementation approaches whilst ensuring minimum repetition.
- Each platform has its own merits, so that in practice, some readers may need one approach whilst other readers would need another. In particular, not only is Excel essentially ubiquitous (and hence the implementation within Excel/VBA involves no additional cost), but also the range of possibilities to use Excel/VBA for risk modelling is larger than is often realised. For example, it is fairly straightforward to create random samples from over 20 probability distributions, and to correlate them. On the other hand, the use of @RISK can facilitate many aspects of the process associated with the building and communication of risk models and their results; in many organisation contexts, its use would be the most effective, flexible and transparent option, with the cost of the required licences generally being insignificant compared to the potential benefits and the investments being made (both in terms of participants’ time and in terms of project investment budgets). The visual tools in @RISK also represent very powerful benefits from an organisational process perspective, where there is typically a large variety in the level of understanding of statistics and modelling within groups of participants.

The main content of each part and chapter is as follows:

- Part I introduces the need for risk assessment, its uses, the general process steps, possible approaches to risk quantification and the associated benefits and implementation challenges:
 - In Chapter 1, we discuss the use of risk assessment in many day-to-day situations as an informal activity that most people conduct naturally, albeit implicitly and informally. We also present some prominent examples of where risk management has failed in business-related contexts. We then discuss some general challenges to the implementation of formalised risk assessment processes, before presenting key drivers of the need for more structured, explicit and formal approaches in some contexts, especially in many business situations. Finally, we present the main uses and objectives of general risk assessment processes.
 - In Chapter 2, we cover general aspects of the risk assessment process, including tools to ensure that risk identification is appropriately thorough, the potential objectives and challenges in risk prioritisation, categories of risk mitigation actions, and some other selected process issues.
 - In Chapter 3, we present a variety of possible qualitative and quantitative approaches to risk assessment, including their core aspects and relative benefits. We discuss the more demanding requirements of quantitative aggregation or full risk modelling approaches, especially in terms of risk identification and risk mapping. We note the associated challenges when qualitative or non-aggregate approaches are used as a basis for the subsequent development of quantitative models.
In Chapter 4, we discuss the benefits of full risk modelling approaches, in relation both to risk register approaches to risk assessment and to traditional static (non-risk) modelling approaches to project evaluation and to general business analysis.

In Chapter 5, we discuss many challenges in implementing quantitative risk modelling, especially those that relate to issues of an organisational, incentive, cultural, process and communications nature. An awareness of these can be of great importance both to modelling analysts and to senior management who wish to implement risk-based decision-making processes and to install a more risk-aware culture within their organisations.

Part II provides a detailed discussion of the design and building of risk models:

- In Chapter 6, we present the key principles of simulation methods. We also cover the relationships between simulation and other numerical modelling techniques, such as sensitivity, scenario and optimisation analysis.

- In Chapter 7, we discuss core aspects in the design of risk models. We highlight some important similarities between risk modelling and traditional static modelling, as well as covering some of the key differences. We also discuss issues that need to be addressed in order to align the modelling activities with those of a general risk assessment process, as well as issues faced when integrating risk assessment into existing models.

- In Chapter 8, we cover statistical measures of risk and probability distributions, as well as the general topic of risk measurement using properties of distributions; this has general relevance for the use of distributions as inputs to risk models, and for the interpretation of simulation results.

- In Chapter 9, we describe over 20 distributions and their uses; these are usually sufficient for most practical activities in business risk modelling, and are available both in @RISK and in Excel/VBA. We also discuss the approximation of distributions with each other, and the processes and possible frameworks to select an appropriate distribution to use.

- In Chapter 10, we present methods to create random samples from the distributions discussed in Chapter 9; this is fundamental to readers wishing to use Excel/VBA approaches, whereas it is in-built as part of @RISK’s distribution functions.

- In Chapter 11, we discuss the modelling of dependency relationships that are specific to risk models, including techniques such as the use of conditional probabilities, parameter dependencies, scenarios, correlated sampling, time-series modelling and others.

Part III presents practical methods to implement the repeated calculations of a model that is the hallmark of simulation methods. The advantages of presenting this topic at the end of the text include that the core concepts apply to whichever platform is used for the simulation, and that it allows readers to achieve a strong basis in the concepts and understand the possibilities that quantitative risk modelling may offer, without needing to necessarily become involved in the technical aspects of implementation. We initially focus on the “mechanical” aspects of each platform, which are presented in a step-by-step fashion within the context of a simple model. We aim for the early part of the discussion to be largely self-contained, focusing on the simulation process, rather than establishing a tight link into the subject of model design. This part of the text can be read essentially independently to the modelling techniques covered earlier. Nevertheless, in the later parts of the discussion, we do cover more general topics, and make links to the earlier text:

- Chapter 12 presents the use of Excel/VBA. We discuss many aspects of simulation models that can be readily implemented in this approach, ranging from running basic
simulations to the creation of flexible ways to store and analyse results, generate corre-
related random numbers and increase simulation speed. A template model is provided,
which contains the core functionality that would be needed in many cases; its use
is explained with several example models. Although we show techniques that allow
for the creation of reasonably sophisticated approaches to the design of risk models,
the running of simulations and to results analysis, we do not attempt to replicate the
functionality of an add-in, such as @RISK. Rather, where such functionality would
be complex and time-consuming to implement in Excel/VBA, but is available within
@RISK, we take the pragmatic view that for readers working in a business or organisa-
tional context (to whom this book is targeted), it would almost always be more effective
to use @RISK in order to access this functionality, in order for them to be able to retain
a focus on the core aspect of providing decision support.

Chapter 13 covers the use of @RISK. By presenting it in the last chapter of the text, one
can create a clearer comparison with Excel/VBA approaches, especially of its relative
benefits. These include not only its sophisticated and flexible graphics capabilities, but
also tools to rapidly build, experiment with and modify models, and to analyse the
results. In addition, there is a larger set of distributions and parameters available, an
ability to control many aspects of the simulation and random number selection, and to
create dependency relationships. The chapter focuses on the core aspects of the software
and on the features required to work with the models in this text, as well as being guided
by the general modelling considerations that the author wishes to emphasise. Although
it covers many topics, it does not intend to be a substitute or alternative to the software
manual (which, at the time of writing, is approximately 1000 pages, as a pdf file).
Nevertheless, in the latter part of the text, additional features that may be of importance
in some specific practical situations are mentioned. These include functionality to fit
distributions and time series to data, to conduct optimisation under uncertainty and to
integrate Excel with Microsoft Project. The book was written when @RISK version
6.3 was the latest one available, so that new features may become available in the
future (such as when version 7 is released). However, the fundamental concepts in risk
assessment, risk model design and simulation modelling remain largely unchanged
as such developments occur, and later software versions are generally fully backward
compatible with prior ones, so that it is hoped that this text will nevertheless provide a
useful guide to core functionality, even as future versions are released.

Readers who wish to review specific models that use @RISK may install a trial version
(if they do not have, or do not wish to buy, a full version). Trial versions are fully functional
but time limited, so that readers should ensure that the installation of any trial is appropriately
timed. In particular, readers may choose to read (or skim) all of the text before installing
the trial, and revisit relevant parts of the text afterwards. At the time of writing, trial versions
are valid for 10 days and are available at www.palisade.com. Readers may contact Palisade
Corporation directly who may – entirely at its discretion – be able to extend the duration of
a trial. For the purposes of the models used in this text, it is sufficient to download @RISK
Industrial; however, some features within this – whilst briefly mentioned in this text – are
not required for the example files provided, so that the additional software associated with
these features does not need to be acquired (in particular the SQL-related content used for the
Library functionality, and Microsoft Project, are not required). Technical aspects of installation
and licensing options for @RISK are not covered in this text. Please note that the author is
totally independent of Palisade Corporation, and has no control over the availability (or not) of trial versions, so the above is (in theory) subject to change, although trial versions have been available for many years without issue.

As far as possible, we have aimed to present concepts in a logical and linear order, but also to remain practical and to introduce technical aspects only where they are genuinely needed, and not simply for their own sake. Due to the richness of the subject, this has not been possible to do perfectly. In particular, whereas the detailed discussion of simulation concepts and definitions of statistical terms is covered in Part II (Chapter 8), on occasion in Part I we make reference to some basic statistical concepts (such as averages or percentiles, or to probability in general), and also show some simulation results. It is hoped that readers will nevertheless be able to follow this earlier discussion; many will no doubt have some (at least limited) experience of such concepts that is sufficient to be able to follow it; if not, of course the option to read first (or selectively refer to) this later chapter is open to them.
Michael Rees has a Doctorate in Mathematical Modelling and Numerical Algorithms, and a BA with First Class Honours in Mathematics, both from Oxford University. He has an MBA with Distinction from INSEAD in France. In addition, he studied for the Wilmott Certificate of Quantitative Finance, where he graduated in first place for course work and also received the Wilmott Award for the highest final exam mark.

Since 2002, he has worked as an independent expert in financial modelling, risk modelling and quantitative decision support, providing training, model building and advisory services to a wide range of corporations, consulting firms, private equity businesses and training companies. As part of his activities as an independent consultant, Michael worked closely with Palisade Corporation, the developers of the @RISK software, for which he is one of the world’s most experienced instructors, having taught several thousand people in this area.

Prior to becoming independent, Michael was employed at J.P. Morgan, where he conducted valuation and research work, and prior to that he was a partner with strategy consultants Mercer Management Consulting (now Oliver Wyman), both in London, UK, and Munich, Germany. His earlier career was spent at Braxton Associates (a strategy consulting firm that became part of Deloitte and Touche), where he worked in London and as a founding member of the start-up team in Munich.

Michael is a dual UK/Canadian citizen. He is fluent in French and German, and has wide experience of working internationally and with clients with diverse cultural backgrounds. In addition to this text, he is the author of Financial Modelling in Practice: A Concise Guide for Intermediate and Advanced Level (John Wiley & Sons, 2008). He can be contacted at michael@michaelrees.co.uk or through the website www.michaelrees.co.uk.
Please visit this book’s companion website at www.wiley.com/go/reesbrsm for more information on the models discussed in this book.

To find the password, you’ll need to answer the following question: what is the first word of the caption for Figure 8.8 in the book?
An Introduction to Risk Assessment – Its Uses, Processes, Approaches, Benefits and Challenges