

Thumbnail.jpg

Programmable
Logic Controllers

Programmable
Logic Controllers
A Practical Approach TO IEC
61131-3 Using CoDeSys

Dag H. Hanssen
Institute of Engineering and Safety, University of Tromsø, Norway

Translated by

Dan Lufkin

This edition first published 2015
© 2015 John Wiley & Sons, Ltd

Registered Office
John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to
reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright,
Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product
names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners.
The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book
and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the
understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author
shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Authorised Translation from the Norwegian language edition published by Akademika forlag, Programmerbare Logiske
Styringer – basert på IEC 61131-3, 4. Utgave. This translation has been published with the financial support of NORLA.

Library of Congress Cataloging‐in‐Publication Data

Hanssen, Dag Håkon, author.
  Programmable Logic Controllers: A Practical Approach to IEC 61131-3 using CODESYS / Dag Hakon Hanssen.
   pages  cm
  Includes bibliographical references and index.
  ISBN 978-1-118-94924-5 (pbk.)
1.  Sequence controllers, Programmable.  2.  Programmable logic devices.  I.  Title.
  TJ223.P76H36 2015
  621.39′5–dc23

2015018742

A catalogue record for this book is available from the British Library.

Set in 10/12pt Times by SPi Global, Pondicherry, India

1  2015

http://www.wiley.com

Contents

Preface� xiv

Part one  Hardware� 1

1  About PLCs	 3
1.1  History	 4

1.1.1  More Recent Developments	 6
1.2  Structure	 7

1.2.1  Inputs and Outputs	 10
1.3  PLC Operation	 13

1.3.1  Process Knowledge	 14
1.3.2  Standard Operations	 16
1.3.3  Cyclic, Freewheeling, or Event‐Controlled Execution	 18

1.4  Test Problems	 19

2  Digital Signals and Digital Inputs and Outputs	 20
2.1  Introduction	 20
2.2  Terminology	 21

2.2.1  Discrete, Digital, Logical, and Binary	 21
2.2.2  Sensors, Transducers, and Transmitters	 22

2.3  Switches	 24
2.3.1  Limit Switches	 24
2.3.2  Safety Devices	 24
2.3.3  Magnetic Switches	 25

2.4  Logical Sensors	 26
2.4.1  Inductive Sensors	 27
2.4.2  Capacitive Sensors	 29
2.4.3  Photocells	 30

vi	 Contents

2.4.4  Ultrasonic Sensors	 33
2.4.5  Rotating Sensors (Encoders)	 34
2.4.6  Other Detection Principles and Sensors	 37

2.5  Connection of Logical Sensors	 39
2.5.1  Sink/Source	 41
2.5.2  Selecting a Sensor with the Proper Type of Output	 43

2.6  Properties of Discrete Inputs	 44
2.7  Discrete Actuators	 45

2.7.1  Relays and Contactors	 46
2.7.2  Solenoids and Magnetic Valves	 47
2.7.3  Transistor Outputs versus Relay Outputs	 49

2.8  Test Problems	 50

3  Analog Signals and Analog I/O	 52
3.1  Introduction	 52
3.2  Digitalization of Analog Signals	 53

3.2.1  Filtering	 53
3.2.2  A/D Conversion	 55

3.3  Analog Instrumentation	 58
3.3.1  About Sensors	 58
3.3.2  Standard Signal Formats	 59
3.3.3  On the 4–20 mA Standard	 59
3.3.4  Some Other Properties of Sensors	 61

3.4  Temperature Sensors	 61
3.4.1  Thermocouple	 61
3.4.2  PT100/NI1000	 62
3.4.3  Thermistors	 64

3.5  Connection	 64
3.5.1  About Noise, Loss, and Cabling	 64
3.5.2  Connecting Sensors	 67
3.5.3  Connection of a PT100 (RTD)	 68
3.5.4  Connecting Thermocouples	 72

3.6  Properties of Analog Input Modules	 72
3.6.1  Measurement Ranges and Digitizing: Resolution	 72
3.6.2  Important Properties and Parameters	 74

3.7  Analog Output Modules and Standard Signal Formats	 75
3.8  Test Problems	 76

Part two  Methodic� 79

4  Structured Design	 81
4.1  Introduction	 81
4.2  Number Systems	 82

4.2.1  The Decimal Number Systems	 82
4.2.2  The Binary Number System	 82

Contents	 vii

4.2.3  The Hexadecimal Number System	 83
4.2.4  Binary‐Coded Decimal Numbers	 85
4.2.5  Conversion between Number Systems	 86

4.3  Digital Logic	 87
4.4  Boolean Design	 91

4.4.1  Logical Functional Expressions	 91
4.4.2  Boolean Algebra	 93

4.5  Sequential Design	 97
4.5.1  Flowchart	 97
4.5.2  Example: Flowchart for Mixing Process	 99
4.5.3  Example: Flowchart for an Automated Packaging Line	 101
4.5.4  Sequence Diagrams	 107
4.5.5  Example: Sequence Diagram for the Mixing Process	 110
4.5.6  Example: Batch Process	 112

4.6  State‐Based Design	 113
4.6.1  Why Use State Diagrams?	 114
4.6.2  State Diagrams	 114
4.6.3  Example: Batch Process	 117
4.6.4  Example: Level Process	 118
4.6.5  Example: Packing Facility for Apples	 121

4.7  Summary	 124
4.8  Test Problems	 125

Part three  IEC 61131‐3� 131

5  Introduction to Programming and IEC 61131‐3	 133
5.1  Introduction	 133

5.1.1  Weaknesses in Traditional PLCs	 134
5.1.2  Improvements with IEC 61131‐3	 136
5.1.3  On Implementation of the Standard	 137

5.2  Brief Presentation of the Languages	 138
5.2.1  ST	 138
5.2.2  FBD	 138
5.2.3  LD	 139
5.2.4  IL	 139
5.2.5  SFC	 141

5.3  Program Structure in IEC 61131‐3	 141
5.3.1  Example of a Configuration	 145

5.4  Program Processing	 146
5.4.1  Development of Programming Languages	 146
5.4.2  From Source Code to Machine Code	 147

5.5  Test Problems	 151

6  IEC 61131‐3: Common Language Elements	 152
6.1  Introduction	 152

viii	 Contents

6.2  Identifiers, Keywords, and Comments	 153
6.2.1  Identifiers	 153
6.2.2  Keywords	 154
6.2.3  Comments	 154

6.3  About Variables and Data Types	 156
6.4  Pragmas and Literals	 156

6.4.1  Literal	 157
6.5  Data Types	 158

6.5.1  Numerical and Binary Data Types	 158
6.5.2  Data Types for Time and Duration	 161
6.5.3  Text Strings	 163
6.5.4  Generic Data Types	 164
6.5.5  User‐Defined Data Types	 166

6.6  Variables	 169
6.6.1  Conventional Addressing	 170
6.6.2  Declaration of Variables with IEC 61131‐3	 171
6.6.3  Local Versus Global Variables	 174
6.6.4  Input and Output Variables	 175
6.6.5  Other Variable Types	 176

6.7  Direct Addressing	 176
6.7.1  Addressing Structure	 176
6.7.2  I/O‐Addressing	 178

6.8  Variable versus I/O‐Addresses	 179
6.8.1  Unspecified I/O‐Addresses	 179

6.9  Declaration of Multielement Variables	 180
6.9.1  Arrays	 181
6.9.2  Data Structures	 182

6.10  Test Problems	 184

7  Functions	 187
7.1  Introduction	 187
7.2  On Functions	 188
7.3  Standard Functions	 189

7.3.1  Assignment	 190
7.4  Boolean Operations	 191
7.5  Arithmetic Functions	 192

7.5.1  Overflow	 193
7.6  Comparison	 194
7.7  Numerical Operations	 195

7.7.1  Priority of Execution	 196
7.8  Selection	 197
7.9  Type Conversion	 197

7.10  Bit‐String Functions	 199
7.11  Text‐String Functions	 200
7.12  Defining New Functions	 202
7.13  EN/ENO	 203
7.14  Test Problems	 204

Contents	 ix

8  Function Blocks	 206
8.1  Introduction	 206

8.1.1  The Standard’s FBs	 207
8.2  Declaring and Calling FBs	 207
8.3  FBs for Flank Detection	 208
8.4  Bistable Elements	 209
8.5  Timers	 210
8.6  Counters	 211

8.6.1  Up‐Counter	 212
8.6.2  Down‐Counter	 212
8.6.3  Up/Down‐Counter	 212

8.7  Defining New FBs	 213
8.7.1  Encapsulation of Code	 214
8.7.2  Other Nonstandardized FBs	 216

8.8  Programs	 217
8.8.1  Program Calls	 218
8.8.2  Execution Control	 219

8.9  Test Problems	 220

Part four  Programming� 221

9  Ladder Diagram (LD)	 223
9.1  Introduction	 223
9.2  Program Structure	 224

9.2.1  Contacts and Conditions	 225
9.2.2  Coils and Actions	 226
9.2.3  Graphical Elements: An Overview	 227

9.3  Boolean Operations	 227
9.3.1  AND/OR‐Conditions	 227
9.3.2  Set/Reset Coils	 230
9.3.3  Edge Detecting Contacts	 233
9.3.4  Example: Control of a Mixing Process	 234

9.4  Rules for Execution	 237
9.4.1  One Output: Several Conditions	 237
9.4.2  The Importance of the Order of Execution	 238
9.4.3  Labels and Jumps	 239

9.5  Use of Standard Functions in LD	 240
9.6  Development and Use of FBs in LD	 242
9.7  Structured Programming in LD	 244

9.7.1  Flowchart versus RS‐Based LD Code	 248
9.7.2  State Diagrams versus RS‐Based LD Code	 253

9.8  Summary	 259
9.9  Test Problems	 260

10  Function Block Diagram (FBD)	 262
10.1  Introduction	 262

x	 Contents

10.2  Program Structure	 263
10.2.1  Concepts	 264

10.3	 Execution Order and Loops	 264
10.3.1  Labels and Jumps	 265

10.4	 User‐Defined Functions and FBs	 266
10.5	 Integer Division	 268
10.6	 Sequential Programming with FBD	 271
10.7	 Test Problems	 273

11  Structured Text (ST)	 278
11.1	 Introduction	 278
11.2	 ST in General	 279

11.2.1  Program Structure	 280
11.3	 Standard Functions and Operators	 281

11.3.1  Assignment	 282
11.4	 Calling FBs	 283

11.4.1  Flank Detection and Memories	 284
11.4.2  Timers	 287
11.4.3  Counters	 288

11.5	 IF Statements	 288
11.6	 CASE Statements	 290
11.7	 ST Code Based upon State Diagrams	 292

11.7.1  Example: Code for the Level Process	 295
11.8	 Loops	 298

11.8.1  WHILE … DO… END_WHILE	 298
11.8.2  FOR … END_FOR	 299
11.8.3  REPEAT … END_REPEAT	 300
11.8.4  The EXIT Instruction	 300

11.9	 Example: Defining and Calling Functions	 301
11.10	 Test Problems	 302

12  Sequential Function Chart (SFC)	 306
12.1	 Introduction	 306

12.1.1  SFC in General	 307
12.2	 Structure and Graphics	 307

12.2.1  Overview: Graphic Symbols	 309
12.2.2  Alternative Branches	 309
12.2.3  Parallel Branches	 311

12.3	 Steps	 312
12.3.1  Step Addresses	 313
12.3.2  SFC in Text Form (for Those Specially Interested…)	 314

12.4	 Transitions	 314
12.4.1  Alternative Definition of Transitions	 315

12.5	 Actions	 317
12.5.1  Action Types	 318
12.5.2  Action Control	 319
12.5.3  Alternative Declaration and Use of Actions	 321

Contents	 xi

12.6	 Control of Diagram Execution	 322
12.7	 Good Design Technique	 323
12.8	 Test Problems	 326

13  Examples	 331
13.1	 Example 1: PID Controller Function Block: Structured Text	 331
13.2	 Example 2: Sampling: SFC	 333

13.2.1  List of Variables	 334
13.2.2  Possible Solution	 334

13.3	 Example 3: Product Control: SFC	 337
13.3.1  Functional Description	 338
13.3.2  List of Variables	 338
13.3.3  Possible Solution	 339

13.4	 Example 4: Automatic Feeder: ST/SFC/FBD	 342
13.4.1  Planning and Structuring	 344
13.4.2  Alternative 1: SFC	 345
13.4.3  Alternative 2: ST/FBD	 347

Part FIVE  Implementation� 351

14  CoDeSys 2.3	 353
14.1	 Introduction	 353
14.2	 Starting the Program	 354

14.2.1  The Contents of a Project	 356
14.3	 Configuring the (WAGO) PLC	 357
14.4	 Communications with the PLC	 360

14.4.1  The Gateway Server	 361
14.4.2  Local Connection via Service Cable	 362
14.4.3  Via Ethernet	 363
14.4.4  Communication with a PLC Connected to a Remote PC	 364
14.4.5  Testing Communications	 365

14.5	 Libraries	 365
14.6	 Defining a POU	 367
14.7	 Programming in FBD/LD	 368

14.7.1  Declaring Variables	 369
14.7.2  Programming with FBD	 371
14.7.3  Programming with LD	 372

14.8	 Configuring Tasks	 375
14.9	 Downloading and Testing Programs	 376

14.9.1  Debugging	 377
14.10	 Global Variables and Special Data Types	 379

15  CoDeSys Version 3.5	 381
15.1	 Starting a New Project	 381

15.1.1  Device	 382
15.1.2  Application	 384

xii	 Contents

15.2	 Programming and Programming Units (POUs)	 386
15.2.1  Declaration of Variables	 388

15.3	 Compiling and Running the Project	 389
15.3.1  Start Gateway Server and PLS and Set Up Communications	 390

15.4	 Test Problems	 393

Bibliography� 395
Index	 396

Programmable Logic Controllers
A Practical Approach to IEC 61131‐3

Using CODESYS

First edition

Pump1

Start AND READY

Pump2

Level_1 OR Stop

N Pump_2

Pump1.T > t#30s

S Mixer Interrupt

Pump3

Pump3

N Pump_1

P1 Inc_Counter

R READY

S RUN

S READY

R RUN

R ERROR

Heating

Level_2 OR Stop

N HeatingElement

Interrupt

(Temp >=50) OR Stop

Pump2.T > t#20s

Start

Dag H. Hanssen

Preface

As long as there have been competing producers of PLCs on the market, there have been
different programming languages from one PLC brand to another. Even though the same lan-
guages, beginning with Instruction Lists (IL) and Ladder diagram (LD), have been used by
most of the producers, all of them added their own “dialects” to the languages. When physical
programming terminals replaced software‐based programming tools, the differences between
languages of the various producers escalated. Several programming languages also saw the
light of day. This development was the natural result of the attempt by the producers to make
themselves stand out among increasing competition by developing the most user‐friendly
languages and tools.

When the IEC1 61131‐3 standard came out in 1993, the situation started to improve. This
standard was the result of the work that had been ongoing for several years in which the best
from the various languages and dialects from different producers was assembled into a single
document. This is not a rigid standard in the sense that the producers must follow all require-
ments and specifications, but more a set of guidelines that the producers could choose to
follow to a certain extent. Today, most of the equipment producers have come to realize the
advantages of organizing themselves in accordance with the standard. All of the major pro-
ducers of PLCs, such as Telemecanique, Wago, Mitsubishi, Klockner Moeller, Allen‐Bradley,
Omron, Siemens, and so on, have therefore, to a greater or lesser extent, adapted their program-
ming tools to IEC 61131‐3.

This book covers close to 100% of the specifications and guidelines that are given in
Standard (International Electrotechnical Commission, 2013).2 The book will therefore be
interested to everyone who works with, or wants to learn about programming PLCs, no matter
which PLC brand they use.

1 IEC—International Electrotechnical Commission. This edition of the book was updated in conformity with the 3rd
edition of IEC 61131‐3, issued February 2013.
2 The Standard IEC 61131-3 is introduced in Chapter 5.

Preface	 xv

The book does not assume any previous knowledge of programming.
Comments and suggestions for contents will be gratefully received.
The book is divided into five main parts:

•• Part 1: Hardware Chapters 1–3
•• Part 2: Methodic Chapter 4
•• Part 3: IEC 61131‐3 Chapters 5–8
•• Part 4: Programming Chapters 9–13
•• Part 5: Implementation Chapters 14–15

Chapter 1 contains a brief history and a short description of the design and operation of PLCs
in general. Chapters 2 and 3 give a basic introduction to digital and analog signals and equip-
ment for detection, measurement, and manipulation of discrete and continuous quantities.

Chapter 4 focuses on methods for planning and design of structurally efficient programs. It
also provides an introduction into Boolean algebra. Chapters 5 and 6 introduce the IEC stan-
dard elements such as literals, keywords, data types, variables, and addressing. Chapters 7 and
8 cover standardized functions and functional blocks.

Chapters 9 to 13 deal with programming: Chapter 9 covers programming with LD.
Chapter 10 covers functional block diagrams (FBD). Chapter 11 covers the structured text
(ST) language. The last language covered in the book is actually not a programming language
as such, but rather a tool for structuring program code. This is called a Sequential Function
Chart (SFC) and is described in Chapter 12.

Chapter 13 contains some larger practical programming examples.
The last two chapters in the book cover programming tools. Here, I have chosen to focus on

CODESYS. There are several reasons for this; first, CODESYS follows the standard almost
100%. Furthermore, CODESYS is a hardware‐independent programming tool that is cur-
rently used by well over 250 hardware suppliers. Finally yet importantly, the program can be
downloaded free and it contains a simulator. Most of the program code in the book was written
and tested with this tool.

I would like to thank the following persons and companies:

•• Associate Professor Tormod Drengstig, University of Stavanger, for much good feedback,
suggestions for improvements, and the contribution of several examples

•• Assistant Professor Inge Vivås, Bergen University College, for giving his permission to
reuse some problems (Section 4.6.4 and Problems 4.10 and 10.5)

•• Assistant Professor Veslemøy Tyssø, Oslo and Akershus University College of Applied
Science, for having read an earlier edition of the book and having provided expert
contributions

•• Colleagues and management at the University of Tromsø, Department of Engineering and
Safety, for the support and patience

•• Schneider Electric for granting me permission to use material from their “Automation
Solution Guide” when writing about sensors in Chapter 2

Dag H. Hanssen

Hardware

Part One

Programmable Logic Controllers: A Practical Approach to IEC 61131-3 using CODESYS, First Edition. Dag H. Hanssen.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

About PLCs

The programmable logic controller (PLC) has its origin in relay‐based control systems, also
called hard‐wired logic.1

Before PLCs became common in industry, all automatic control was handled by circuits
composed of relays,2 switches, clocks and counters, etc (Figure 1.1). Such controls required a
lot of wiring and usually filled large cabinets full of electromagnetic relays. Electricians had
to assemble controls or use a prepared relay wiring diagram. The relay wiring diagrams
showed how all the switches, sensors, motors, valves, relays, etc. were connected. Such relay
wiring diagrams are the forerunners for the ladder diagram (LD) programming language,
which is still a common programming language used in programming PLCs.

There were many disadvantages with these mechanical controls. In addition to taking up
a lot of room, they demand time and labor to implement them and to make any changes in
such equipment. A relay control usually consists of hundreds of relays connected together
with wires running in every direction. If the logical function needs to be changed or
expanded, the entire physical unit must be rewired, something that is obviously expensive
in terms of working time. Since the relays are electromechanical devices, they also had a
limited service life, something that led to frequent operational interruptions with subsequent
disruption.

There also was no way of testing before the control was wired up. Testing therefore had to
take place by running the unit. If there was a small failure in the schematic diagram or if an
electrician had connected a wire wrong, this could result in dramatic events.

1

1 Originally, the designation PC—Programmable Controller—was used. This naturally caused some confusion when
Personal Computer became a well‐known concept.
2 A relay is an electromechanical component that functions like an electrical switch. A weak current (so‐called control
current) activates the switch so that a stronger current can be switched on or off.

4	 Programmable Logic Controllers

1.1  History

The first PLC came into commercial production when General Motors was looking for a
replacement for relay controls. Increased competition and expanded demands on the part of
customers meant a demand for higher efficiency, and the natural step was to design a soft-
ware‐based system that could replace the relays. The requirement was that the new system
should be able to:

•• Compete on price with traditional relay controls
•• Be flexible
•• Withstand a harsh environment
•• Be modular with respect to the number of inputs and outputs3

•• Be easy to program and reprogram

Several corporations started work on providing a solution to the problem. Bedford Associates,
Inc. from Bedford, Massachusetts, suggested something they called a “modular digital
controller” (MODICON). MODICON 0844 was the first PLC that went into commercial pro-
duction. The key to its success was probably the programming language, LD, which was
based on the relay diagrams that electricians were familiar with. Today there is no question
about the use of programmable controls; the question is rather what type to use.

The first PLCs were relatively simple in the sense that their function was to replace relay
logic and nothing else. Gradually, the capabilities improved more and more and functions
such as counters and time delays were added. The next step in development was analog input/
output and arithmetic functions such as comparators and adders.

With the development of semiconductor technology and integrated circuits, programmable
controls became widely used in industry. Particularly when microprocessors came on the
market in the beginning of the 1970s, development proceeded at a rapid pace.

Figure 1.1  Example of a relay and a timer (mounted on a connector board)

3 This means that it must be possible to increase the number of inputs and outputs by inserting extra modules/boards/
blocks. In order to offer cheaper hardware, there are also many PLCs that are not modular.
4 084 indicates that it was the 84th project for the company. After that, the corporation established a new company,
(MODICON), which focused on producing PLCs.

About PLCs	 5

The PLCs of today come with development tools in the form of software with every imag-
inable ready‐to‐use function. Examples are program codes for managing communications as
well as processing functions such as proportional integrator/derivative regulators, servo con-
trols, axial control, etc. In other words, there is the same pace of development as with the PC
(Figures 1.2, 1.3, and 1.4).

The communications side also experienced rapid development. Demand grew quickly for
PLCs that could talk to one another and that could be placed away from the actual produc-
tion lines. Around 1973 Modicon developed a communications protocol that they called
Modbus. This made it possible to set up communications between PLCs, and the PLCs
could therefore be located away from production. Modicon’s Modbus also provided for
management of analog signals. As there became more and more manufacturers of PLCs and

Figure 1.2  Omron Sysmac C20—Nonmodular PLC with digital I/O and programming terminal

Figure 1.3  PLCs from Telemecanique come in different sizes

6	 Programmable Logic Controllers

associated equipment, there also developed more proprietary5 and nonproprietary commu-
nications protocols. The lack of standardization, together with continual technological
development, meant that PLC communication became a nightmare of incompatible proto-
cols and various physical networks. Even today, there are problems, although manufacturers
now offer solutions for communications over a selection of known and standardized
protocols.

Several programming languages also came into use. Earlier LD, as we mentioned, was
synonymous with PLC programming. Instruction List (IL) was also an early language that had
many similarities with the assembly language that used for programming microprocessors.
Later the graphical language Sequential Function Chart (SFC) was added. This was specially
developed for implementation of sequential controls.

1.1.1  More Recent Developments

All of the aforementioned languages were incorporated into the international standard
IEC 61131‐3 (International Electrotechnical Commission, 2013). The standard also
defines the function block diagram (FBD) graphic language and the structured text (ST)
language. FBD has a symbol palette that is based on recognized symbols and functions
from digital technology. ST is a high‐level language that provides associations with Pascal
and C.

Before the IEC 61131‐3 standard appeared, and for many years thereafter, there were
relatively large differences between PLCs from various manufacturers. This was particularly
true of capabilities for selection of programming language and how the language that was
implemented in the PLCs was designed. Recently, to the delight of users, manufacturers began

Figure 1.4  Newer generation PLC from Wago with Profibus coupler and I/O

5 A proprietary protocol is owned by the manufacturer who developed it. The source code is not freely accessible.
A non‐proprietary protocol is either a standard protocol or an open protocol that is distributed by many manufacturers
who make equipment for communication over such a protocol.

About PLCs	 7

to follow IEC 61131‐3 to a greater and greater extent. This made it easier to go from one brand
of PLC to another as well as making it easier, to a certain extent, for customers to know what
they were getting.

There are also a number of “software‐based PLCs” on the market. As the name indicates,
this software is designed to control processes directly from a PC. The challenge has been to
build systems that are sufficiently reliable and robust. Industry is generally critical of such
solutions, mostly based on experience with many a computer crash.

Another amphibious solution is the possibility of buying a circuit board for a computer onto
which the program code can be loaded. The board is made so that it is capable of carrying on
with the job independently even if the computer should crash.

In recent years, manufacturers have devoted considerable resources to developing solutions
for connecting instruments and actuators into a network. Such a communication bus is called
a fieldbus, referring to the fact that there is communication between field instruments, in other
words, instruments below the process level. Other standards and de facto6 standards are also
on the market.

Work on an IEC standard for the fieldbus started as early as 1984/1985. The requirement
was naturally that the standard should be an open fieldbus solution for industrial automation.
It should include units such as motor controls, decentralized I/O, and PLCs, in addition to the
distributed control systems (DCS) and field instruments used in the processing industry. The
goal was also that the standard should cover all pertinent areas such as building automation,
process automation, and general industrial automation.

It was not until the end of 1999 that those involved came to an agreement. The result was
that a total of eight (partially dissimilar) systems were incorporated into a standard called IEC
61158. In other words, this was not an open solution. Even though manufacturers and sup-
pliers argued that it was good for users to have plenty of choices, this unity did not make
things much easier for engineers and others working on automation.

Several of the major manufacturers currently offer integrated solutions with I/O modules
for all of the major fieldbus standards where a controller (PLC) or a gateway manages com-
munication among the various standards simultaneously.

Another trend is that manufacturers of hardware and communication solutions offer more
equipment for wireless communication (Ethernet). What is new here is that these also include
individual sensors and individual instruments. In this way, it is possible to implement wireless
systems right out to the sensor level.

1.2  Structure

As we said, there are a great many types of PLCs on the market. Hundreds of suppliers
include PLCs of various sizes in their stock. The smallest PLCs have relatively small memory
capacity and calculating capability and usually limited or no capability for expansion of
the number of I/Os. The largest have processor power equivalent to powerful computers,

6 De facto is a Latin expression that means “actually” or “in reality.” De facto is the opposite of de jure, which means
“according to law.” If something is de facto, it means something that is generally recognized. A de facto standard
is thus a standard that is so widely used that that everyone follows it as though it were an authorized standard.
(Source: Wikipedia.)

8	 Programmable Logic Controllers

have a large number of I/Os, and handle multitasking.7 Such PLCs usually have a supervisory
function (master) in an industrial data network where smaller PLC types can be incorporated
as slaves.

If we make a simplification, we can say that a PLC functions in the same way that a com-
puter does. Schematically, we can break a PLC down into six major units as shown in
Figure 1.5.

The main parts thus consist of a central processing unit (CPU), memory, power supply, circuit
modules to receive and transmit data (I/O units), and communications modules. We can per-
haps also add displays/indicator lights since most of the PLCs incorporate LEDs that indicate
the state of the PLC and/or the digital I/Os. Some also have displays that can furnish other
information. In order for us to understand how a PLC operates and functions, it is necessary
to look a little closer at the main components.

The main units are connected together with wires or copper strips called buses. All commu-
nications between the main parts of the PLC take place via these buses. A bus is a collection
of a number of wires, for instance, eight, where information is transferred in binary form (one
bit per wire in parallel). Typically, a PLC will have four buses: address bus, data bus, control
bus, and system bus:

1.  The data bus is used for transfer of data between the CPU, memory, and I/O.
2.  The address bus is used to transfer the memory addresses from which data will be fetched

or to which data will be sent. An address can indicate, for instance, a location down to a
word in a particular register. A 16‐line address bus can thus transfer 216 = 65 536 different
addresses.

3.  The control bus is used for synchronizing and controlling traffic circuits.
4.  The system bus is used for I/O communication.

Central Processing Unit
This is the brain of the PLC. Here are performed all of the instructions and calculations, and
it controls the flow of information and how the program operates. Normally the CPU is a part
of the physical block and contains the memory, communications ports, status indicator lights,
and sometimes the power supply.

Central processor
(CPU)

Outputs

Motors
Valves
Pumps
Lights
Alarms

Switches,
sensors,
etc

Inputs

Power supply

Communications

Memory

Figure 1.5  Block schematic representation of a PLC

7 Can run several parallel program sessions simultaneously.

About PLCs	 9

Memory
The size of the memory varies from one brand of PLC to another, but the memory can often
be expanded by installing an extra memory card, for instance an SD card. A PLC will com-
monly have the following memory units:

•• Read‐only memory (ROM) for permanent storage of operating system and system data. Since
the information stored in a ROM cannot be deleted, an erasable programmable ROM (EPROM)
is used for this purpose. In this way, it is possible to update a PLC operating system.

•• Random access memory (RAM) for storage of programs. This is because a RAM is very
fast. Since the information in a RAM cannot be maintained without current, PLCs have a
battery so that the program code will not be lost in the event of a power failure. Some PLCs
also have the capability of program storage in an EPROM. RAMs are also used when the
program code is running. This is used, for instance, for I/O values and the states of timers
and counters.

•• Some PLCs offer the capability of inserting extra memory.

Figure 1.6 shows a typical memory board for a PLC that has an EPROM for a backup copy of
the program.

Communications Unit
This unit incorporates one or more protocols for handling communications. All PLCs have a
connection for a programming cable and often for an operator panel, printer, or network.
Various physical standards are used, for both the programming port and for the ports for con-
nections to other equipment. Current PLCs are usually programmed from an ordinary PC with
a programming tool developed for that particular type of PLC.

It is not always necessary to have a direct connection between the PLC and the PC in order
to transfer the program code to the PLC. However, it is currently the most common approach—
at least for smaller systems. Sometimes, the programming can be performed via a network
consisting of several PLCs and other equipment or via Ethernet. Some PLCs also have a built‐
in web server.

The development of instrumentation buses has enabled PLC manufacturers to supply built‐
in, or modular, solutions for communications via a large number of various protocols.
Examples of such are the AS‐i bus, PROFIBUS, Modbus, and CANbus.

Built-in
RAM

FLASH
EPROM

ROM Operating system

Data

Program

Constants

User program
backup

Figure 1.6  Typical memory board

10	 Programmable Logic Controllers

Current developments are toward expanded use of Ethernet as a protocol for high‐speed
communications. Most manufacturers are offering solutions for this.

Power Supply
All PLCs must be connected to a power supply. Usually the power supply is an inter-
changeable module, but some smaller PLCs have the power supply as an integrated part of
the processor and communications module. Even though the electronics in the PLC
operate at 5 V, it is impractical to use this as an operating voltage. Most manufacturers
therefore provide power supplies in several versions: 220 V AC, 120 V AC, and 24 V DC.
If there is no access to power‐line voltage, a variant with 24 V DC can be the solution.
Usually there is access to 24 V out in the facility since this voltage level is standard for
most sensors and transmitters. The advantage of being able to use a power supply that
connects to the power line is that there is often a 24V output on the unit that can be used
for powering sensors.

It is practical to have the power supply as a replaceable module. Then the PLC can be used
in other physical locations in processing where there is not access to the same voltage level.

1.2.1  Inputs and Outputs

This is the contact between a PLC and the outside world. In a modular PLC, all inputs and
outputs take place in blocks or modules that are designed to receive various types of signals
and to transmit signals in various formats. There are input blocks for digital signals, analog
signals, thermal elements and thermocouples, encoders, etc. There are also output blocks for
digital and analog signals as well as blocks for special purposes.

Every input and output has a unique address that can be utilized in the program code. The
I/O modules take care of electric isolation to protect the PLC and often have built‐in functions
for signal processing. This means that input and output signals can be connected directly
without needing to use any extra electronic circuitry.

Chapter 2 deals with digital signals, sensors, and actuators, in Chapter 3 the theme is analog
signals, and standard signal formats. On the next few pages, there follows only a general intro-
duction to the inputs and outputs of a PLC.

Figure 1.7 on the next page shows a sketch of a process section that is controlled by a PLC.
Various signal cables are drawn in the figure for the sake of illustration.

The process is equipped with three pressure transmitters and one flow transmitter. These
constitute the input signals to the PLC in the figure.

Based on these measurements, among others, the PLC is programmed to control two pumps.
The signals to the pumps thus constitute the output signals from the PLC.

The figure also shows an example of how a PLC rack can be assembled. From left to right,
we see the following:

•• The controller itself (CPU, memory, status lights, etc.) with built‐in Ethernet (the unit in this
case also has a built‐in web server).

•• A power supply (can supply sensors and other small equipment).
•• I/O‐modules (digital outputs, tele‐modules, analog inputs and outputs).
•• End modules that terminate the internal communications bus.

About PLCs	 11

1.2.1.1  Inputs

Digital input signals generally have a potential of 24 V DC, while the internal voltage in the
PLC is 5 V. In order to protect the electronics in the PLC, the input modules generally use
optical couplers (optical isolators). An optical coupler consists primarily of a light‐emitting
diode (LED) and a phototransistor.8 Figure 1.8 illustrates the principle.

The diode and the transistor are electronically separated, but light can pass between them.
When the signal at the input clamping circuit is logically high, the LED will emit an (infrared)

Inputs Outputs

Service cable connection
and slot for extra memory

Power supply module

Various I/O-modules

End module Controller with
Ethernet coupler

Figure 1.7  Illustration of a process section that is controlled by a PLC

8 A phototransistor is a type of bipolar transistor with transparent encapsulation. When the base–collector junction is
sufficiently illuminated, the junction is biased and the transistor becomes conductive.

12	 Programmable Logic Controllers

light. This light then triggers the transistor and results in a logically high signal in the electronic
circuits in the module, where the potential is 5 V.

The gap between the LED and the phototransistor separates the external circuit from the internal
electronics in the module. The internal electronics are thereby protected so that even though the
PLC operates at 5 V internally, it is possible to use voltage levels at the input from 5 up to 230 V.

How much current an individual input can handle depends upon the engineering specifica-
tions of the input module in question. However, it is seldom that this is significant because
most sensors have a low operating current.

Analog signals are fed into a PLC via analog‐to‐digital (A/D) converters. Converters are
built into the analog input modules/cards. An analog signal is thus continually sampled and
converted into binary values. Although in principle this requires only 1 bit for a low state input,
often 16 bits are used to store values to an analog input.

1.2.1.2  Outputs

Standard digital output modules are often found in three different main types:

1.  Relay outputs
2.  Transistor outputs
3.  Triac outputs

Relay Outputs
This type of output has the advantage that it can handle heavy loads and can be connected to both
DC and AC loads at different voltages. When the CPU sets an output logically high, the associ-
ated output relay in the module in question closes and the external circuit to which the load is
connected is completed (see Figure 1.9). The relay makes it possible for weak currents in the

Load

–
+

~

%Q

5 V

Output

Figure 1.9  Principle of a relay output

+

–

24 V

 + 5 V

%I–signal to PLC

Electronic interface Sensor

LED Photo transistor

Figure 1.8  Principle of an optical coupler

