WILEY SERIES IN RENEWABLE RESOURCES

Lignin and Lignans as Renewable Raw Materials

Chemistry, Technology and Applications

Francisco G. Calvo-Flores José A. Dobado Joaquín Isac-García Francisco J. Martín-Martínez

Lignin and Lignans as Renewable Raw Materials

Wiley Series in Renewable Resources

Series Editor Christian V. Stevens-Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium

Titles in the Series Wood Modification–Chemical, Thermal and Other Processes Callum A. S. Hill

Renewables–Based Technology–Sustainability Assessment Jo Dewulf & Herman Van Langenhove

Introduction to Chemicals from Biomass James H. Clark & Fabien E.I. Deswarte

Biofuels Wim Soetaert & Erick Vandamme

Handbook of Natural Colorants Thomas Bechtold & Rita Mussak

Surfactants from Renewable Resources Mikael Kjellin & Ingegärd Johansson

Industrial Application of Natural Fibres–Structure, Properties and Technical Applications Jörg Müssig

Thermochemical Processing of Biomass–Conversion into Fuels, Chemicals and Power Robert C. Brown

Biorefinery Co-Products: Phytochemicals, Primary Metabolites and Value-Added Biomass Processing Chantal Bergeron, Danielle Julie Carrier & Shri Ramaswamy

Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals Charles E. Wyman

Bio-Based Plastics: Materials and Applications Stephan Kabasci

Introduction to Wood and Natural Fiber Composites Douglas Stokke, Qinglin Wu & Guangping Han

Cellulosic Energy Cropping Systems Douglas L. Karlen

Introduction to Chemicals from Biomass, Second Edition James Clark & Fabien Deswarte

Forthcoming Titles Sustainability Assessment of Renewables-Based Products: Methods and Case Studies Jo Dewulf, Steven De Meester & Rodrigo A. F. Alvarenga

Cellulose Nanocrystals: Properties, Production and Applications Wadood Hamad

Biorefinery of Inorganics: Recovering Mineral Nutrients from Biomass and Organic Waste Erik Meers and Gerard Velthof

Bio-Based Solvents François Jerome and Rafael Luque

Lignin and Lignans as Renewable Raw Materials

Chemistry, Technology and Applications

FRANCISCO G. CALVO-FLORES, JOSÉ A. DOBADO, JOAQUÍN ISAC-GARCÍA

Department of Organic Chemistry, University of Granada, Spain

and

FRANCISCO J. MARTÍN-MARTÍNEZ

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, USA

WILEY

This edition first published 2015 © 2015 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought

The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data applied for.

A catalogue record for this book is available from the British Library.

ISBN: 9781118597866

Set in 9/11pt TimesLTStd by SPi Global, Chennai, India

1 2015

To our families

Contents

Ser	Series Preface			XV
Pre	xvii			
Lis	xix			
List of Symbols				xxiii
De	Port I. Introduction			1
16		muou	luction	1
1.	Back	ground a	and Overview	3
	1.1	Introdu	action	3
	1.2	Lignin	: Economical Aspects and Sustainability	4
	1.3	Structu	ire of the Book	5
		Refere	nces	7
Pa	nrt II	What	t is Lignin?	9
2.	Struc	ture and	l Physicochemical Properties	11
	2.1	Introdu	action	11
	2.2	Monol	ignols, The Basis of a Complex Architecture	12
	2.3	Chemi	cal Classification of Lignins	16
	2.4	Lignin	Linkages	17
	2.5	Structu	ral Models of Native Lignin	20
		2.5.1	Softwood Models	21
		2.5.2	Hardwood Models	28
		2.5.3	Herbaceous Plant Models	28
	2.6	Lignin	-Carbohydrate Complex	34
	2.7	Physic	al and Chemical Properties of Lignins	39
		2.7.1	Molecular Weight	39
		2.7.2	Dispersity Index (D)	40
		2.7.3	Thermal Properties	40
		2.7.4	Solubility Properties	41
		Refere	nces	42
3.	Detec	tion and	I Determination	49
	3.1	Introdu	action	49
	3.2	The De	etection of Lignin (Color-Forming Reactions)	49
		3.2.1	Reagents for Detecting Lignins	50

	3.3	Determ	nination of Lignin	55
	3.4	Direct	Methods for the Determination of Lignin	55
		3.4.1	Methods for Lignin as a Residue	57
		3.4.2	Lignin in Solution Methods	59
	3.5	Indirec	t Methods for the Determination of Lignin	60
		3.5.1	Chemical Methods	61
		3.5.2	Spectrophotometric Methods	61
		3.5.3	Methods Based on Oxidant Consumption	64
	3.6	Compa	rison of the Different Determination Methods	66
		Referen	nces	68
4.	Biosy	nthesis o	of Lignin	75
	4.1	Introdu	iction	75
	4.2	The Bi	ological Function of Lignins	75
	4.3	The Sh	ikimic Acid Pathway	76
	4.4	The Co	ommon Phenylpropanoid Pathway	78
	4.5	The Bi	osynthesis of Lignin Precursors (the Monolignol-Specific Pathway)	80
		4.5.1	The Biosynthesis of Other Monolignols	82
		4.5.2	The Transport of Monolignols	83
	4.6	The De	hydrogenation of the Precursors	85
	4.7	Peroxic	lases and Laccases	86
	4.8	The Ra	dical Polymerization	87
		4.8.1	Dimerization	88
		4.8.2	Quinone Methides	89
		4.8.3	Lignification	90
		4.8.4	Interunit Linkage Types	91
		4.8.5	Dehydrogenation Polymer (DHP)	97
	4.9	The Li	gnin–Carbohydrate Connectivity	97
	4.10	Locatio	on of Lignins (Cell Wall Lignification)	99
	4.11	Differe	nces Between Angiosperm and Gymnosperm Lignins	101
		Referen	nces	103
Pa	art II	I Sour	rces and Characterization of Lignin	113
5.	Isolat	ion of Li	ignins	115
	5.1	Introdu	iction	115
	5.2	Method	ds for Lignin Isolation from Wood and Grass for Laboratory Purposes	116
		5.2.1	Lignin as Residue	118
		5.2.2	Lignin by Dissolution	120
	5.3	Comm	ercial Lignins	127
		5.3.1	Kraft Lignin	128
		5.3.2	Sulfite Lignin (Lignosulfonate Process)	131
		5.3.3	Soda Lignin (Alkali Lignin)	133
		5.3.4	Organosolv Pulping	134
		5.3.5	Other Methods of Separation of Lignin from Biomass	136
		Referen	nces	136

6.	Func	tional an	d Spectroscopic Characterization of Lignins	145
	6.1	Introdu	lection	145
	6.2	Elemen	ntal Analysis and Empirical Formula	146
	6.3	Determ	ination of Molecular Weight	147
		6.3.1	Gel-Permeation Chromatography (GPC)	148
		6.3.2	Light Scattering	149
		6.3.3	Vapor-Pressure Osmometry (VPO)	150
		6.3.4	Ultrafiltration (UF)	151
	6.4	Functio	onal Group Analyses	151
		6.4.1	Methoxyl Group (MeO)	152
		6.4.2	Phenolic Hydroxyl Group (OH _{ph})	152
		6.4.3	Total and Aliphatic Hydroxyl Groups (R-OH)	154
		6.4.4	Ethylenic Groups (>C=C<)	157
		6.4.5	Carbonyl Groups (>C=O)	158
		6.4.6	Carboxyl Groups (-COO-)	158
		6.4.7	Sulfonate Groups and Total Sulfur Composition	
			$(R-SO_2O- and S)$	158
	6.5	Freque	ncies of Functional Groups and Linkage Types in Lignins	159
		6.5.1	β-O-4' Linked Units	159
		6.5.2	β-5' Linked Units	160
		6.5.3	β-1' Linked Units	160
		6.5.4	α -O-4' Linked Units (benzyl ethers)	162
		6.5.5	Condensed and Uncondensed Units	162
		6.5.6	Biphenyl Structures	163
		6.5.7	4-0-5' Linked Units	163
		6.5.8	β-2 and β-6 Linked Units	163
		6.5.9	β-β Linked Units	163
		6.5.10	Dibenzodioxocin Units	164
	6.6	Charac	terization by Spectroscopic Methods	164
		6.6.1	Fourier Transform Infrared (FTIR) Spectroscopy	164
	6.7	Raman	Spectroscopy	166
		6.7.1	Ultraviolet (UV)	167
		6.7.2	NMR Spectroscopy	168
		6.7.3	Other Spectroscopic Methods	174
		Referer	nces	175
7.	Chen	nical Cha	aracterization and Modification of Lignins	189
	7.1	Introdu	lection	189
	7.2	Charac	terization by Chemical Degradation Methods	189
		7.2.1	Oxidation with Nitrobenzene	190
		7.2.2	Oxidation with Cupric Oxide	193
		7.2.3	Permanganate Oxidation	195
		7.2.4	Mild Hydrolysis	196
		7.2.5	Acidolysis	198
		7.2.6	Thioglycolic Acid Hydrolysis (Mercaptolysis)	200
		7.2.7	Thioacetolysis	200

		7.2.8	Thioacidolysis	201
		7.2.9	Hydrogenolysis	203
		7.2.10	Derivatization Followed by Reductive Cleavage (DFRC)	206
		7.2.11	Nucleus-Exchange Reaction (NE)	209
		7.2.12	Ozonolysis	212
		7.2.13	Pyrolysis	215
	7.3	Other O	Chemical Modifications of Lignins	216
		7.3.1	Acylation	216
		7.3.2	Alkylation	218
		7.3.3	Halogenation	219
		7.3.4	Nitration	221
		7.3.5	Sulfonation	222
		7.3.6	Oxidation	222
		7.3.7	Other Modifications of Lignins	225
	7.4	Thermo	olysis (Pyrolysis) of Lignins	227
	7.5	Bioche	mical Transformations of Lignins	227
		7.5.1	Biodegradation of Lignin	228
		7.5.2	Enzyme-Based Oxidation of Lignin	229
		Referei	nces	230
Pa	art IV	⁷ Lign	ins Applications	247
8.	Appli	cations o	of Modified and Unmodified Lignins	249
	8.1	Introdu	iction	249
	8.2	Lignin	as Fuel	252
		8.2.1	Combustion in the Paper Industry	2.52
			combustion in the ruper industry	252
		8.2.2	Heating and Power	252 252
	8.3	8.2.2 Lignin	Heating and Power as a Binder	252 252 253
	8.3	8.2.2 Lignin 8.3.1	Heating and Power as a Binder Coal Briquettes	252 252 253 253
	8.3	8.2.2 Lignin 8.3.1 8.3.2	Heating and Power as a Binder Coal Briquettes Packing	252 252 253 253 253 254
	8.3	8.2.2 Lignin 8.3.1 8.3.2 8.3.3	Heating and Power as a Binder Coal Briquettes Packing Pelleted Feeds	252 252 253 253 253 254 254
	8.3 8.4	8.2.2 Lignin 8.3.1 8.3.2 8.3.3 Lignin	Heating and Power as a Binder Coal Briquettes Packing Pelleted Feeds as Chelating Agent	252 252 253 253 254 254 254
	8.3 8.4 8.5	8.2.2 Lignin 8.3.1 8.3.2 8.3.3 Lignin Lignin	Heating and Power as a Binder Coal Briquettes Packing Pelleted Feeds as Chelating Agent in Biosciences and Medicine	252 252 253 253 254 254 254 254 254
	8.3 8.4 8.5 8.6	8.2.2 Lignin 8.3.1 8.3.2 8.3.3 Lignin Lignin Lignin	Heating and Power as a Binder Coal Briquettes Packing Pelleted Feeds as Chelating Agent in Biosciences and Medicine in Agriculture	252 252 253 253 254 254 254 254 256 257
	8.38.48.58.68.7	8.2.2 Lignin 8.3.1 8.3.2 8.3.3 Lignin Lignin Polyme	Heating and Power as a Binder Coal Briquettes Packing Pelleted Feeds as Chelating Agent in Biosciences and Medicine in Agriculture ers with Unmodified Lignin	252 252 253 253 254 254 254 254 256 257 258
	8.3 8.4 8.5 8.6 8.7	8.2.2 Lignin 8.3.1 8.3.2 8.3.3 Lignin Lignin Polyme 8.7.1	Heating and Power as a Binder Coal Briquettes Packing Pelleted Feeds as Chelating Agent in Biosciences and Medicine in Agriculture ers with Unmodified Lignin Phenol–Formaldehyde Binders	252 252 253 253 254 254 254 254 256 257 258 258
	8.3 8.4 8.5 8.6 8.7	8.2.2 Lignin 8.3.1 8.3.2 8.3.3 Lignin Lignin Polyme 8.7.1 8.7.2	Heating and Power as a Binder Coal Briquettes Packing Pelleted Feeds as Chelating Agent in Biosciences and Medicine in Agriculture ers with Unmodified Lignin Phenol–Formaldehyde Binders Polyolefin–Lignin Polymers	252 252 253 253 254 254 254 254 256 257 258 258 258 260
	8.3 8.4 8.5 8.6 8.7	8.2.2 Lignin 8.3.1 8.3.2 8.3.3 Lignin Lignin Lignin Polyme 8.7.1 8.7.2 8.7.3	Heating and Power as a Binder Coal Briquettes Packing Pelleted Feeds as Chelating Agent in Biosciences and Medicine in Agriculture ers with Unmodified Lignin Phenol–Formaldehyde Binders Polyolefin–Lignin Polymers Polyester–Lignin Polymers	252 252 253 253 254 254 254 254 256 257 258 258 258 260 260
	8.3 8.4 8.5 8.6 8.7	8.2.2 Lignin 8.3.1 8.3.2 8.3.3 Lignin Lignin Lignin Polyme 8.7.1 8.7.2 8.7.3 8.7.4	Heating and Power as a Binder Coal Briquettes Packing Pelleted Feeds as Chelating Agent in Biosciences and Medicine in Agriculture ers with Unmodified Lignin Phenol–Formaldehyde Binders Polyolefin–Lignin Polymers Polyester–Lignin Polymers Acrylamide–Lignin Polymers	252 252 253 253 254 254 254 254 256 257 258 258 260 260 260 261
	8.3 8.4 8.5 8.6 8.7	8.2.2 Lignin 8.3.1 8.3.2 8.3.3 Lignin Lignin Polyme 8.7.1 8.7.2 8.7.3 8.7.4 8.7.5	Heating and Power as a Binder Coal Briquettes Packing Pelleted Feeds as Chelating Agent in Biosciences and Medicine in Agriculture ers with Unmodified Lignin Phenol–Formaldehyde Binders Polyolefin–Lignin Polymers Polyester–Lignin Polymers Acrylamide–Lignin Polymers Polyurethane–Lignin Polymers	252 252 253 253 254 254 254 254 254 256 257 258 260 260 260 261 261
	8.3 8.4 8.5 8.6 8.7	8.2.2 Lignin 8.3.1 8.3.2 8.3.3 Lignin Lignin Polyme 8.7.1 8.7.2 8.7.3 8.7.4 8.7.5 8.7.6	Heating and Power as a Binder Coal Briquettes Packing Pelleted Feeds as Chelating Agent in Biosciences and Medicine in Agriculture ers with Unmodified Lignin Phenol–Formaldehyde Binders Polyolefin–Lignin Polymers Polyester–Lignin Polymers Acrylamide–Lignin Polymers Bioplastics (Liquid Wood)	252 252 253 253 254 254 254 254 254 256 257 258 258 260 260 261 261 263
	8.3 8.4 8.5 8.6 8.7	8.2.2 Lignin 8.3.1 8.3.2 8.3.3 Lignin Lignin Polymo 8.7.1 8.7.2 8.7.3 8.7.4 8.7.5 8.7.6 8.7.7	Heating and Power as a Binder Coal Briquettes Packing Pelleted Feeds as Chelating Agent in Biosciences and Medicine in Agriculture ers with Unmodified Lignin Phenol–Formaldehyde Binders Polyolefin–Lignin Polymers Polyester–Lignin Polymers Acrylamide–Lignin Polymers Bioplastics (Liquid Wood) Hydrogels	252 252 253 253 254 254 254 254 256 257 258 258 258 260 260 261 261 263 264
	8.3 8.4 8.5 8.6 8.7	8.2.2 Lignin 8.3.1 8.3.2 8.3.3 Lignin Lignin Polymo 8.7.1 8.7.2 8.7.3 8.7.4 8.7.5 8.7.6 8.7.7 8.7.8	Heating and Power as a Binder Coal Briquettes Packing Pelleted Feeds as Chelating Agent in Biosciences and Medicine in Agriculture ers with Unmodified Lignin Phenol–Formaldehyde Binders Polyolefin–Lignin Polymers Polyester–Lignin Polymers Acrylamide–Lignin Polymers Bioplastics (Liquid Wood) Hydrogels Foams and Composites	252 252 253 253 254 254 254 254 256 257 258 258 258 260 260 260 261 261 263 264 265

	8.8	Other A	Applications of Unmodified Lignins	267
		8.8.1	Lignin in Lead-Acid Batteries	267
		8.8.2	Lignin-Based Nanoparticles and Thin Films	267
		8.8.3	Lignin in Dust Control	268
		8.8.4	Lignin in Concrete Admixtures	269
		8.8.5	Lignin as a Dispersant, Emulsifier, and Surfactant	269
		8.8.6	Lignin as Floating Agent	271
	8.9	New Po	olymeric Materials Derived from Modified Lignins and Related Biomass	
		Derivat	ives	271
		8.9.1	Modified Lignin in Phenol-Formaldehyde Wood Adhesives	271
		8.9.2	Modified Lignins for Epoxy Resin Synthesis	274
		8.9.3	Polyurethanes	275
		8.9.4	Lignin-Polybutadiene Copolymers	278
	8.10	Polyme	ers Derived from Chemicals Obtainable from Lignin Decomposition	278
	8.11	Other A	Applications of Modified Lignins	279
		8.11.1	Nanoparticles (NPs)	279
		8.11.2	Cationic Amphiphilic Lignin Derivatives	281
		8.11.3	Soil Preservation	281
		8.11.4	Fertilizers	281
		Referen	nces	281
0	High	Voluo C	hamical Products	280
).	0 1	Introdu		289
	9.1	Gasific	ation: Syngas from Lignin	202
	9.2	Thermo	allon. Syngas nom Eignin	291
	9.5	Hydrod	leoxygenation (Hydrogenolysis)	291
	9.5	Hydrot	hermal Hydrolysis	205
	9.6	Chemic	cal Depolymerization	295
	2.0	961	Acid Media Depolymerization	296
		962	Base Media Depolymerization	296
		963	Ionic Liquid-Assisted Depolymerization	297
		964	Supercritical Fluids-Assisted Depolymerization	298
	97	Oxidati	ive Transformation of Lignin	299
	2.1	971	Oxidation with Chlorinated Reagents	299
		972	Oxidation with Ozone	300
		973	Oxidation with Hydrogen Peroxide	300
		9.7.4	Oxidation with Peroxy Acids	302
		9.7.5	Catalytic Oxidation	302
	9.8	High-V	alue Chemicals from Lignin	302
		9.8.1	Vanillin	302
		9.8.2	Dimethyl Sulfide and Dimethylsulfoxide	306
		9.8.3	Active Carbon	306
		9.8.4	Carbon Fiber	308
		Referen	nces	308

Part V Lignans

10. St	truct	ure and	Chemical Properties of Lignans	315
10	0.1	Introdu	ction	315
10	0.2	Structur	re and Classification of Lignans	315
		10.2.1	Lignans	316
		10.2.2	Hybrid Lignans	319
10	0.3	Nomen	clature of Lignans	319
10	0.4	Lignan	Occurrence in Plants	325
10	0.5	Method	ls of Determination and Isolation of Lignans from Plants	328
		10.5.1	Lipid Extraction	328
		10.5.2	Solvent Extraction	330
		10.5.3	Separation by Precipitation	330
		10.5.4	Chromatographic Methods	330
		10.5.5	Extraction of Polar Lignans from Biological Materials	331
10	0.6	Structur	re Determination of Lignans	331
10	0.7	The Ch	emical Synthesis of Lignans	332
		10.7.1	Generalities on the Asymmetric Total Synthesis of Lignans	332
		10.7.2	Dibenzylbutane Lignans	335
		10.7.3	Dibenzylbutyrolactone Lignans	337
		10.7.4	Cyclolignans (Aryltetralin Lignans)	338
		10.7.5	Dibenzocyclooctadiene Lignans	343
		Referen	ices	353
11. B	iolog	vical Pro	nerties of Lignans	369
11	1.1	Introdu	ction	369
11	1.2	Biosynt	thesis of Lignans	370
		11.2.1	Pinoresinol Synthase (Dirigent Protein)	370
		11.2.2	The General Biosynthetic Pathway of Lignans	371
		11.2.3	Other Biosynthetic Pathways of Lignans	372
		11.2.4	Biosynthetic Pathways for Neolignans	377
		11.2.5	Biosynthetic Pathways for Norlignans	377
11	1.3	Metabo	lism of Lignans	377
11	1.4	Plant Pl	hysiology and Plant Defense	383
11	1.5	Podoph	yllotoxin	386
		11.5.1	Extraction, Synthesis, and Biotechnological Approaches	388
		11.5.2	Biological Activities of PPT	389
		11.5.3	The Action Mechanism of PPT	392
		11.5.4	Congeners and Derivatives (Other Aryltetralin Lactones)	393
11	1.6	Biologi	cal Activity of Different Lignan Structures	397
		11.6.1	Dibenzylbutane Lignans	398
		11.6.2	Dibenzylbutyrolactone Lignans	401
		11.6.3	Dibenzylbutyrolactol Lignans	404
		11.6.4	Furanoid Lignans	404
		11.6.5	Furofuranoid Lignans	407

11.6.5 Furofuranoid Lignans

Contents	xiii

11.6.6	Aryltetralin Lignans (No Lactones)	411
11.6.7	Arylnaphthalene Lignans	413
11.6.8	Dibenzocyclooctadiene Lignans	418
11.6.9	Neolignans	422
11.6.10	Hybrid Lignans	423
Reference	ces	423

Part VI Outcome and Challenges

455

12. Summary, Conclusions, and Perspectives on Lignin Chemistry		457	
12.1	12.1 Sources of Lignin		
12.2	Structure of Lignin	458	
12.3	Biosynthesis and Biological Function	459	
12.4	Applications of Lignin	459	
12.5	Lignans	461	
12.6	Perspectives	462	
	References	462	
Glossary		465	

467

Series Preface

Renewable resources and their modification are involved in a multitude of important processes with a major influence on our everyday lives. Applications can be found in the energy sector, chemistry, pharmacy, the textile industry, paints and coatings, to name but a few fields.

The broad area of renewable resources connects several scientific disciplines (agriculture, biochemistry, chemistry, technology, environmental sciences, forestry ...), but it is very difficult to take an expert view on their complicated interactions. Therefore, the idea to create a series of scientific books, focussing on specific topics concerning renewable resources, has been very opportune and can help to clarify some of the underlying connections in this area.

In a very fast-changing world, trends do not only occur in fashion and politics, hype and buzzwords occur in science too. The use of renewable resources is more important nowadays, however, it is not hype. Lively discussions among scientists continue about how long we will be able to use fossil fuels, opinions ranging from 50 years to 500 years, but they do agree that the reserve is limited and that it is essential to search not only for new energy carriers but also for new material sources.

In this respect, renewable resources are a crucial area in the search for alternatives to fossil-based raw materials and energy. In the field of the energy supply, biomass and renewable-based resources will be part of the solution alongside other alternatives such as solar energy, wind energy, hydraulic power, hydrogen technology and nuclear energy.

In the field of material sciences, the impact of renewable resources will probably be even bigger. Integral utilisation of crops and the use of waste streams in certain industries will grow in importance leading to a more sustainable way of producing materials.

Although our society was much more (almost exclusively) based on renewable resources centuries ago, this disappeared in the Western world in the nineteenth century. Now it is time to focus again on this field of research. However, it should not mean a *retour à la nature*, but it does require a multidisciplinary effort at a highly technological level to perform research on new opportunities, to develop new crops and products from renewable resources. This will be essential to guarantee a level of comfort for a growing number of people living on our planet. The challenge for coming generations of scientists is to develop more sustainable ways to create prosperity and to fight poverty and hunger in the world. A global approach is certainly favoured.

This challenge can only be met if scientists are attracted to this area and are recognized for their efforts in this interdisciplinary field. It is therefore also essential that consumers recognize the fate of renewable resources in a number of products.

Furthermore, scientists do need to communicate and discuss the relevance of their work so that the use and modification of renewable resources may not follow the path of the genetic engineering concept in terms of consumer acceptance in Europe. In this respect, the series will certainly help to increase the visibility of the importance of renewable resources.

Being convinced of the value of the renewables approach for the industrial world, as well as for developing countries, I was myself delighted to collaborate on this series of books focussing on different aspects of renewable resources. I hope that readers become aware of the complexity, interactions and interconnections, and challenges of this field and that they will help to communicate the importance of renewable resources.

xvi Series Preface

I would like to thank the staff from Wiley's Chichester office, especially David Hughes, Jenny Cossham and Lyn Roberts, in seeing the need for such a series of books on renewable resources, for initiating and supporting it and for helping to carry the project to the end.

Last, but not least I want to thank my family, especially my wife Hilde and children Paulien and Pieter-Jan for their patience and for giving me the time to work on the series when other activities seemed to be more inviting.

Christian V. Stevens, Faculty of Bioscience Engineering Ghent University, Belgium Series Editor "Renewable Resources" June 2005

Preface

This book has grown from a mini-review on lignin that we had published in 2010, by invitation from Sarah Higginbotham (nee Hall) at John Wiley & Sons Publishing Group. From the very outset, it was clear to us that tackling the project as authors of a complete work was the most challenging but nevertheless the most robust way of addressing the issue. Conceiving a whole book appeared to be more complete than the common compilation books where the monograph results from the contribution of various authors coordinated by an editor. In our opinion, although these compilation-type books often result in a series of very specific chapters that provide a collection of review articles of high scientific level, they usually lack a strength thread to unify the entire work.

The specific case of lignin is particularly challenging due to the enormous amount of information available, the abundance of undefined concepts, and the diverse areas of knowledge involved in the topic. Native lignin is studied by botanists for its role in plants and plant cells, by biochemists regarding biosynthesis, by chemists concerned with its structure, and even by engineers dealing with lignin coming from paper mill or biorefineries.

A similar situation involves lignans, where these secondary plant metabolites are studied also by botanists, chemists, and even by professionals in biomedical sciences for the biological properties of these molecules in living organisms. A fairly complete description of the nature, structure, properties, synthetic processes, and applications of this family of compounds is provided.

Given such a complex and multidisciplinary outlook, a thorough review was needed of the existing literature, together with classical references, the brainchild of pioneering authors, as well as recent contributions to the topic in order to provide the reader with a broad view of the most comprehensive knowledge on lignin and lignans. As is inevitable with projects of this scope, the final work might not be as complete as it could have been, but we nevertheless trust that the result is thorough enough to be useful to the scientific community interested in the subject.

Throughout the text, lignin is explained from different perspectives, including its role as a structural component of plants, and how it is produced as a by-product of paper industry and a product of biore-fineries. Structural models of this biopolymer are disclosed, as well as the developing process that these models have undergone through the years, parallel to the improvement of structural determination methods, both instrumental and chemical ones. This information will provide the reader with an overall idea of the structure of lignin, its origin, its function, its applications, and its potential. The reader will also learn how to appropriately use the term "lignin," as the actual lignin depends on the origin of this material.

During the preparation of the book, special effort was made to review the applications and the potential uses of different lignins, with emphasis on the word "potential." So far, there has been ample academic work on the subject, but the actual results are still relatively modest. Therefore, many topics remain to be developed in the coming years, and they definitely will be, considering the growing importance of renewable raw materials in taking over those of limited availability.

Given our input on lignin, and our experience as authors of the present work, we conclude that this is a highly promising biomaterial, which, in terms of science and technology, still presents many unresolved issues that continue to be investigated. In the literature, terms such as "potential" and "promising" constantly appear, alongside "difficult," "complex," and "underutilized." These modifiers reflect lignin's state of the art. In the coming years, great effort must be needed to ensure lignin the central role as source of raw materials, consumer goods, and much more relevant applications that it deserves. We deeply hope that this book will stimulate further interest and research in this promising biopolymer in its various forms.

Finally, we repeat our appreciation to John Wiley & Sons Publishing Group and its staff for their incalculable help, support, and feedback over the course of the project. Last but not least, we would like to give our special thanks to Dr Ángel Sánchez-González for the design of the front cover, and Mr David Nesbitt for his invaluable work on the revision of the English version of the manuscript and his contribution with the "*Podophyllum peltatum*" illustration.

Francisco G. Calvo-Flores José A. Dobado Joaquín Isac-García Francisco J. Martín-Martínez January 2015

List of Acronyms

2D	two dimensional
3D	three dimensional
4CL	4-coumarate CoA ligase
Ac-CW	acetylated cell wall
ADF	acid detergent fiber
AFEX	ammonia fiber explosion
AOAC	Association of Analytical Communities (formerly Association of Official
	Agricultural Chemists)
AOP	advanced oxidation process
ARP	ammonia recycle percolation
ASAM	alkaline sulfite, anthraquinone, methanol
ASL	alkali sulfite lignin
BADGE	bisphenol A diglycidyl ether
BTX	benzene, toluene, and xylene
C4H	cinnamate 4-hydroxylase
CAGT	coniferyl alcohol glucosyltransferase
CBG	coniferin-β-glucosidase
CD	circular dichroism
CEHPL	chain-extended hydroxypropyl lignin
CEL	cellulolytic enzyme lignin
СК	cytokinins
DAD	photodiode array detector
DAHP	3-deoxy-D-arabinose heptulosonic acid-7-phosphate
DBDO	dibenzodioxocin
DCC	N,N'-Dicyclohexylcarbodiimide
DCCC	droplet counter-current chromatography
DCG	dehydrodiconiferyl alcohol-4-β-D-glucoside
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DFRC	derivatization followed by reductive cleavage
DHP	dehydrogenation polymer
DIR	dirigent protein
DMAc	N,N-dimethylacetamide
DMF	dimethylformamide
DMS	dimethyl sulfide
DMSO	dimethyl sulfoxide
DPPH	1,1-diphenyl-2-picrylhydrazyl
EDXA	energy-dispersive X-ray analysis
EMAL	enzymatic mild acidolysis lignin
END	enterodiol
ENL	enterolactone
EPSP	5-enolpyruvylshikimate-3-phosphate

ESR	electron spin resonance
FDA	Food and Drug Administration
FTIR	Fourier transform infrared
G	coniferyl alcohol
GC-MS	gas chromatography-mass spectrometry
GC	gas chromatography
GHG	greenhouse gas
GPC	gel permeation chromatography
Н	<i>p</i> -coumaryl alcohol
HBS	high-boiling solvents
HDO	hydrodeoxygenation
HDPE	high-density polyethylene
HMR	7-hydroxymatairesinol
HMTA	hexamethylenetetramine
HPA	Heteropoly acids (e.g., $H_3PWO_{12}O_{40}$)
HPL	hydroxypropyl lignin
HPLC	high-performance liquid chromatography
HPSEC	high-pressure size exclusion chromatography
HPSECI	high-pressure size exclusion chromatography infrared
HRMS	high-resolution mass spectrometry
HRP	hydroxyproline-rich protein
HSCCC	high-speed counter-current chromatography
IAT	indulin AT
IM	interference microscopy
IOR	improved oil recovery
IPTES	3-(triethoxysilyl)propylisocyanate
IR	infrared
KL	Klason lignin
LALLS	laser light scattering
LBS	low-boiling solvents
LC-NMR	liquid chromatography-nuclear magnetic resonance
LDPE	low-density polyethylene
LEM	Lentinus edodes mycelia
LPF	lignin-modified phenolic resin
LPS	lignin process system
LSA	lignin sulfonic acid, lignosulfonic acid
MAE	microwave-assisted extraction
MDF	medium-density fiberboards
MDI	methylene diphenyl isocyanate
MEKC	micellar electrokinetic capillary chromatography
MOF	metal-organic framework
MPP	mesophase pitch
MSn	multiple-stage mass spectrometry
MWL	milled wood lignin
NADH	nicotinamide adenine dinucleotide
NDGA	nordihydroguaiaretic acid
NE	nucleus exchange
NMR	nuclear magnetic resonance
NOESY	nuclear overhauser effect spectroscopy
NP	nanoparticle

OSB	oriented strand boards		
PA66	polyamide 66		
PAL	L-Phenylalanine ammonia lyase		
PAN	polyacrylonitrile		
PE	polyethylene		
PEG	polyethylene glycol		
PF	phenol formaldehyde		
PLCG1	phospholipase C y1		
PLPW	pressurized low-polarity water		
PLR	pinoresinol/lariciresinol reductases		
PNNL	Pacific Northwest National Laboratory		
POM	polyoxometalate		
PP	polypropylene		
PPG	polypropylene glycol		
PPT	podophyllotoxin		
PS	polystyrene		
PTSA	<i>p</i> -toluenesulfonic acid		
PU	polyurethane		
PVC	polyvinyl chloride		
RP	reverse phase		
S	sinapyl alcohol		
SAA	soaking in aqueous ammonia		
SAR	structure-activity relationship		
SDG	secoisolariciresinol diglucoside		
SEC	size exclusion chromatography		
SECO	secoisolariciresinol		
SEL	swelled enzyme lignin		
SEM	scanning electron microscopy		
SHS	switchable hydrophilicity solvent		
SIRD	secoisolariciresinol dehydrogenase		
TAL	tyrosine ammonia lyase		
TAPPI	Technical Association of the Pulp and Paper Industry		
TDMP	2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane		
TEM	transmission electron microscopy		
THF	tetrahydrofuran		
TLC	thin-layer chromatography		
TOC	total organic carbon		
TPA	tonns per annum		
TTFA	thallium(III) trifluoroacetate		
UDP	uridine diphosphate		
UV/Vis	ultraviolet/visible		
VCD	vibrational circular dichroism		
VPO	vapor pressure osmometry		
WG	water-dispersible granules		

List of Symbols

δ	NMR chemical shift
Đ	dispersity index
ED_{50}	median effective dose
8	contraction factor
IC ₅₀	half maximal inhibitory concentration
M_n	average molecular weight
M _w	molecular weight
λ_{max}	The wavelength at which the largest amount of absorption occurs
Log P	partition coefficient
pН	acidity or basicity of an aqueous solution
ppm	parts <i>per</i> million
ppu	parts <i>per</i> unit
T_{σ}	temperature range of glass transition
rt	room temperature

Part I Introduction

1

Background and Overview

1.1 Introduction

Surviving on a small planet with limited resources to support our increasing global population is probably the greatest challenge humanity has faced so far. A large part of the problem is that our economy is driven by many technologies that are not sustainable at all. This necessity of developing sustainable technologies capable of addressing such challenges, together with the increasing concern over environmental protection and questions about future availability of petrochemical feedstock have spurred research and development toward new degradable materials from renewable resources, which are more environmentally friendly and sustainable than the currently used petroleum-based materials. Within this context, lignin, which appears as one of the polymeric components in plants, arises as a promising candidate for some of the desirable applications due to its rich chemical structure and its versatility.

For more than 100 years, scientists and engineers have made efforts to effectively remove lignin from wood when extracting cellulose in the pulping process.¹

In 1819, the term "lignin," from the Latin word *lignum* meaning "wood" [1], was used for the first time by the Swiss botanist A. P. Candolle (1778–1841). Later, in 1839, A. Payen first described this "encrusting material" in wood. It took, however, about 20 years to accept the term "lignin" to refer to a material as it is currently understood [2].

An understanding of its chemical composition began in 1875, when Bente [3] demonstrated that the noncellulosic constituent of wood, namely lignin, was aromatic in nature. It was further characterized by Benedikt and Bamberger [4] in 1890, who described the methoxy group as typical of lignin chemical structure. Later in 1960, Brauns [5] stated: *'the lignin building stone has a phenyl propane structure that may be regarded as proven, but how the stones are linked together in proto-lignin is still a mystery*'. In addition, in 1920, Klason [6] postulated that lignin was an oxidation product of coniferyl alcohol, which was demonstrated in 1968 by Freudenberg [7].

¹ Lignocellulosic fibrous material prepared by chemically or mechanically separating cellulose fibers from wood, fiber crops, or waste paper.

Lignin and Lignans as Renewable Raw Materials: Chemistry, Technology and Applications, First Edition. Francisco G. Calvo-Flores, José A. Dobado, Joaquín Isac-García and Francisco J. Martín-Martínez. © 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

Composition	Count of carbons	Types of phenolic substances
C ₆	6	Simple phenols, benzoquinones
$C_{6} - C_{1}$	7	Phenolic acids/aldehydes
$C_{6}^{\circ} - C_{2}^{\circ}$	8	Acetophenones, benzofurans
$C_{6}^{\circ} - C_{3}^{\circ}$	9	Phenylpropanoids, benzopyranes (coumarins)
$C_{6} - C_{4}$	10	Naphthoquinones
$C_{6} - C_{5}$	11	Ageratochromenes (prekocens)
$(\tilde{C}_6)_2$	12	Dibenzofurans, dibenzoquinones, biphenyls
$C_6 - C_1 - C_6$	13	Dibenzopyranes, benzophenones, xanthones
$C_{6} - C_{2} - C_{6}$	14	Stilbenes, anthraquinones, phenanthrenes
$C_{6} - C_{3} - C_{6}$	15	Flavonoids, isoflavones, chalcones, aurones
$C_{6} - C_{4} - C_{6}$	16	Norlignans (diphenylbutadienes)
$C_{6} - C_{5} - C_{6}$	17	Norlignans (conioids)
$(C_6 - C_3)_2$	18	Lignans, neolignans
$(C_6 - C_3 - C_6)_2$	30	Biflavonoids
$(C_6 - C_3 - C_6)_n$	п	Condensed tannins (flavolans)
$(C_6 - C_3)_n$	п	Lignins
$(C_6)_n$	п	Catecholmelanines

Table 1.1 The most common plant phenolic compounds listed according to the count (content) of carbon atoms^a

^aAdapted from refs [10–12].

Beyond this historical perspective on early years of lignin research, the rising interest on lignin today has made this natural polymer to go from a waste-side product to a promising source for chemicals, polymers, and many other applications. Lignin is the second most abundant natural polymer together with cellulose, and hemicellulose [8], which are the major sources of nonfossil carbon that make a special contribution to the carbon cycle [9]. Lignin is by far the most abundant substance composed of aromatic moieties in nature (see Table 1.1), and the largest contributor to soil organic matter.

Furthermore, lignin is an important component of secondary cell walls in plant cells, and it helps to maintain the integrity of the cellulose/hemicelluloses/pectin matrix that provides rigidity to the plant. Also, it provides internal transport of nutrients and water, and protects against attack by microorganisms. Apart from this key role in plants, lignin is also obtained from paper industry and other methods. Actually, the many different sources and types of lignin makes it more accurate to refer generically to "lignins" when referring to this multifaceted material. Its diversity also implies that interest in lignin arises from fields of knowledge as diverse as botany, chemistry, chemical engineering, economy, ecology, and so on. Therefore, a general vision about lignin should come from a multidisciplinary approach.

From an ecological viewpoint, lignins are of general significance to the global carbon cycle, since they represent an enormous reservoir of bound organic carbon. However, despite this potential, lignins are a fairly unused renewable raw material that is now gaining the attention of industry, which will make them materials of immense economical importance [13].

1.2 Lignin: Economical Aspects and Sustainability

One-third of the world's land surface is covered by forest, accounting for 3×10^5 million m³ of timber, of which some 2.6×10^9 m³ are harvested annually. Just for comparison, such a vast amount is twice