This book is the first in a series of joint SCI-ECCS publications, a series we believe will be extremely helpful in guiding UK designers through the changes that the Eurocodes represent. It is a derivative of the general ECCS book “Design of Steel Structures”, and includes complementary UK-specific information relating to the National Annexes and common practice. The level of detail provided means this UK edition will help designers, whatever their previous experience, apply Eurocode 3 easily and correctly in the United Kingdom.

The book details the fundamental concepts of Eurocode 3, Part 1-1: General rules and rules for buildings and considers their practical application. Following a discussion of the Eurocode basis of design, including the principles of reliability management and the limit state approach, the steel material standards and their use alongside Eurocode 3 are covered. Structural analysis and modelling are presented in a chapter that will assist the designer in the early stages of that process. This is followed by a major chapter that presents the various design criteria and approaches that should be used for different types of structural member. The format of presentation is uniquely designed to ensure that rules for practical application are a true reflection of the Eurocode theory. The following chapters expand on the principles and application of elastic and plastic design of steel structures. Throughout the book, many design examples are used to facilitate the understanding of the reader and thereby enable a smooth transition from earlier national standards to the Eurocodes.

Luís Simões da Silva is Professor of Steel Construction at the Civil Engineering Department of the University of Coimbra, in Portugal, and Director of Institute for Sustainability and Innovation in Structural Engineering (ISISE). He is president of the Portuguese Steelwork Association (CMM) and member of the Executive Board of the ECCS. He has authored over 500 scientific articles in this field.

Rui A. D. Simões is Professor at the Civil Engineering Department of the University of Coimbra, in Portugal, where he got his BSc in 1990, his MSc in 1995 and his PhD in 2000. He is heavily involved in experimental research work and teaching of steel related courses in the BSc, MSc, PhD and continuous education programmes. He is member of the ECCS Technical Committee TC9 – Execution of Steel Structures and of the Portuguese Steelwork Association (CMM).

Helena Gervásio is Assistant Professor at the Civil Engineering Department of the University of Coimbra, in Portugal. She is the Director of the R&D department of CoolHaven S.A, an engineering company specialized in steel construction. She is member of the ECCS Technical Committee TC14 - Sustainability & Eco-Efficiency of Steel Construction.

Graham Couchman is the CEO of the Steel Construction Institute (SCI). SCI is the leading independent provider of technical expertise to the steel construction sector in the UK. He received his MA from Cambridge University in 1985, and PhD from the Swiss Federal Institute of Technology, Lausanne in 1994. He has authored numerous publications and papers, and is Chairman of CEN/TC250/SC4 Composite Construction.
ECCS EUROCODE DESIGN MANUALS

ECCS EDITORIAL BOARD
Luís Simões da Silva (ECCS)
António Lamas (Portugal)
Jean-Pierre Jaspart (Belgium)
Reidar Bjorhovde (USA)
Ulrike Kuhlmann (Germany)

DESIGN OF STEEL STRUCTURES
Luís Simões da Silva, Rui Simões and Helena Gervásio

FIRE DESIGN OF STEEL STRUCTURES
Jean-Marc Franssen and Paulo Vila Real

DESIGN OF PLATED STRUCTURES
Darko Beg, Ulrike Kuhlmann, Laurence Davaine and Benjamin Braun

FATIGUE DESIGN OF STEEL AND COMPOSITE STRUCTURES
Alain Nussbaumer, Luís Borges and Laurence Davaine

DESIGN OF COLD-FORMED STEEL STRUCTURES
Dan Dubina, Viorel Ungureanu and Raffaele Landolfo

ECCS – SCI EUROCODE DESIGN MANUALS

DESIGN OF STEEL STRUCTURES, U. K. EDITION
Luís Simões da Silva, Rui Simões, Helena Gervásio and Graham Couchman

AVAILABLE SOON

DESIGN OF JOINTS IN STEEL AND COMPOSITE STRUCTURES
Jean-Pierre Jaspart, Klaus Weynand

DESIGN OF COMPOSITE STRUCTURES
Markus Feldman and Benno Hoffmeister

DESIGN OF STEEL STRUCTURES FOR BUILDINGS IN SEISMIC AREAS
Raffaele Landolfo, Federico Mazzolani, Dan Dubina and Luís Simões da Silva

INFORMATION AND ORDERING DETAILS

For price, availability, and ordering visit our website www.steelconstruct.com.
For more information about books and journals visit http://www.steel-sci.org.
DESIGN OF STEEL STRUCTURES

Eurocode 3: Design of steel structures
Part 1-1 – General rules and rules for buildings

U.K. Edition

Luís Simões da Silva
Rui Simões
Helena Gervásio
Graham Couchman
Table of Contents

FOREWORD ... xiii
PREFACE ... xv
U.K. FOREWORD ... xvii

Chapter 1

INTRODUCTION .. 1
1.1. General Observations 1
1.2. Codes of Practice and Normalization 3
1.2.1. Introduction .. 3
1.2.2. Eurocode 3 .. 6
1.2.3. Other standards 7
1.3. Basis of Design .. 8
1.3.1. Basic concepts 8
1.3.2. Reliability management 10
1.3.3. Basic variables 13
1.3.3.1. Introduction 13
1.3.3.2. Actions and environmental influences 14
1.3.3.3. Material properties 15
1.3.3.4. Geometrical data 15
1.3.4. Ultimate limit states 15
1.3.5. Serviceability limit states 16
1.3.6. Durability .. 19
1.3.7. Sustainability 20
1.4. Materials ... 21
TABLE OF CONTENTS

1.4.1. Material specification 21
1.4.2. Mechanical properties 23
1.4.3. Toughness and through thickness properties 25
1.4.4. Fatigue properties 28
1.4.5. Corrosion resistance 28
1.5. Geometric Characteristics and Tolerances 28

Chapter 2

STRUCTURAL ANALYSIS 35

2.1. Introduction 35

2.2. Structural Modelling 36
 2.2.1. Introduction 36
 2.2.2. Choice of member axis 38
 2.2.3. Influence of eccentricities and supports 40
 2.2.4. Non-prismatic members and members with curved axis 41
 2.2.5. Influence of joints 46
 2.2.6. Combining beam elements together with two and three dimensional elements 53
 2.2.7. Worked examples 54

2.3. Global Analysis of Steel Structures 77
 2.3.1. Introduction 77
 2.3.2. Structural stability of frames 79
 2.3.2.1. Introduction 79
 2.3.2.2. Elastic critical load 82
 2.3.2.3. 2nd order analysis 88
 2.3.3. Imperfections 89
 2.3.4. Worked example 96

2.4. Classification of Cross Sections 110
Chapter 3
DESIGN OF MEMBERS

3.1. Introduction
3.1.1. General
3.1.2. Resistance of cross sections
3.1.2.1. General criteria
3.1.2.2. Section properties
3.1.3. Buckling resistance of members
3.2. Tension
3.2.1. Behaviour in tension
3.2.2. Design for tensile force
3.2.3. Worked examples
3.3. Laterally Restrained Beams
3.3.1. Introduction
3.3.2. Design for bending
3.3.2.1. Elastic and plastic bending moment resistance
3.3.2.2. Uniaxial bending
3.3.2.3. Bi-axial bending
3.3.2.4. Net area in bending
3.3.3. Design for shear
3.3.4. Design for combined shear and bending
3.3.5. Worked examples
3.4. Torsion
3.4.1. Theoretical background
3.4.1.1. Introduction
3.4.1.2. Uniform torsion
3.4.1.3. Non-uniform torsion
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1.4</td>
<td>Cross section resistance in torsion</td>
<td>162</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Design for torsion</td>
<td>164</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Worked examples</td>
<td>166</td>
</tr>
<tr>
<td>3.5</td>
<td>Compression</td>
<td>172</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Theoretical background</td>
<td>172</td>
</tr>
<tr>
<td>3.5.1.1</td>
<td>Introduction</td>
<td>172</td>
</tr>
<tr>
<td>3.5.1.2</td>
<td>Elastic critical load</td>
<td>172</td>
</tr>
<tr>
<td>3.5.1.3</td>
<td>Effect of imperfections and plasticity</td>
<td>177</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Design for compression</td>
<td>183</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Worked examples</td>
<td>188</td>
</tr>
<tr>
<td>3.6</td>
<td>Laterally Unrestrained Beams</td>
<td>196</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Introduction</td>
<td>196</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Lateral-torsional buckling</td>
<td>197</td>
</tr>
<tr>
<td>3.6.2.1</td>
<td>Introduction</td>
<td>197</td>
</tr>
<tr>
<td>3.6.2.2</td>
<td>Elastic critical moment</td>
<td>197</td>
</tr>
<tr>
<td>3.6.2.3</td>
<td>Effect of imperfections and plasticity</td>
<td>209</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Lateral-torsional buckling resistance</td>
<td>211</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Worked examples</td>
<td>215</td>
</tr>
<tr>
<td>3.7</td>
<td>Beam-Columns</td>
<td>224</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Introduction</td>
<td>224</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Cross section resistance</td>
<td>225</td>
</tr>
<tr>
<td>3.7.2.1</td>
<td>Theoretical background</td>
<td>225</td>
</tr>
<tr>
<td>3.7.2.2</td>
<td>Design resistance</td>
<td>227</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Buckling resistance</td>
<td>231</td>
</tr>
<tr>
<td>3.7.3.1</td>
<td>Theoretical background</td>
<td>231</td>
</tr>
<tr>
<td>3.7.3.2</td>
<td>Design resistance</td>
<td>234</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Worked examples</td>
<td>243</td>
</tr>
</tbody>
</table>
Chapter 4

ELASTIC DESIGN OF STEEL STRUCTURES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Introduction</td>
<td>271</td>
</tr>
<tr>
<td>4.2. Simplified Methods of Analysis</td>
<td>274</td>
</tr>
<tr>
<td>4.2.1. Introduction</td>
<td>274</td>
</tr>
<tr>
<td>4.2.2. Amplified sway-moment method</td>
<td>275</td>
</tr>
<tr>
<td>4.2.3. Sway-mode buckling length method</td>
<td>277</td>
</tr>
<tr>
<td>4.2.4. Worked example</td>
<td>278</td>
</tr>
<tr>
<td>4.3. Member Stability of Non-prismatic Members and Components</td>
<td>288</td>
</tr>
<tr>
<td>4.3.1. Introduction</td>
<td>288</td>
</tr>
<tr>
<td>4.3.2. Non-prismatic members</td>
<td>288</td>
</tr>
<tr>
<td>4.3.3. Members with intermediate restraints</td>
<td>293</td>
</tr>
<tr>
<td>4.3.4. General method</td>
<td>299</td>
</tr>
<tr>
<td>4.3.5. Worked example</td>
<td>302</td>
</tr>
<tr>
<td>4.4. Design Example 1: Elastic Design of Braced Steel-Framed Building</td>
<td>316</td>
</tr>
<tr>
<td>4.4.1. Introduction</td>
<td>316</td>
</tr>
<tr>
<td>4.4.2. Description of the structure</td>
<td>317</td>
</tr>
<tr>
<td>4.4.3. General safety criteria, actions and combinations of actions</td>
<td>320</td>
</tr>
<tr>
<td>4.4.3.1. General safety criteria</td>
<td>320</td>
</tr>
<tr>
<td>4.4.3.2. Permanent actions</td>
<td>320</td>
</tr>
<tr>
<td>4.4.3.3. Imposed loads</td>
<td>320</td>
</tr>
<tr>
<td>4.4.3.4. Wind actions</td>
<td>321</td>
</tr>
<tr>
<td>4.4.3.5. Summary of basic actions</td>
<td>328</td>
</tr>
<tr>
<td>4.4.3.6. Frame imperfections</td>
<td>328</td>
</tr>
<tr>
<td>4.4.3.7. Load combinations</td>
<td>331</td>
</tr>
<tr>
<td>4.4.3.8. Load arrangement</td>
<td>333</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

4.4.4. Structural analysis 335
 4.4.4.1. Structural model 335
 4.4.4.2. Linear elastic analysis 336
 4.4.4.3. Susceptibility to 2nd order effects: elastic critical loads 336
 4.4.4.4. 2nd order elastic analysis 338

4.4.5. Design checks 339
 4.4.5.1. General considerations 339
 4.4.5.2. Cross section resistance 341
 4.4.5.3. Buckling resistance of beams 341
 4.4.5.4. Buckling resistance of columns and beam-columns 342

Chapter 5

PLASTIC DESIGN OF STEEL STRUCTURES 343

5.1. General Principles for Plastic Design 343
 5.1.1. Introduction 343
 5.1.2. Plastic limit analysis: method of mechanisms 344
 5.1.3. Code requirements for plastic analysis 348

5.2. Methods of Analysis 352
 5.2.1. Introduction 352
 5.2.2. Approximate methods for pre-design 352
 5.2.3. Computational analysis 364
 5.2.4. 2nd order effects 369
 5.2.4.1. Introduction 369
 5.2.4.2. Elastic critical load 369
 5.2.4.3. 2nd order computational analysis 372
 5.2.4.4. Simplified methods for analysis 373
 5.2.5. Worked example 375
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3. Member Stability and Buckling Resistance</td>
<td>385</td>
</tr>
<tr>
<td>5.3.1. Introduction</td>
<td>385</td>
</tr>
<tr>
<td>5.3.2. General criteria for the verification of the stability of members with plastic hinges</td>
<td>385</td>
</tr>
<tr>
<td>5.3.3. Bracings</td>
<td>386</td>
</tr>
<tr>
<td>5.3.4. Verification of the stability of members with plastic hinges</td>
<td>389</td>
</tr>
<tr>
<td>5.3.4.1. Introduction</td>
<td>389</td>
</tr>
<tr>
<td>5.3.4.2. Prismatic members constituted by hot-rolled or equivalent welded I sections</td>
<td>390</td>
</tr>
<tr>
<td>5.3.4.3. Haunched or tapered members made of rolled or equivalent welded I sections</td>
<td>392</td>
</tr>
<tr>
<td>5.3.4.4. Modification factors for moment gradients in members laterally restrained along the tension flange</td>
<td>395</td>
</tr>
<tr>
<td>5.3.5. Worked examples</td>
<td>397</td>
</tr>
<tr>
<td>5.4. Design Example 2: Plastic Design of Industrial Building</td>
<td>407</td>
</tr>
<tr>
<td>5.4.1. Introduction</td>
<td>407</td>
</tr>
<tr>
<td>5.4.2. General description</td>
<td>408</td>
</tr>
<tr>
<td>5.4.3. Quantification of actions, load combinations and general safety criteria</td>
<td>409</td>
</tr>
<tr>
<td>5.4.3.1. General criteria</td>
<td>409</td>
</tr>
<tr>
<td>5.4.3.2. Permanent actions</td>
<td>409</td>
</tr>
<tr>
<td>5.4.3.3. Imposed loads</td>
<td>409</td>
</tr>
<tr>
<td>5.4.3.4. Snow loads</td>
<td>409</td>
</tr>
<tr>
<td>5.4.3.5. Wind loads</td>
<td>410</td>
</tr>
<tr>
<td>5.4.3.6. Summary of basic actions</td>
<td>415</td>
</tr>
<tr>
<td>5.4.3.7. Imperfections</td>
<td>415</td>
</tr>
<tr>
<td>5.4.3.8. Load combinations</td>
<td>416</td>
</tr>
<tr>
<td>5.4.4. Pre-design</td>
<td>418</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

5.4.5. Structural analysis 420
 5.4.5.1. Linear elastic analysis 420
 5.4.5.2. 2nd order effects 423
 5.4.5.3. Elastic-plastic analysis 424
5.4.6. Code checks 425
 5.4.6.1. General considerations 425
 5.4.6.2. Cross section resistance 425
 5.4.6.3. Buckling resistance of the rafters 426
 5.4.6.4. Buckling resistance of the columns 429
5.4.7. Synthesis 429

REFERENCES 431

Annex A

ABACUS TO CALCULATE THE COEFFICIENTS C_1, C_2 AND C_3 441

A.1. Elastic critical moment in beams submitted to end moments simultaneously with transverse loads 441
A.2. Elastic critical moment of unbraced cantilevers 445
The development program for the design manuals of the European Convention for Constructional Steelwork (ECCS) represents a major effort for the steel construction industry and the engineering profession in Europe. Conceived by the ECCS Technical Activities Board under the leadership of its chairman, Professor Luis Simões da Silva, the manuals are being prepared in close agreement with the final stages of Eurocode 3 and its national Annexes. The scope of the development effort is vast, and reflects a unique undertaking in the world.

The publication of the first of the manuals, Design of Steel Structures, is a signal achievement which heralds the successful completion of the Eurocode 3 work and brings it directly to the designers who will implement the actual use of the code. As such, the book is more than a manual – it is a major textbook that details the fundamental concepts of the code and their practical application. It is a unique publication for a major construction market.

Following a discussion of the Eurocode 3 basis of design, including the principles of reliability management and the limit state approach, the steel material standards and their use under Eurocode 3 are detailed. Structural analysis and modeling are presented in a chapter that will assist the design engineer in the first stages of a design project. This is followed by a major chapter that provides the design criteria and approaches for the various types of structural members. The theories of behavior and strength are closely tied to the Eurocode requirements, making for a unique presentation of theory into practice. The following chapters expand on the principles and applications of elastic and plastic design of steel structures.

The many design examples that are presented throughout the book represent a significant part of the manual. These will be especially well received by the design profession. Without a doubt, the examples will facilitate the acceptance of the code and provide for a smooth transition from earlier national codes to the Eurocode.

Reidar Bjorhovde
Member, ECCS Editorial Board
This book is the first of a series of joint SCI-ECCS publications, a series that will be extremely helpful to U.K. designers helping them through the change that Eurocodes represent. This joint publication is the 1st Edition, revised second impression of the ECCS Eurocode Design Manual to EN 1993-1-1, supplemented by a U.K. Foreword. In this edition, the reader will find information that is either of a general nature, or relevant to specific sections of the publication, to facilitate its application in a U.K. context.

The General rules and rules for buildings of part 1-1 of Eurocode 3 constitute the core of the code procedures for the design of steel structures. They contain the basic guidance for structural modeling and analysis of steel frameworks and the rules for the evaluation of the resistance of structural members and components subject to different loading conditions.

According to the objectives of the ECCS Eurocode Design Manuals, it is the objective of this book to provide mix of “light” theoretical background, explanation of the code prescriptions and detailed design examples. Consequently, this book is more than a manual: it provides an all-in-one source for an explanation of the theoretical concepts behind the code and detailed design examples that try to reproduce real design situations instead of the usually simplified examples that are found in most textbooks.

This book evolved from the experience of teaching Steel Structures according to ENV 1993-1-1 since 1993. It further benefited from the participation in Technical Committees TC8 and TC10 of ECCS where the background and the applicability of the various clauses of EN 1993-1-1 was continuously questioned. This book covers exclusively part 1-1 of Eurocode 3 because of the required level of detail. Forthcoming volumes discuss and apply most of the additional parts of Eurocode 3 using a consistent format.

Chapter 1 introduces general aspects such as the basis of design, material properties and geometric characteristics and tolerances, corresponding to chapters 1 to 4 and chapter 7 of EN 1993-1-1. It highlights the important topics that are required in the design of steel structures. Structural analysis is
discussed in chapter 2, including structural modelling, global analysis and classification of cross sections, covering chapter 5 of EN 1993-1-1. The design of steel members subjected to various types of internal force (tension, bending and shear, compression and torsion) and their combinations is described in chapter 3, corresponding to chapter 6 of EN 1993-1-1. Chapter 4 presents the design of steel structures using 3D elastic analysis based on the case study of a real building. Finally, chapter 5 discusses plastic design, using a pitched-roof industrial building to exemplify all relevant aspects.

Furthermore, the design examples provided in this book are chosen from real design cases. Two complete design examples are presented: i) a braced steel-framed building; and ii) a pitched-roof industrial building. The chosen design approach tries to reproduce, as much as possible, real design practice instead of more academic approaches that often only deal with parts of the design process. This means that the design examples start by quantifying the actions. They then progress in a detailed step-by-step manner to global analysis and individual member verifications. The design tools currently available and adopted in most design offices are based on software for 3D analysis. Consequently, the design example for multi-storey buildings is analysed as a 3D structure, all subsequent checks being consistent with this approach. This is by no means a straightforward implementation, since most global stability verifications were developed and validated for 2D structures.

The authors are indebted to Prof. Reidar Bjorhovde who carried out a detailed technical review of the manuscript and provided many valuable comments and suggestions. Warm thanks to Prof. David Anderson who carried out an additional detailed revision of the book and also made sure that the English language was properly used. Further thanks to Liliana Marques and José Alexandre Henriques, PhD students at the University of Coimbra, for the help with the design examples of chapter 4. Additional thanks to Prof. Tiago Abecasis who spotted innumerable “bugs” in the text. Finally, thanks to Joana Albuquerque and the staff of cmm and ECCS for all the editorial and typesetting work, making it possible to bring to finalize this project.

Luís Simões da Silva
Rui Simôes
Helena Gervásio
Graham Couchman
Coimbra, 2014
INTRODUCTION

SCI has a history going back over 25 years of producing design guides aimed at structural engineers. These have typically been of a ‘how to do’ nature, aimed at designers with a certain level of experience and within the context of a given design standard.

This publication represents a departure from that tradition. It is the first in an envisaged series of joint ECCS-SCI publications, a series we hope will be extremely helpful to U.K. designers given the step change that the move to Eurocodes represents. We believe its format complements other SCI guidance. This joint publication is the 1st Edition, revised second impression of the ECCS Eurocode Design Manual to EN 1993-1-1, which was published in 2013, supplemented by a U.K. Foreword.

The content includes much useful background to the code rules (pointers to reasoning and research work that should help ensure correct application of the rules), and a reminder of some engineering principles. Helpfully, this information is presented in the context of Eurocode terminology and notation, and with reference to clause numbers etc, to aid the reader’s familiarity with EN 1993-1-1. A significant number of SCI publications and other work are cited in the references.

Within this so-called U.K. Foreword the reader will find information that is either of a general nature, or relevant to specific sections of the publication. In both cases this information is presented to facilitate application of the rest of the publication in a U.K. context.

It is noted and should be accepted that there will inevitably be some differences of interpretation between the recommendations of ECCS and those previously published by SCI.
GENERAL COMMENTS

The Eurocodes contain so-called Nationally Determined Parameters (NDPs), which permit specific parts of the codes to be subject to national variations. The base ECCS publication uses either the default (recommended) Eurocode values, or in some cases Portuguese values for these NDPs. For a given design the NDPs must be in accordance with the rules for the country in which the structure is to be constructed. Some uses of specific NDPs in the U.K. are noted below.

The examples are described as being ‘realistic’, but it must be recognised that practice varies between nations so they do not necessarily reflect typical U.K. practice. Some specific exceptions are noted in this U.K. Foreword. Similarly, some references to ‘common practice’ may not reflect common U.K. practice, and these are highlighted.

Some units may be unfamiliar to U.K. designers, in particular

\[1 \text{ GPa} = 1 \text{ N/mm}^2 \]

The following comments are also included in the specific sections throughout the book.

SECTION SPECIFIC COMMENTS

Section 1.2

Reference is made to the need for integration between standards, to ensure that design rules are compatible with execution tolerances. When complementary material is used, which it invariably will be because even a set of standards as comprehensive as the Eurocodes cannot cover every need, the designer should take care to ensure it is appropriate.

Section 1.3.2

At the time of writing (Autumn 2014) an amendment is about to be published that moves the decision regarding Execution Class from EN 1090 to EN 1993-1-1.

Section 1.3.3.3

Reference is made to material partial safety factors (\(\gamma_m \)), which are NDPs. Both recommended and U.K. values are based on extensive analysis of
European steel production. When steel from other sources is used these values may not be appropriate.

Section 1.3.5

Reference is made to rules of thumb that may be used to assure satisfactory dynamic performance. SCI has produced guidance on this subject (SCI, 2009a) and suggests rules of thumb are only used with care, as they can be misleading.

Section 1.4.1

Its U.K. National Annex states that Table 3.1 of EN 1993-1-1 should not be used, moreover that when a range of ultimate strengths is quoted in a product standard the lowest value should be taken.

Section 1.5

The National Structural Steelwork Specification 5th edition (CE Marking Version) was configured to complement EN 1090-2 (BCSA, 2010).

Section 2.2.2

The Eurocodes use a different convention for axis notation than has traditionally been used in the U.K. Also, the Eurocodes are not entirely consistent within themselves concerning axis definition. Care is therefore needed!

Section 2.2.3

Common U.K. practice is to determine forces and moments at centreline intersections, not to use rigid links and to determine forces and moments at (for example) the face of a column.

Section 2.2.5

Although non-linear springs may be used to model joint behaviour, it is very difficult to model the complex behaviour of a joint (connection) – its stiffness, strength, rotation capacity, and indeed different behaviour in loading and unloading. This is mentioned in Section 5.2 of the guide. Traditional U.K. practice is to predict joint behaviour on the basis of past experience.

Section 2.2.7 – Example 2.1

It should be noted that European sections are not commonly used in the U.K. (although they are the subject of growing interest). S 235 steel is not used in the U.K., where S 355 is the current (2014) common grade.
Normal U.K. practice is to assume joint classification (generally ‘rigid’ or ‘nominally pinned’) and subsequently to ensure that the joint details satisfy the assumptions made.

Figures 2.29 and 2.30 show a joint with a stiffener that appears to prevent fitting of bolts/nuts. A Morris Stiffener could be used to avoid this problem.

Section 2.3.2.1

Reference is made to amplifying internal forces and displacements to model second order effects. In the U.K. an alternative approach is to reduce resistance rather than increasing forces, by use of effective lengths. However this can be laborious and for that reason is not recommended.

For certain frame geometries the U.K. National Annex to EN 1993-1-1 permits second order effects to be ignored at $\alpha_{cr} > 5$ for the so-called gravity load combination.

Section 2.3.3

The definition of m as the ‘number of columns in a row’ is not strictly correct. It should be defined as the ‘number of columns having an effect on the stability system’. An amendment to EN 1993-1-1 is anticipated.

Section 2.4

All UB sections are Class 1 in bending alone.

Section 3.1.1

The U.K. National Annex to EN 1993-1-1 defines values of $\gamma_{M0} = 1.0$, $\gamma_{M1} = 1.0$, and $\gamma_{M2} = 1.1$. Note these values may vary between Eurocodes, and indeed Eurocode Parts.

Section 3.2.2

Since EN 1993 does not cover what is, in the U.K. at least, a common situation of more than one bolt in the width of an angle leg, it is common practice to use complementary guidance from BS5950 when calculating members resistances.

Section 3.3.5 – Example 3.5

The example assumes that the restraint provided by the composite floor is sufficient. SCI has provided guidance on how a designer can ensure it is sufficient (SCI, 2009b), as in practice it should never be simply assumed.
Section 3.6.2.2
The omission of rules on how to calculate M_{cr} is one of the gaps in EN 1993 that many U.K. designers are aware of. Some useful complementary information is given here.

Section 3.7.2.2
Reference is made to the two alternative methods for beam-column design given in EN 1993-1-1. It is anticipated that only one method will be given in future editions of the code, although this publication highlights that economy of design effort and economy of design result can sometimes vary depending on the method chosen.

Section 4.1
It should not be assumed that most U.K. design offices use 3D analysis. Reference is also made to the so-called wind moment method having been popular in the past in the U.K. – with modern computing power and knowledge it is not recommended, as its use beyond specific (empirical) limits has no justification.

Reference is made to braced and unbraced frames, and it is worth noting that this does not mean the same thing as non-sway sensitive and sway sensitive. It is not uncommon for a frame that is braced to be sway sensitive – it depends how stiff the bracing mechanism is.

Section 4.2.4 – Example 4.1
The example considers column bases that are fully restrained. These should be avoided if possible – more because of the cost and practicalities of the foundations than the steelwork – and in any case correctly modelled.

Section 4.4.3.4
It should be noted that the calculation of wind actions should follow the U.K. National Annex, which differs significantly from the Eurocode.

Section 4.4.3.6
The definition of m as the ‘number of columns in a row’ should be changed to the ‘number of columns having an effect on the stability system’. In U.K. practice it would generally be assumed that the floor diaphragm constrains all columns to have the same imperfection.
Section 4.4.3.7

For economy, U.K. designers are likely to favour the use of expressions 6.10a and 6.10b of EN 1990 to determine ultimate loads. The combination factors should be taken from the U.K. National Annex to EN 1990.

At the Serviceability Limit State (SLS) the U.K. National Annex recommends using the characteristic combination, and that permanent actions should not be included.

Section 4.4.3.8

In a braced frame, typical U.K. practice would be to design all the floor beams as simply supported. Columns would be designed considering only nominal moments (from eccentric beam reactions), and floors would be considered as fully loaded.

Section 5.2.4.1

An alternative approach to calculate α_{cr} for a portal frame is considered in SCI (2014).

Section 5.2.5 – Example 5.1 (and Section 5.4.6.3)

U.K. practice is that having allowed for second-order effects and frame imperfections, the effects of in-plane member imperfections are small enough to be ignored. Thus, in addition to cross-section checks, only out-of-plane member verifications are needed. This is considered in SCI (2014).

Section 5.4.2

The example is for a portal frame with height to rafters of 7 m, but many modern portal frames in the U.K. are significantly taller, and therefore potentially more flexible, than this.

REFERENCES TO NATIONAL FOREWORD

Chapter 1

INTRODUCTION

1.1. GENERAL OBSERVATIONS

Steel construction combines a number of unique features that make it an ideal solution for many applications in the construction industry. Steel provides unbeatable speed of construction and off-site fabrication, thereby reducing the financial risks associated with site-dependent delays. The inherent properties of steel allow much greater freedom at the conceptual design phase, thereby helping to achieve greater flexibility and quality. In particular, steel construction, with its high strength to weight ratio, maximizes the useable area of a structure and minimizes self-weight, again resulting in cost savings. Recycling and reuse of steel also mean that steel construction is well-placed to contribute towards reduction of the environmental impacts of the construction sector (Simões da Silva, 2005).

The construction industry is currently facing its biggest transformation as a direct result of the accelerated changes that society is experiencing. Globalisation and increasing competition are forcing the construction industry to abandon its traditional practices and intensive labour characteristics and to adopt industrial practices typical of manufacturing. This further enhances the attractiveness of steel construction.

All these advantages can only be achieved with sound technical knowledge of all the stages in the life-cycle of the construction process (from design, construction and operation to final dismantling). The objective of the ECCS Eurocode Design Manuals is to provide design guidance on the use of the Eurocodes through a “light” overview of the theoretical background together with an explanation of the code’s provisions, supported by detailed, practical design examples based on real structures. Each volume
1. **Introduction**

This inaugural volume of the ECCS Eurocode Design Manuals addresses the Design of Steel Structures in terms of the General Rules and Rules for Buildings, covering all the topics of Part 1-1 of Eurocode 3 (CEN, 2005a), abbreviated in this book to EC3-1-1. These range from structural analysis of skeletal structures to design of members and components. More specifically, chapter 1 of this manual introduces general aspects such as the basis of design, material properties and geometric characteristics and tolerances, corresponding to chapters 1 to 4 and chapter 7 of EN 1993-1-1. It highlights the important topics that are required in the design of steel structures. Structural analysis is discussed in chapter 2, including structural modelling, global analysis and classification of cross sections, covering chapter 5 of EN 1993-1-1. The design of steel members subjected to various types of internal force (tension, bending and shear, compression and torsion) and their combinations is described in chapter 3, corresponding to chapter 6 of EN 1993-1-1. Chapter 4 presents the design of steel structures using 3D elastic analysis based on the case study of a real building. Finally, chapter 5 discusses plastic design, using a pitched-roof industrial building to exemplify all relevant aspects.

The design examples are chosen from real design cases. Two complete design examples are presented: i) a braced steel-framed building and ii) a pitched-roof industrial building. The chosen design approach tries to reproduce, as much as possible, real design practice instead of more academic approaches that often only deal with parts of the design process. This means that the design examples start by quantifying the actions. They then progress in a detailed step-by-step manner to global analysis and individual member verifications. The design tools currently available and adopted in most design offices are based on software for 3D analysis. Consequently, the design example for multi-storey buildings is analysed as a 3D structure, all subsequent checks being consistent with this approach. This is by no means a straightforward implementation, since most global stability verifications were developed and validated for 2D structures.

The scope of this manual is limited to those issues covered by Part 1-1 of EC3. Issues such as fire design and the design of joints, which are covered by Parts 1.2 and 1.8 of EN 1993, are not included in this manual. Other companion publications on fire design (Franssen and Vila Real, 2010) and joint design (Jaspart and Weynand, 2015) address these. Seismic action is
also not considered in this manual. This is because the many different options that could be adopted in the conceptual design phase would lead to completely different structures for the same architectural brief. A forthcoming manual dealing specifically with seismic design issues for buildings is planned (Landolfo et al., 2015).

This manual follows the code prescriptions of the Structural Eurocodes. This is done without loss of generality since the theoretical background, the design philosophy and the design examples are code independent, except when it comes to the specific design procedures.

1.2. CODES OF PRACTICE AND NORMALIZATION

1.2.1. Introduction

The European Union has spent several decades (since 1975) developing and unifying the rules for the design of structures. This work has culminated in a set of European standards called the Eurocodes which have recently been approved by member states. The foreword to each part of the set of Eurocodes contains the following statement: "In 1975, the Commission of the European Community decided on an action programme in the field of construction, based on article 95 of the Treaty. The objective of the programme was the elimination of technical obstacles to trade and the harmonization of technical specifications. Within this action programme, the Commission took the initiative to establish a set of harmonized technical rules for the design of construction works which, in a first stage, would serve as an alternative to the national rules in force in the Member States and, ultimately, would replace them. For fifteen years, the Commission, with the help of a Steering Committee with Representatives of Member States, conducted the development of the Eurocodes programme, which led to the first generation of European codes in the 1980’s. In 1989, the Commission and the Member States of the EU and EFTA decided, on the basis of an agreement between the Commission and CEN, to transfer the preparation and the publication of the Eurocodes to CEN through a series of Mandates, in order to provide them with a future status of European Standard (EN). This links de facto the Eurocodes with the provisions of all the Council’s Directives and/or Commission’s Decisions dealing with European standards.
1. INTRODUCTION

(e.g. the Council Directive 89/106/EEC on construction products - CPD - and Council Directives 93/37/EEC, 92/50/EEC and 89/440/EEC on public works and services and equivalent EFTA Directives initiated in pursuit of setting up the internal market)."

The publication of the Construction Products Directive in 1989 (OJ L 040, 1989) established the essential requirements that all construction works must fulfil, namely: i) mechanical resistance and stability; ii) fire resistance; iii) hygiene, health and environment; iv) safety in use; v) protection against noise and vi) energy economy and heat retention.

The first two requirements are addressed by the following nine Structural Eurocodes. These have been produced by CEN (European Committee for Standardization) under the responsibility of its Technical Committee CEN/TC 250:

- EN 1990 Eurocode: Basis of Structural Design
- EN 1991 Eurocode 1: Actions on Structures
- EN 1992 Eurocode 2: Design of Concrete Structures
- EN 1993 Eurocode 3: Design of Steel Structures
- EN 1994 Eurocode 4: Design of Composite Steel and Concrete Structures
- EN 1995 Eurocode 5: Design of Timber Structures
- EN 1996 Eurocode 6: Design of Masonry Structures
- EN 1997 Eurocode 7: Geotechnical Design
- EN 1998 Eurocode 8: Design of Structures for Earthquake Resistance
- EN 1999 Eurocode 9: Design of Aluminium Structures

Each Eurocode contains provisions that are open for national determination. Such provisions include weather aspects, seismic zones, safety issues etc. These are collectively called Nationally Determined Parameters (NDP). It is the responsibility of each member state to specify each NDP in a National Annex that accompanies each Eurocode.

More recently (July 2013) the Construction Products Directive was replaced by the Construction Products Regulation (OJ L 088, 2013). This document adds an additional basic requirement: sustainability. This seventh basic requirement must follow the standards prepared by CEN/TC 350 and should be incorporated in future revisions of the Eurocodes.

The Structural Eurocodes are not, by themselves, sufficient for the construction of structures. Complementary information is required on: