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Preface

Along with metals and polymers, advanced ceramics are one of the most promising
classes of materials for the key technologies of the 21st century. Recent develop-
ments in the field has resulted in a number of new synthesis, processing and
sintering techniques for the production of novel structural and functional ceramics
and ceramic composites. Significant progress has also been made in the past two
decades in the production of novel multifunctional ceramics with a tailor made
micro- and/or nanoscale structure to respond to the increasing technological
demand for advanced ceramic materials.
The four-volume series of Ceramics Science & Technology covers various aspects

of modern trends in advanced ceramics reflecting the status quo of the latest
achievements in ceramics science and development. The contributions highlight the
increasing technological significance of advanced ceramic materials and present
concepts for their production and application. Volume 1 deals with structural
properties of ceramics by considering a broad spectrum of length scale, starting
from the atomic level by discussing amorphous and crystalline solid state structural
features, and continuing with the microstructural level by commenting on micro-
structural design, mesoscopic and nano structures, glass ceramics, cellular struc-
tures, thin films and multiphase (composite) structures. Volume 2 focuses on
i) various distinct classes of ceramic materials, namely oxides, carbides and nitrides,
and ii) physical and mechanical properties of advanced ceramics. The series is
continued with Volume 3 with chapters related to advanced synthesis and process-
ing techniques used for the production of engineering ceramics and is here
completed by Volume 4 which is devoted to applications of engineering and
functional ceramics.
Quo vadis ceramics? The four-volume series intends to provide comprehensive

information relevant to the future direction of ceramics. In this respect, Volume 4
describes commercial applications of several advanced, engineering ceramics to
offer evidence for their technological importance and to point to trends for the
further development of this fascinating class of materials. Latest examples of
commercial ceramics are found in transportation industry: PZT (Pb(Zr,Ti)O3)-based
piezoelectric actuators and Si3N4-based ball bearings and glow plugs are used in
diesel engines, carbon fiber reinforced silicon carbide (C/SiC) is used for brakes, and
oxide ceramics-based thermal barrier coatings are used in jet engines; in lighting
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industry: sialon-derivative-based luminescent ceramics for LED applications, and
GaN-based ceramics for optoelectronics; and in many others.
As novel ceramics are called for and expected to establish a commercial status in

the future in a number of emerging application fields, there is the need for a long-
term alignment with the emerging fields and for continued fundamental research in
ceramics science and technology. Along this line, Volume 4 highlights potential
applications of advanced ceramics in applications such as fuel cells, membranes, gas
sensors, and energy storage. In addition, specific functions uniquely delivered by
ceramic materials are described: nanostructured ceramics for superhard applica-
tions, ceramics for ultrahigh temperature and corrosive environment applications,
and ceramics for magnetic and microwave applications. Finally, novel compositions
based on polymer-derived ceramics and nitridosilicates are discussed as promising
future materials with properties unmatched by any material known today and ones
that can only be realized by designing the material structure at the nanoscale. In this
way, we hope this final volume and the four-volume series will celebrate and
contribute to the exciting development of ceramics and technology by providing
the latest scientific knowledge to ceramic students and ceramic research
community.
We wish to thank all the contributing authors for their great enthusiasm in

compiling excellent manuscripts in their respective area of expertise. We also
acknowledge the support of theWiley-VCHeditors, Bernadette Gmeiner andMartin
Preuß, for their continuous encouragement to work on this project.

Darmstadt and Philadelphia Ralf Riedel
May 2013 I-Wei Chen
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Oxidation and Corrosion of Ceramics
Elizabeth J. Opila and Nathan S. Jacobson

1.1
Introduction

Ceramics are compounds with strong covalent or ionic bonds, typically rendering
them very stable with high melting points. While oxides in oxidizing environments
are quite stable at high temperatures, carbides, nitrides, and borides are all less
thermodynamically stable than their corresponding oxides. For this reason, the
reaction of non-oxide ceramics to form oxides is a very important problem in many
high-temperature environments. These types of reactions are important for struc-
tural ceramics used in a wide variety of applications including furnaces, engines,
land-based turbines for power generation, heat-exchangers, hot-gas filters, chemical
process containers, and re-entry shields. In addition, non-oxide ceramic materials
are often used as substrates in high-temperature functional devices such as sensors,
actuators, and fuel cells wherein environments can also be oxidizing.
Theoxidationandcorrosionofmanytechnologically importantceramicsaredetailed

in this chapter,withemphasisplacedon thereactionsofnon-oxideceramics.Classesof
ceramics with the same cation are considered together. Silica formers, alumina
formers, and then hafnia and zirconia formers are discussed explicitly. The effects
of carbon, nitrogen and boron on the formation of the more stable condensed phase
oxides are also discussed.Within each section, the ideal oxidation reaction is discussed
first, after which complications due to complex materials and complex environments
are considered. Finally, a short discussion of oxide degradation is provided.
Emphasis is placed on the thermodynamics and kinetics of the oxidation and

corrosion reactions with the aim of describing the current capability to predict the
rate of material degradation. Areas requiring additional elucidation are noted.
Generally, at moderate temperatures the rate of material degradation is limited
by the surface reaction of the material with its environment; the reactions are thus
sensitive to the processing, crystal structure and orientation of the ceramic. At
higher temperatures, however, the degradation rate is typically diffusion-controlled,
and under these conditions the reaction rate is controlled by reactant or product
transport through the growing oxide, or vapor transport through a gaseous boundary
layer. These reaction mechanisms are shown schematically in Figure 1.1.
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1.2
Silica-Forming Ceramics

Silicon carbide (SiC) and silicon nitride (Si3N4) are two ceramic materials that show
promise for long-term, high-temperature applications due to the formation of a
slow-growing protective silica film that forms in oxidizing environments. Extensive
studies have beenmade of the oxidation and corrosion of SiC and Si3N4, as reviewed
previously [1,2]. Consequently, much of this chapter will cover these materials, with
ideal behavior being discussed first in this section. Complications for real materials
in real environments are then presented.

1.2.1
Ideal Oxidation Behavior of Silica-Forming Ceramics

1.2.1.1 Structure of Silica and Transport of Oxygen in Silica
In order to understand the oxidation of silica-formers, the structure of silica must
first be discussed (the reader is referred to an in-depth review by Lamkin, Riley, and
Fordham [3] for a more detailed discussion of this topic). Silica exists in several

Figure 1.1 Rate-limiting material degradation mechanisms. (a) Reaction-limited oxidation; (b)
Solid-phase diffusion-limited oxidation; (c) Gas-phase diffusion-limited volatilization.
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polymorphs, the amorphous phase, and the crystalline phases. The crystalline
phases are – from the low-temperature polymorphs to the high-temperature
polymorphs – quartz, tridymite, and cristobalite, respectively. Amorphous silica
is composed of an irregular network of SiO4 tetrahedra. A two-dimensional (2-D)
representation of amorphous silica is shown in Figure 1.2a, with rings of varying
numbers of Si–O bonds. Figure 1.2b shows a 2-D representation of crystalline
silica in which the structure is ordered into six-member rings of Si–O bonds. The
density of cristobalite (2.32 g cm�3) is closest to amorphous silica (2.20 g cm�3).
Both, the amorphous phase and cristobalite have a relatively open structure that
allows the permeation of molecular oxygen through the interstices of the struc-
ture. Figure 1.2c shows the case where the silica network has been modified by
cations incorporated in the interstices of the glass structure. These modifying
cations, which typically are the alkali metals and alkaline earths, are charge-
compensated by the formation of non-bridging oxygen. The glass network is thus
disrupted by the incorporation of these cations, which then affects transport of
oxidant through the silica.
The transport of oxygen through silica can occur by several mechanisms: (i) by

molecular permeation through the interstices of the structure; and (ii) by the
exchange of oxygen ions with the network oxygen. The permeability of oxygen in
silica has been measured by Norton [4], and shown to be a product of the diffusivity
and the solubility of oxygen in silica. Norton showed that the rate of permeation was
proportional to the first power of the pressure, thus indicating that molecular oxygen
was the diffusing species. Several 18O tracer diffusion studies of oxygen transport in
silica have also been conducted, but only some of the more recent are detailed here
[5,6]. In these studies, the exchange of oxygen with the silica network – which is
slower than that of oxygen permeation – is measured. Thus, the oxidation of silica-
formers is expected to be dominated by rates of permeation of molecular oxygen
through the silica interstices. This transport mechanism will be discussed in the
following sections.

1.2.1.2 Oxidation of Silicon in Dry Oxygen
A discussion of the oxidation of silicon is included here for two reasons. First,
oxidation occurs by a simple reaction without the formation of any products except
silica:

SiðsÞ þ O2ðgÞ ¼ SiO2ðsÞ ð1Þ
Second, this reaction has been studied extensively due to its application for
semiconducting microelectronics.
The classic study for the oxidation of silicon is that of Deal and Grove [7], which

makes several important points. First, the overall oxidation reaction kinetics for
silicon can be described by the relationship:

x2o þ Axo ¼ Bðtþ tÞ ð2Þ
where xo is the oxide thickness, t is time, t is a shift in time that corrects for the
presence of any native oxide layer, and A and B are constants. At short times, or for
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Figure 1.2 Schematic structure of silica. (a)
Amorphous silica; (b) Cristobalite; (c) Alkali-
modified silica. Silicon atoms are represented
by small dark circles, oxygen atoms by open

circles, and alkali impurities as large cross-
hatched circles. Reproduced with permission
from Ref. [3];� 1992, Journal of the European
Ceramic Society.
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thin oxide scales, the relationship reduces to a linear rate law:

xo ffi B=A ðtþ tÞ ð3Þ
where B/A is the linear rate constant. Here, the oxidation rate is controlled by the
reaction of the oxidant with the substrate at the oxide/substrate interface. At long
times, and for thick oxide scales, Eq. (2) reduces to

x2o ffi Bt ð4Þ
where B is the parabolic rate constant. (Note: While Deal and Grove use the symbol
B, the oxidation community generally uses the symbol kp to represent the parabolic
rate constant.) In the case of parabolic oxidation, oxidation is limited by transport of
the oxidant through the silica scale, and the oxidation rate slows parabolically with
time as the scale thickens. Linear kinetics are observed at low temperatures and
short times, whereas parabolic kinetics are observed at long times and high
temperatures. Under intermediate conditions the complete expression (Eq. (2))
must be used. The complete expression and the transition between the two limiting
cases (Eqs (3) and (4)) are shown in Figure 1.3. These oxidation kinetics can be
determined by eithermeasuring weight gain due to silica formation or bymeasuring
the oxide thickness.
Another important result of the Deal and Grove [7] study was that the activation

energy (Ea) for the oxidation of silicon (119 kJmol�1) was in agreement with the Ea
for the molecular permeation of oxygen through silica of 113 kJmol�1, as measured
by Norton [4]; this indicated that the mechanism of oxygen transport was the same.
In addition, Deal and Grove found that the parabolic oxidation rate constant was
proportional to the first power of the oxygen pressure, indicating that molecular
oxygen is the diffusing species.

1.2.1.3 Oxidation of Silicon Carbide in Dry Oxygen
The oxidation of SiC is expected to be similar to that of silicon, since the only solid
oxidation product is silica. However, in this case, the carbon is also oxidized to form
gaseous carbon monoxide:

SiCðsÞ þ 3=2 O2ðgÞ ¼ SiO2ðsÞ þ COðgÞ ð5Þ
Results for the oxidation of chemical vapor deposited (CVD) SiC show many
similarities to silicon oxidation. First, at lower temperatures, linear kinetics are
important [8], while at higher temperatures (�1200 �C) parabolic kinetics are
adequate to describe oxidation under most conditions [9]. Second, the Ea for
parabolic oxidation [9] (118 kJmol�1) agrees with that of Norton [4] and Deal and
Grove [7], as shown in Figure 1.4. This suggests that molecular oxygen permeation
through the growing silica scale limits the oxidation rate.
There are a number of differences for the oxidation of SiC compared to that of

silicon that should be mentioned. First, the linear rate constants for SiC are in
general lower than those of silicon [8]. The reaction of oxygen at the substrate surface
will be different due to the presence of C. Second, the parabolic rate constant is
expected to be 1.5- to 2-fold lower for SiC than for Si, since additional oxygen is used
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Figure 1.4 Parabolic oxidation rates of pure silicon, SiC and Si3N4 in dry oxygen. Reproduced
with permission from Ref. [10];� 2000, Wiley-VCH Verlag GmbH & Co. KGaA.

Figure 1.3 General linear-parabolic oxidation kinetics showing the limiting linear kinetics at short
times/thin oxide scales and limiting parabolic kinetics at long times/thick oxide scales.
Reproduced with permission from Ref. [7]; � 1965, The American Institute of Physics.
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