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NARMAX algorithms provide a fundamentally different approach to nonlinear system identification 
and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, 
which can easily be analysed, and which can be used to solve real problems.

This book is intended for graduates, postgraduates and researchers in the sciences and engineering, 
and also for users from other fields who have collected data and who wish to identify models to help to 
understand the dynamics of their systems. 

Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal 
Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic 
systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on 
making the algorithms accessible so that they can be applied and used in practice.

Includes coverage of:

•	 The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model

•	 The orthogonal least squares algorithm that allows models to be built term by term where	
the error reduction ratio reveals the percentage contribution of each model term

•	 Statistical and qualitative model validation methods that can be applied to any model class

•	 Generalised frequency response functions which provide significant insight into nonlinear 
behaviours

•	 A completely new class of filters that can move, split, spread, and focus energy

•	 The response spectrum map and the study of sub harmonic and severely nonlinear systems

•	 Algorithms that can track rapid time variation in both linear and nonlinear systems

•	 The important class of spatio-temporal systems that evolve over both space and time

•	 Many case study examples from modelling space weather, through identification of a model 
of the visual processing system of fruit flies, to tracking causality in EGG data are all included 
to demonstrate how easily the methods can be applied in practice and to show the insight that 
the algorithms reveal even for complex systems
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All the world is a nonlinear system
He linearised to the right
He linearised to the left
Till nothing was right
And nothing was left
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Preface

System identification is a method of identifying or measuring the dynamic model of a system 
from measurements of the system inputs and outputs. System identification was developed as 
part of systems and control theory and has now become a toolbox of algorithms and methods 
that can be applied to a very wide range of real systems and processes. The applications of 
system identification include any system where the inputs and outputs can be measured. 
Applications therefore include industrial processes, control systems, economic data and finan-
cial systems, biology and the life sciences, medicine, social systems, and many more.

System identification has become an important topic across many subject domains over the 
last few decades. Initially, the focus was on linear system identification but this has been 
changing with more of an emphasis on nonlinear systems over recent years. There are several 
excellent textbooks on linear system identification, time series, spectral analysis methods and 
algorithms, and hence there is no need to repeat these results here. Rather, the focus of this 
book is on the identification of nonlinear dynamic systems using what have become known as 
NARMAX methods. NARMAX, which stands for a nonlinear autoregressive moving average 
model with exogenous inputs, was initially introduced as the name of a model but then devel-
oped into a framework for the identification of nonlinear systems. There are other methods of 
nonlinear system identification, and many of these are also discussed within the book. But 
NARMAX methods are based on the goal of determining or identifying the rule or law that 
describes the behaviour of the underlying system, and this means the focus is on determining 
the form of the model, what terms should be included in the model, or the structure of the 
model. The focus is therefore not on gross approximation but on identifying models that are 
as simple as possible, models that can be written down and related to the underlying system, 
and which can be used to tease apart and understand complex nonlinear dynamic effects in the 
wide range of systems that system identification can be applied to.

At the core of NARMAX methods is the ability to build models by finding the most impor-
tant term and adding this to the model, then finding and adding the next most important term, 
and so on so that the model is built up in a simple and intuitive way. This mimics the way 
traditional analytical modelling is done, by finding the most important model terms and then 
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building the model up step by step until a desired accuracy is achieved. The difference with 
NARMAX methods is that this process is accomplished using measured data in the presence 
of possible nonlinear and highly coloured noise. The concepts behind this process are simple, 
intuitive, and easy to use.

There is extensive research literature in the form of published papers on many aspects of non-
linear system identification, including NARMAX methods. The aim in this book is not to repro-
duce all the many variants of the algorithms that exist, but rather to focus on presenting some of 
the best algorithms in a clear way. All the detailed nuances and variants of the algorithms will be 
cited within the book, so that anyone with more theoretical interests can follow up these ideas. 
But the aim of this book is to focus on the core methods, to try to describe them using the sim-
plest possible terminology, and to clearly describe how to use them in real applications. This will 
inevitably involve mathematical descriptions and algorithmic details, but the aim is to keep the 
mathematics as simple as possible. The core aim therefore is to write a book that readers from a 
range of disciplines can use to understand how to fit models of dynamic nonlinear systems.

The book is an attempt to fill a void in the existing literature. Currently, there are several 
books on neural networks, and all the variants of these, and on the identification of simple 
block-structured nonlinear systems. These are important topics, but they address essentially 
different problems than the main aim of this book. Neural networks are excellent for fitting 
models for prediction purposes, but they do not produce transparent models, models that can 
be written down, and which can be analysed in time and frequency. Block-structured systems 
are a special class of nonlinear systems which are all based on the assumption that the system 
under study is a member of this simple class.

The main aim of this book is to describe a comprehensive set of algorithms for the identifi-
cation and analysis of nonlinear systems in the time, frequency, and spatio-temporal domains. 
While almost every other textbook on nonlinear system identification is focused on time 
domain methods, we want to address the total oversight in the literature and include frequency 
and spatio-temporal methods which can provide significant insights into complex system 
behaviours. These are natural extensions of NARMAX identification methods and offer new 
directions in nonlinear system identification with many applications.

The readership will include graduates, postgraduates, and researchers in the sciences and engi-
neering, but also users from other research fields who have collected data and who wish to iden-
tify models to help understand the dynamics of their systems. While there are examples throughout 
the book, the last chapter contains many case studies. These are used to illustrate how the methods 
described in the book can be applied to a wide range of problems from modelling the visual sys-
tem of fruit flies, to detecting causality in EGG signals, modelling the variations in ice flow, and 
modelling space weather. These examples are included to demonstrate that the methods in this 
book do work, that models can quite easily be identified in an intuitive and straightforward way, 
and used to understand and gain new insights into what appear to be complex effects.

The book starts in Chapter 1 where the focus of the book, the context in which the methods 
were developed, and the reason for the approaches taken are described in detail. Chapter 2 intro-
duces the different classes of dynamic models. Chapter 3 describes model structure detection 
and parameter estimation based on the orthogonal least squares (OLS) algorithm and the error 
reduction ratio. Chapter 4 shows how the methods of Chapter 3 can be adapted for feature and 
basis function selection. Chapter 5 discusses model validation. Chapter 6 introduces important 
concepts for the frequency domain analysis of nonlinear systems, and Chapter 7 builds on these 
results to describe a new class of filters that can be designed to move energy to desired frequency 
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locations, and the design of nonlinear damping devices. Chapter 8 describes how neural net-
works, including radial basis function and wavelet networks, can be used in system identifica-
tion. Chapter 9 discusses the identification and analysis of severely nonlinear systems. Chapter 10 
is focused on the identification of continuous-time nonlinear models. Chapter 11 shows how 
very rapid time variation in nonlinear models can be identified and tracked in both time and 
frequency. Chapter 12 describes spatio-temporal systems with finite states, including cellular 
automata models and n-state models, and the identification of these. Chapter 13 describes the 
spatio-temporal class of systems that have a continuous state and introduces system identifica-
tion, analysis, and frequency response methods for this important class of systems. Chapter 14 
includes a very wide range of case studies relating to many important problems.

A graduate course of 20–30 hours could be built using sections from the book. Such a course 
might include the core models from Chapter 2, the basic and forward regression orthogonal 
least squares algorithm and the error reduction ratio test from Chapter 3, brief details of feature 
extraction from Chapter 4, the simple correlation model validity tests for nonlinear systems 
from Chapter 5, the introduction of generalised frequency response functions and the estima-
tion and interpretation of these using the simple probing methods from Chapter 6, radial basis 
function neural network training and input node selection using orthogonal least squares con-
cepts from Chapter 8, wavelet models and the response spectrum map from Chapter 9, an 
introduction to spatio-temporal systems based on cellular automata and coupled map lattice 
models from Chapters 12 and 13, and finally some case study examples from Chapter 14.

I would like to acknowledge all those who have supported me over many years, those that I 
have worked with and learnt from, and those that have helped to write each chapter in this book. 
This book could not have been written without considerable help from colleagues. I would like 
to acknowledge this help by thanking Hualiang Wei who contributed Chapters 2, 3, 4, 5, 8, and 
11; Zi Qiang Lang for Chapters 6 and 7; Liangmin Li for Chapters 9 and 10; Yifan Zhao for 
Chapter 12; Lingzhong Guo for Chapter 13; and Otar Akanyeti, Misha Balikhin, Richard 
Boynton, Yifan Zhao, Hualiang Wei, Uwe Friedrich, Danial Coca, Ernesto Vidal Rosas, Bin 
Zhang, Krish Krishnanathan, and Visakan Kadirkamanathan for help with the case studies.

Over many years I have supervised over 50 PhD students and worked with a similar number 
of research assistants. I have also been supported, challenged, and inspired by many academic 
colleagues and friends, both within my own discipline and in other research fields. There are 
too many to name but they all made important contributions which I would like to acknowl-
edge. Although I can find no records now, my recollection is that Cristian Georgescu supplied 
the poem about nonlinearity in a personal communication when he applied to study for a PhD 
with me but unfortunately could not take up this position.

Much of the work in this book has been achieved with support from the research councils 
and other funding bodies. I gratefully acknowledge this support from the Engineering and 
Physical Sciences Research Council (EPSRC), The European Research Council (ERC), the 
Biotechnology and Biological Research Council (BBSRC), the Natural and Environment 
Research Council (NERC), and the Leverhume Trust.

I would like to especially thank all my family, Professor Harry Nicholson, Duncan Kitchen, 
Alan and Joyce Bellinger, the medics and nurses, and all those who gave unremitting support dur-
ing a life-threatening illness. Finally, I would like to thank all my family for their support during 
my early education and throughout my career, I am especially grateful for this constant support.
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Introduction

1

1.1  Introduction to System Identification

In this chapter a brief introduction to linear and nonlinear system identification will be pro-
vided. The descriptions are not meant to be detailed or comprehensive. Rather, the aim is to 
briefly describe the methods from a descriptive point of view so the reader can appreciate the 
broad development of the methods and the context in which they were introduced. Maths is 
largely avoided in this first chapter because detailed definitions and descriptions of the mod-
els, systems, and identification procedures will be given in the following chapters.

The main theme of the book – methods based around the NARMAX (nonlinear autoregres-
sive moving average model with exogenous inputs) model and related methods – will also be 
introduced. In particular, the NARMAX philosophy for nonlinear system identification will 
be briefly described, again with full details given in later chapters, and how this leads into the 
important problems of frequency response functions for nonlinear systems and models of 
spatio-temporal systems will be briefly developed.

1.1.1  System Models and Simulation

The concept of a mathematical model is fundamental in many branches of science and engineer-
ing. Virtually every system we can think of can be described by a mathematical model. Some 
diverse examples are illustrated in Figure 1.1. All the systems illustrated in Figure 1.1 can be 
described by a set of mathematical equations, and this is referred to as the mathematical model of 
the system. The examples included here show a coal-fired power station, an oil rig, an economic 
system represented by dealing screens in the stock exchange, a machine vision system (autonomous 
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guided vehicle), a vibrating car, a bridge structure, and a biomedical system. Although each sys-
tem is made up of quite different components, if each is considered as a system with inputs and 
outputs that are related by dynamic behaviours then they can all be described by a mathematical 
model. Surprisingly, all these systems can be represented by just a few basic mathematical opera-
tions – such as derivatives and integrals – combined in some appropriate manner with coeffi-
cients. The idea of the model is that it describes each system such that the model encodes 
information about the dynamics of the system. So, for example, a model of the power station 
would consist of a set of mathematical equations that describe the operation of pulverising the 
coal, burning it to produce steam, the turbo-alternator, and all the other components that make up 
this system. Mathematical models are at the heart of analysis, simulation, and design.

Assuming that accurate models of the systems can be built then computers can be pro-
grammed to simulate the models, to solve the mathematical equations that represent the sys-
tem. In this way the computer is programmed to behave like the system. This has numerous 
advantages: different system designs can be assessed without the expense and delay of physi-
cally building the systems, experiments on the computer which would be dangerous on the real 
system (e.g., nuclear) can be simulated, and information about how the system would respond 
to different inputs can be acquired. Questions such as ‘how does the spacecraft behave if the 
re-entry angle is changed or one of the rockets fails?’, or ‘how would the economy respond to 
a cut in interest rates, would this increase/decrease inflation/unemployment?’, and so on, can 
all be posed and answered. Models therefore are central to the study of dynamical systems.

Figure 1.1  Examples of modelling, simulation, and control. Courtesy of dreamstime.com. For a color 
version of this figure, please refer to the color plates
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1.1.2  Systems and Signals

A mathematical model of a system can be used to emulate the system, predict the system 
response for given inputs, and investigate different design scenarios. However, these objec-
tives can only be achieved if the model of the system is known. The validity of all the simula-
tion, analysis, and design of the system is dependent on the model being an accurate 
representation of the system. The construction of accurate dynamic models is therefore funda-
mental to this type of analysis. So how are mathematical models of systems determined?

One way, called analytical modelling, involves breaking the system into component parts 
and applying the laws of physics and chemistry to each part to slowly build up a description. 
For example, a resistor can be described by Ohms law, mechanical systems by force and 
energy balance equations, and heat conduction systems by the laws of thermodynamics, and 
so on. This process can clearly be very complex, it is time-consuming and may take several 
man-years, it is problem-dependent, requires a great deal of expertise in many diverse areas of 
science, and would need to be repeated if any part of the system changed through redesign.

But, returning to the examples of the dynamic systems in Figure 1.1 suggests there is an 
alternative approach which overcomes most of these problems and which is generally appli
cable to all systems. Given the mathematical model and the input to a system, the system 
response can be computed; this is the simulation problem. All the systems in Figure 1.1 pro-
duce input and output signals, and if these can be measured it should be possible to work out 
what the system model must have been. This is the converse to the simulation problem – given 
measurements of the system inputs and outputs, determine what the mathematical model of 
the system should be. This is called ‘system identification’; it provides the link between 
systems and signals and is the unifying theme throughout this book. System identification 
therefore is just a means of measuring the mathematical model of a process.

1.1.3  System Identification

System identification is a method of measuring the mathematical description of a system by 
processing the observed inputs and outputs of the system. System identification is the comple-
ment of the simulation problem. Surely the output signal contains buried within it the dynam-
ics of the mathematical model that produced this signal from the measured input, so how can 
this information be extracted? System identification provides a principled solution to this 
problem. Even in ideal conditions this is not easy because the form that the model of the sys-
tem takes will be unknown, is it linear or nonlinear, how many terms are in the model, what 
type of terms should be in the model, does the system have a time delay, what type of nonlin-
earity describes this system, etc.? Yet, if system identification is to be useful, these problems 
must be resolved. The advantages of system identification are many: it is applicable to all 
systems, it is often quick, and can be made to track changes in the system. These advantages 
all suggest that system identification will be a worthwhile study.

1.2  Linear System Identification

Linear systems are defined as systems that satisfy the superposition principle. Linear system 
identification can be broadly categorised into two approaches; nonparametric and parametric 
methods. Interest in linear system identification gathered significant momentum from the 
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1970s onwards, and many new and important results and algorithms were developed (Lee, 
1964; Deutsch, 1965; Box and Jenkins, 1970; Himmelblau, 1970; Astrom and Eykoff, 1971; 
Graupe, 1972; Eykhoff, 1974; Nahi, 1976; Goodwin and Payne, 1977; Ljung and Södeström, 
1983; Young, 1984; Norton, 1986; Ljung, 1987; Södeström and Stoica, 1989; Keesman, 2011). 
Nonparametric methods develop models based typically on the system impulse response or 
frequency response functions (Papoulis, 1965; Jenkins and Watts, 1968; Eykhoff, 1974; 
Pintelon and Schoukens, 2001; Bendat and Piersol, 2010). These are usually based on correla-
tion methods and Fourier transforms, respectively, although there are many alternative meth-
ods. Special input signals were developed at this time, including multi-level sequences, of 
which the pseudo-random binary sequence was particularly important (Godfrey, 1993). 
Pseudo-random sequences could be easily designed and generated and were an ideal sequence 
to use in experiments on industrial plants to identify linear models. The sequences could be 
tailored to the process under investigation, so that the power of the input excitation was 
matched to the bandwidth of the process. This had the advantage that the noise-free signal 
output was maximised and hence the signal-to-noise ratio on the measured output was 
enhanced. Pseudo-random binary sequences were the best approximation to white noise and 
this led to important advantages when using cross-correlation to identify the models because 
if the input was correctly designed, so that the autocorrelation of the input was an impulse at 
the origin, the Wiener–Hopf equation (Jenkins and Watts, 1968; Priestley, 1981; Bendat and 
Piersol, 2010) which relates the cross-correlation between the input and output of a system to 
the convolution of the system impulse response and the autocorrelation function simplifies so 
that the cross-correlation becomes directly proportional to the system impulse response. This 
was a significant result, and the use and development of pseudo-random sequences continued 
for many years. The other advantage of using a designed input, not just a pseudo-random 
sequence, was that the input could be measured almost perfectly.

The introduction of the fast Fourier transform (FFT) in 1965 (Jenkins and Watts, 1968) 
meant that previously slow methods of computing the Fourier transform of a data sequence 
became much faster and efficient, with increases in speed of orders of magnitude. Linear sys-
tem identification methods based on the cross and power spectral densities were further devel-
oped, following the introduction of the FFT, to provide estimates of the system frequency 
response. The advantages of these approaches, which replaced the convolution in time with 
the much simpler algebraic relationships in the Laplace and frequency domains, were offset 
by the need to window and smooth the spectral estimates to obtain good estimates (Jenkins 
and Watts, 1968; Bendat and Piersol, 2010). Coherency functions were used to detect poor 
estimates, and a catalogue of methods was developed based on the frequency response func-
tion estimates. This fed into developments in mechanical engineering based on modal analysis 
(Worden and Tomlinson, 2001), which became established as an important method of analys-
ing and studying vibrations in all kinds of structures.

Parametric methods became popular from the 1970s onwards with an explosion of develop-
ments fuelled by the interest at that time in control systems and the development of methods 
of online process control, and adaptive control including self-tuning algorithms (Wellstead 
and Zarrop, 1991). These latter methods were all based on a model of the process that could 
be updated online. Least squares-based methods were developed and the effect of noise on the 
measurements was studied in depth, resulting in the introduction of algorithms including 
instrumental variables (Young, 1970), generalised least squares (Clarke, 1967), suboptimal 
least squares, extended least squares and maximum likelihood (Astrom and Eykhoff, 1971; 
Eykhoff, 1974). It was realised that data from almost every real system will involve inaccurate 
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measurements and corruption of the signals by noise. It was shown that if the noise is corre-
lated or coloured, biased estimates will be obtained and that even small amounts of correlated 
noise can result in significantly incorrect models (Astrom and Eykhoff, 1971; Eykhoff, 1974; 
Goodwin and Payne, 1977; Norton, 1986; Södeström and Stoica, 1989). All the algorithms 
above therefore were designed to either accommodate the noise or model it explicitly (Clarke, 
1967; Young, 1970). Even the offline algorithms were therefore iterative, so that both a model 
of the process and a model of the noise were identified by operating on the data set several 
times over until the algorithm converged. Later, in the 1980s, prediction error methods were 
developed; many of the earlier parameter estimation algorithms were unified under the predic-
tion error structure, and elegant proofs of convergence and analysis of the methods were 
developed (Ljung and Södeström, 1983; Norton, 1986; Ljung, 1987; Södeström and Stoica, 
1989). The advantage of the prediction error methods was that they had almost the same 
asymptotic properties as the maximum likelihood algorithm but, while the probability density 
function of the residuals had to be known to apply maximum likelihood (which for linear 
systems could be taken as Gaussian), the prediction error methods optimised a cost function 
without any knowledge of the density functions (Ljung and Södeström, 1983; Ljung, 1987). 
This latter point became very important for the development of parameter estimation methods 
for nonlinear systems, where the signals will almost never be Gaussian and therefore the den-
sity functions will rarely be known.

Online or recursive algorithms were also actively developed from the 1970s onwards (Ljung 
and Södeström, 1983; Young, 1984; Norton, 1986). In contrast to the batch methods described 
above, where all the data is processed at once, in recursive methods the data is processed over 
a data window that is moved through the data set. This allows online tracking of slow time 
variation and is often the basis of adaptive, self-tuning, and many fault-detection algorithms.

The development of linear identification algorithms is still a very active and healthy research 
field, with many participants from all around the world. This has been encouraged by the ever-
increasing need to develop models of systems and the simple fact that system identification is 
relatively straightforward; it works well most of the time, and can be applied to any system 
where data can be recorded.

1.3  Nonlinear System Identification

Nonlinear systems are usually defined as any system which is not linear, that is any system 
that does not satisfy the superposition principle. This contrarian description is very vague but 
is often necessary because there are so many types of nonlinear systems that it is almost 
impossible to write down a description that covers all the classes that can exist under the title 
of ‘nonlinear dynamic system’. Authors therefore tend to focus on particular classes of non-
linear systems, which can be tightly defined, but which are limited. Historically, system iden-
tification for nonlinear systems has developed by focusing on specific classes of system and 
specific models. The early work was dominated by methods based on the Volterra series, 
which in the discrete time case can be expressed as
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where u(k), y(k); k = 1, 2, 3 … are the measured input and output, respectively, and 1,( ),…� �h m m  
is the ’th-order Volterra kernel, or ’th-order nonlinear impulse response. The Volterra series 
is an extension of the linear convolution integral and represents mildly nonlinear systems as a 
series of multi-summations, or integrals in the continuous time case, of the Volterra kernels 
and the inputs. Most of the earlier algorithms assumed that just the first two, linear and quad-
ratic, Volterra kernels are present and used special inputs such as Gaussian white noise and 
correlation methods to identify the two Volterra kernels. Notice that for these early identifica-
tion methods the input has to be Gaussian and white, which is a severe restriction for many 
real processes and pre-recorded data sets. These results were later extended to include the first 
three Volterra kernels, to allow different inputs, and other related developments including the 
Weiner series. A very important body of work was developed by Wiener, Lee, Bose and col-
leagues at MIT from the 1940s to the 1960s (Wiener, 1958; Lee, 1964). Much of this work 
involved developing methods of analysis for nonlinear systems, but important identification 
algorithms were also introduced including the famous Lee and Schetzen method (1965). The 
books of Schetzen (1980) and Rugh (1981) describe the many developments based on the 
work of Volterra and Weiner. While these methods are still actively studied (Marmarelis and 
Marmarelis, 1978; Doyle et al., 2000) as methods of analysis, system identification based on 
the Volterra (and related Weiner) series is still challenging today. This is because of three basic 
requirements. First, the number of terms in the Volterra series is unknown at the start of the 
identification so methods which make assumptions that only the first two or three kernels are 
present cannot be applied with confidence because there may be many more terms and ignor-
ing these terms will produce incorrect estimates. Second, often special inputs such as Gaussian 
white noise are required which may not be possible in many real experiments and will not be 
applicable where data has been pre-recorded. Third, the number of points that need to be iden-
tified can be very large. For example, for a system where the first-order Volterra kernel h

1
(m

1
) 

is described by say 30 samples, 30 × 30 points will be required for the second-order kernel 
h

2
(m

1
, m

2
), 30 × 30 × 30 for the third-order h

3
(m

1
, m

2
, m

3
), and so on, and hence the amount of 

data required to provide good estimates becomes excessively large (Billings, 1980). These 
numbers can be reduced by exploiting certain symmetries but the requirements are still exces-
sive irrespective of what algorithm is used for the identification. However, the Volterra series 
is still enormously important as a descriptor of nonlinear systems and as a method of analysis, 
although this can often be achieved by identifying alternative model forms and then mapping 
these back to the Volterra model.

Because of the problems of identifying Volterra models, from the late 1970s onwards other 
model forms were investigated as a basis for system identification for nonlinear systems. 
Various forms of block-structured nonlinear models were introduced or reintroduced at this 
time (Billings and Fakhouri, 1978, 1982; Billings, 1980; Haber and Keviczky, 1999). The 
Hammerstein model consists of a static single-valued nonlinear element followed by a linear 
dynamic element. The Wiener model is the reverse of this combination, so that the linear ele-
ment is before the static nonlinear characteristic. The General Model consists of a static linear 
element sandwiched between two dynamic systems. Other models, such as the S

m
, Uryson, 

etc. models, represent alternative combinations of elements. All these models can be repre-
sented by a Volterra series, but in this case the Volterra kernels take on a special form in each 
case. Identification consists mainly of correlation-based methods, although some parameter 
estimation methods were also developed. The correlation methods exploited certain properties 
of these systems which meant that if specific inputs were used, often white Gaussian noise 
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again, the individual elements could be identified one at a time. This resulted in manageable 
requirements of data and the individual blocks could sometimes be related to components in 
the system under study. Methods were developed, based on correlation and separable func-
tions, which could determine which of the block-structured models was appropriate to repre-
sent a system (Billings and Fakhouri, 1978, 1982). Many results were introduced and these 
systems continue to be studied in depth. The problem of course is that these methods are only 
applicable to a very special form of model in each case and cannot therefore be considered as 
generic. They make too many assumptions about the form of the model to be fitted, and if little 
is known about the underlying system then applying a method that assumes a very special 
model form may not work well. All the above are essentially nonparametric methods of iden-
tification for nonlinear systems.

1.4  NARMAX Methods

The NARMAX model was introduced in 1981 as a new representation for a wide class of 
nonlinear systems (Billings and Leontaritis, 1981; Leontaritis and Billings, 1985; Chen and 
Billings, 1989). The NARMAX model is defined as

	
= − − … −

− − − … − −
− − … − +

( ) [ ( 1), ( 2), , ( ,
( ), ( 1

)
)), , ( ,

( 1), ( 2), , ( )] ( )

y

u

e

y k F y k y k y k n
u k d u k d u k d n
e k e k e k n e k

	 (1.2)

where y(k), u(k), and e(k) are the system output, input, and noise sequences, respectively; n
y
, 

n
u
, and n

e
 are the maximum lags for the system output, input, and noise; F[·] is some nonlinear 

function, and d is a time delay typically set to d = 1. The model is essentially an expansion of 
past inputs, outputs, and noise terms. The exact form of the model and the class of systems that 
can be represented by this model will be discussed in Chapter 2. However, the essence of the 
NARMAX model is that past outputs are included in the expansion. The importance of this 
can be explained by considering linear FIR (finite impulse response) and IIR (infinite impulse 
response) filters. The FIR filter

	 1 2( ) ( 1) ( 2) ( )nby k b u k b u k b u k nb= − + − + + −� 	 (1.3)

expands the system response in terms of past inputs only. The IIR filter

	 1 1( ) ( 1) ( ) ( 1) ( )na nby k a y k a y k na b u k b u k nb+ − + + − = − + + −� � 	 (1.4)

expands the response in terms of past inputs and outputs, where na and nb represent the model 
orders. So, for a simple linear system, an FIR filter may typically need 50 weights (nb = 50) 
whereas the IIR filter would need maybe 4 (na = nb = 2), simply because the information in the 
many past inputs expanded as an FIR filter can be captured by just a few output lagged terms 
in an IIR filter. The trade-off is that the IIR filter can be more difficult to estimate, but it is far 
more concise. For nonlinear systems the Volterra series expands the current output as a series 
in terms of past inputs only. In the nonlinear case this can lead to an explosion in the number 
of terms to be estimated. It is easy to suggest nonlinear examples where the model inherently 
has nonlinear output terms, like the Duffing or Van der Pol models (Nayfeh and Mook, 1979; 
Pearson, 1999), where the output terms in these models will inevitably create a very long 
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Volterra series. NARMAX, however, can capture these effects easily because nonlinear lagged 
output terms are allowed. This makes the identification easier because fewer terms are required 
to represent systems, but it also means that noise on the output has to be taken into account 
when estimating the model coefficients. The Volterra, block-structured models, and many 
neural network architectures can all be considered as subsets of the NARMAX model. Since 
NARMAX was introduced, by proving what class of nonlinear systems can be represented by 
this model, many results and algorithms have been derived based around this description. 
Most of the early work was based on polynomial expansions of the NARMAX model. These 
are still the most popular methods today, but other more complex forms based on wavelets and 
other expansions have been introduced to represent severely nonlinear and highly complex 
nonlinear systems. A significant proportion of nonlinear systems can be represented by a 
NARMAX model, including systems with exotic behaviours such as chaos, bifurcations, and 
sub-harmonics.

1.5  The NARMAX Philosophy

While NARMAX started as the name of a model, it has now developed into a philosophy of 
nonlinear system identification (Billings and Tsang, 1989; Billings and Chen, 1992). The 
NARMAX approach consists of several steps:

Structure detection Which terms are in the model?
Parameter estimation What are the model coefficients?
Model validation Is the model unbiased and correct?
Prediction What is the output at some future time?
Analysis What are the dynamical properties of the system?

Structure detection forms the most fundamental part of NARMAX. In linear parameter esti-
mation it is relatively easy to determine the model order. Often models of order one, two, 
three, and so on are estimated and this is quick and efficient. The models are then validated 
and compared to find which is the simplest model that can adequately represent the system. 
This process works well because, assuming a pulse transfer function representation, every 
increase in model order only increases the number of unknown parameters by two – one extra 
coefficient for the numerator and the denominator. Over-fitted models are easily detected by 
pole zero cancellations and other methods.

But this naïve approach does not easily carry over to the nonlinear case. For example, a 
NARMAX model which consists of one lagged input and one lagged output term, three lagged 
noise terms, expanded as a cubic polynomial, would consist of 56 possible candidate terms. 
This number of candidate terms arises because the expansion by definition includes all pos-
sible combinations within the cubic expansion. Naïvely proceeding to estimate a model which 
includes all these terms and then pruning will cause numerical and computational problems 
and should always be avoided. However, often only a few terms are important in the model. 
Structure detection, which aims to select terms one at a time, is therefore critically important. 
This makes sense from an intuitive perspective – build the model by putting in the most impor-
tant or significant term first, then the next most significant term, and so on, and stop when the 
model is adequate, it is numerically efficient and sound, and most important of all leads to 
simple parsimonious models that can be related to the underlying system.
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These objectives can easily be achieved by using the orthogonal least squares (OLS) 
algorithm and its derivatives to select the NARMAX model terms one at a time (Korenberg  
et al., 1988; Billings et al., 1989; Billings and Chen, 1998). This approach can be adopted for 
many different model forms and expansions, and is described in Chapter 3.

These ideas can also be adapted for pattern recognition and feature selection with the 
advantage that the features are revealed as basis functions that are easily related back to the 
original problem (Wei and Billings, 2007). The basis vectors are not potentially functions of 
all the initial features as is the case in principal component analysis, which then destroys easy 
interpretation of the results.

The philosophy of NARMAX therefore relates to finding the model structure or fitting the 
simplest model so that the underlying rule is elucidated. Building up the model, term by term, 
has many benefits not least because if the underlying system is linear, NARMAX methods 
should just fit a linear model and stop when this model is a good representation of the system. 
It would be completely wrong to fit a nonlinear model to represent a linear system. For exam-
ple, the stability of linear systems is well known and is applicable for any input. This does not 
apply to nonlinear systems. Over-fitting nonlinear systems, by using either excessive time lags 
or excessive nonlinear function approximations, not only induces numerical problems but can 
also introduce additional unwanted dynamic behaviours and disguises rather than reveals the 
relationships that describe the system.

1.6  What is System Identification For?

The fundamental concept of structure detection, that is core to NARMAX methods, naturally 
leads into a discussion of what system identification is for. Very broadly, this can be divided 
into two aims.

The first involves approximation, where the key aim is to develop a model that approxi-
mates the data set such that good predictions can be made. There are many applications where 
this approach is appropriate, for example in time series prediction of the weather, stock prices, 
speech, target tracking, pattern classification, etc. In such applications the form of the model 
is not that important. The objective is to find an approximation scheme which produces the 
minimum prediction errors. Fuzzy logic, neural networks, and derivatives of these including 
Bayesian methods naturally solve these types of problems easily and well (Miller et al., 1990; 
Chen and Billings, 1992; Bishop, 1995; Haykin, 1999; Liu, 2001; Nelles, 2001). The approxi-
mation properties of these approaches are usually quoted based on the Weierstrass theorem, 
which of course equally applies to many other model forms. Naturally, users of these methods 
focus on the mean-squared-error properties of the fitted model, perhaps over estimation and 
test sets.

A second objective of system identification, which includes the first objective as a subset, 
involves much more than just finding a model to achieve the best mean-squared errors. This 
second aim is why the NARMAX philosophy was developed and is linked to the idea of find-
ing the simplest model structure. The aim here is to develop models that reproduce the dynamic 
characteristics of the underlying system, to find the simplest possible model, and if possible to 
relate this to components and behaviours of the system under study. Science and engineering 
are about understanding systems, breaking complex behaviours down into simpler behaviours 
that can be understood, manipulated, and exploited. The core aim of this second approach to 
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identification is therefore, wherever possible, to identify, reveal, and analyse the rule that rep-
resents the system. So, if the system can be represented by a simple first-order dynamic system 
with a cubic nonlinear term in the input this should be revealed by the system identification. 
Take, for example, two different oil rigs, which are similar but of a different size and operate 
in different ocean depths and sea states. If the underlying hydrodynamic characteristics which 
describe the action of the waves on the platform legs and the surge of the platform follow the 
same scientific law, then the identified models should reveal this (Worden et al., 1994; Swain 
et al., 1998). That is, we would expect the core model characteristics to be the same even 
though the parameter values could be different. Therefore, a very important aim is to find the 
rule so that this can be analysed and understood. Gross approximation to the data is not suf-
ficient in these cases, finding the best model structure is. Ideally, we want to be able to write 
the identified model down and to relate the terms and characteristics of the model to the sys-
tem. These aims relate to the understanding of systems, breaking complex behaviours down 
into simpler behaviours that can be simulated, analysed, and understood. These objectives are 
relevant to model simulation and control systems design, but increasingly to applications in 
medicine, neuroscience, and the life sciences. Here the aim is to identify models, often non-
linear, that can be used to understand the basic mechanisms of how these systems operate and 
behave so that we can manipulate and utilise them.

These arguments also carry over to the requirement to fit models of the system and of the 
noise. Noise models are important to ensure that the estimated model of the system is unbiased 
and not just a model of one data set, but noise models are also highly informative. Noise mod-
els reveal what is unpredictable from the input, and they indicate the level and confidence that 
can be placed in any prediction or simulation of the system output.

NARMAX started off as the name of a model class but has now become a generic term 
for  identification methods that aim to model systems in the simplest possible way. Model 
validation is a critical part of NARMAX modelling and goes far beyond just comparing 
mean-squared errors. One of the basic approaches involves testing whether there is anything 
predictable left in the residuals (Billings and Voon, 1986; Billings and Zhu, 1995). The aim is 
to find the simplest possible model that satisfies this condition. The idea is that if the models 
of the system and of the noise are adequate, then all the information in the data set should be 
captured in the model, and the remainder – the final residuals – should be unpredictable from 
all past inputs and outputs. This is statistical validation and can be applied to any model form 
and any fitting algorithm. Qualitative validation is also used to develop NARMAX estimation 
procedures that reproduce the dynamic invariants of the systems. Models that are developed 
based on term selection to obtain the simplest possible model have been shown to reproduce 
attractors and dynamic invariants that are topologically closer to the properties of the underly-
ing system dynamics than over-fitted models (Aguirre and Billings, 1995a, b). This links back 
to the desire to be able to relate the models to the underlying system and to use the models to 
understand basic behaviours and processes not just to approximate a data set.

NARMAX modelling is a process that can involve feedback in the model-fitting process. As 
an example, if the initial library of terms that are used to search for the correct model terms is 
not large enough, then the algorithms will be unable to find the appropriate model. But, apply-
ing model validation methods should reveal that terms are missing from the model, and in 
some instances can suggest what type of terms are missing. The estimation process can then 
be restarted by including a wider range or different types of model terms. Only when the 
structure detection and all the validation procedures are satisfied is the model accepted as a 


