

Modern Glass Characterization

Edited by MARIO AFFATIGATO

MODERN GLASS CHARACTERIZATION

MODERN GLASS CHARACTERIZATION

Edited by Mario Affatigato

Copyright © 2015 by The American Ceramic Society and John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN: 978-1-118-23086-2

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

CONTENTS

Pr Lis	eface st of	e Contril	butors	xiii xv
1	DEN TRA	NSITY, NSITI e Feller	THERMAL PROPERTIES, AND THE GLASS ON TEMPERATURE OF GLASSES	1
	Part	I: Intro	duction to Physical Properties and Their Uses	1
	Part	II: Den	sity	2
	1.1	Densit	ty: Experimental Background and Theory	2
		1.1.1	Overview	2
		1.1.2	Experimental Methods and Theory	3
		1.1.3	Instrumentation Used for Determining Density	7
		1.1.4	Analysis of Data, Extraction of Useful Information, and Other Ways to Express Density	8
		1.1.5	Case Studies from Some Glass Systems	13
		1.1.6	Conclusion to Density Measurements	19
	Part	III: The	rmal Effects with a Focus on the Glass Transition Temperature	20
	1.2	OVER	VIEW	20
	1.3	EXPE	RIMENTAL METHODS AND THEORY	20
		1.3.2	Differential Thermal Analysis	22
	1.4	INSTI RELA	RUMENTATION USED FOR DETERMINING T_g AND TED THERMAL EVENTS	23
		1.4.1	DSCs	23
		1.4.2	Differential Thermal Analysis	23
	1.5	ANAI INFO	LYSIS OF DATA AND EXTRACTION OF USEFUL	25
	16	CASE	STUDIES FROM GLASS SYSTEMS	25
	1.0	1.6.1	The Glass Transition Temperatures of Barium Borosilicate	20
		162	Stability Parameters in Lithium Borate Glasses [18]	20
	17	1.0.2 CON(UISION TO THERMAL PROPERTIES	27 30
		NOWI	EDGMENTS	30
	RFF	ERENC	TFS	31
	1111			51

2	INF	RARE	O SPECTROSCOPY OF GLASSES	32
	<i>E.I.</i>	Kamitse	28	
	2.1	INTR	ODUCTION	32
	2.2	BACK	GROUND AND THEORY	34
		2.2.1	Refractive Index and Dielectric Function	34
		2.2.2	Reflectance Spectroscopy of Bulk Materials	36
		2.2.3	Infrared Spectra of Thin Films	42
	2.3	INSTI	RUMENTATION	44
	2.4	ANAI	LYSIS OF INFRARED DATA	48
		2.4.1	Bulk Glasses	48
		2.4.2	Thin Films of Amorphous Materials	52
	2.5	CASE	STUDIES	54
		2.5.1	Bulk Glasses	54
		2.5.2	Glass Thin Films	63
	2.6	CONC	CLUSIONS	68
	ACF	KNOWL	LEDGMENTS	69
	REF	ERENC	CES	69
_				
3	RAI	MAN S	PECTROSCOPY OF GLASSES	74
	Rui	M. Alm	eida and Luís F. Santos	
	3.1	INTR	ODUCTION	74
	3.2	BACK	GROUND	76
		3.2.1	Theory	76
		3.2.2	Selection Rules	78
		3.2.3	Depolarization of Raman Lines	79
	3.3	INSTI	RUMENTATION AND DATA ANALYSIS	80
		3.3.1	Light Source	81
		3.3.2	Sample Compartment	82
		3.3.3	Spectrometer	82
		3.3.4	Detector	83
		3.3.5	Micro-Raman Spectrometers	84
		3.3.6	Resolution	85
		3.3.7	Data Analysis	86
	3.4	CASE	STUDIES	87
		3.4.1	Structural Effects of Alkali Incorporation in Silicate Glasses	87
		3.4.2	Phase Separation Mechanisms in Transition Metal Phosphate	
			Glasses	92

		3.4.3	Raman Study of Niobium Germanosilicate Glasses And	
			Glass-Ceramics	96
		3.4.4	Raman Spectroscopy of Chalcogenide Glasses	99
	3.5	CONC	CLUSIONS	103
	ACK	KNOWI	LEDGMENTS	103
	REF	ERENC	CES	103
4	BRI	LLOUI	N LIGHT SCATTERING	107
	John	i Kieffei		105
	4.1	INTR	ODUCTION	107
	4.2	BACK	GROUND AND THEORY	110
	4.3	INSTI	RUMENTATION	117
	4.4	DATA	ANALYSIS AND INFORMATION CONTENT	126
	4.5	EXAN	APLES OF CASE STUDIES	133
		4.5.1	Room-Temperature Glass	133
		4.5.2	Temperature Dependence, Glass Transition, and Visco-Elasticity	137
		4.5.3	Spatially Confined Systems (e.g., Thin Films)	146
		4.5.4	Systems Under Pressure	149
		4.5.5	Mechanically Fragile Systems, Soft Matter, and Gels	151
	4.6	SUM	MARY	154
	REF	ERENG	CES	155
5	NFI	JTRON	DIFERACTION TECHNIQUES FOR STRUCTURAL	
•	STU	DIES	OF GLASSES	158
	Alex	C. Han	non	
	5.1	INTR	ODUCTION	158
	5.2	INSTI	RUMENTATION	159
		5.2.1	The Neutron	159
		5.2.2	The Interactions between a Neutron and a Sample	160
		5.2.3	Neutron Sources	161
		5.2.4	Neutron Diffractometers	164
	5.3	THEC	DRETICAL ASPECTS OF NEUTRON DIFFRACTION ON	
		GLAS	SES	169
		5.3.1	The Static Approximation	169
		5.3.2	Scattering from a Single Nucleus	169
		5.3.3	Scattering from an Assembly of Nuclei	170
		5.3.4	Isotropic Samples	171
		5.3.5	Coherent and Incoherent (Distinct and Self) Scattering	171

		5.3.6	Atomic Vibrations	173
		5.3.7	Real-space Correlation Functions	180
	5.4	THE A	APPLICATION OF NEUTRON DIFFRACTION TO ST	UDIES
		OF GL	LASS STRUCTURE	186
		5.4.1	Experimental Corrections	186
		5.4.2	Resolution	190
		5.4.3	Peak Fitting and Integration	194
		5.4.4	Normalization of Data	198
		5.4.5	Scattering at low Q	200
		5.4.6	Sample-Related Difficulties	203
		5.4.7	Partial Correlation Functions	209
		5.4.8	Interpretation of Results	218
		5.4.9	Modeling	226
		5.4.10	The PDF Method	229
	ACK	KNOWL	EDGMENTS	231
	REF	ERENC	CES	231
	FUR	THER I	READING	240
6	X-R	AY DIF	FRACTION FROM GLASS	241
-	Chri	istopher	J. Benmore	
	6.1	INTRO	DDUCTION	241
	6.2	BACK	GROUND/THEORY	244
	6.3	ANAL	YSIS OF DATA, EXTRACTION OF USEFUL	
		INFO	RMATION	249
	6.4	INSTR	RUMENTATION	255
	6.5	CASE	STUDIES	258
		6.5.1	SiO ₂ and Oxide Glasses	258
		6.5.2	Chalcogenide Glasses	263
		6.5.3	Amorphous Materials, Gels, Foams and Fibers	264
	6.6	CONC	CLUSIONS	264
	ACK	KNOWL	EDGMENTS	266
	REF	ERENC	CES	267
7	XAI	FS SPE	CTROSCOPY AND GLASS STRUCTURE	271
	Gius	seppe Do	alba and Francesco Rocca	
	7.1	INTRO	DDUCTION	271
	7.2	THE C	ORIGINS OF X-RAY ABSORPTION SPECTRA	272
	7.3	XAFS	INSTRUMENTATION	274

	7.4	THE PI	HYSICAL MECHANISM OF XAFS	278
	7.5	EXAFS	3	279
		7.5.1	EXAFS Formula for Glasses	282
	7.6	XAFS	DATA ANALYSIS	284
		7.6.1	Corrections for Instrumental Errors	284
		7.6.2	Pre-edge Background Subtraction	284
		7.6.3	Post-edge Background Subtraction	285
		7.6.4	Normalization	286
		7.6.5	Conversion to <i>k</i> -Space, Choice of Threshold Energy E_0 and Weighting	286
		7.6.6	Transformation from k-Space to R-Space	286
		7.6.7	Fourier Filtering: Reverse Transformation: from <i>R</i> -Space to <i>k</i> -Space	287
		7.6.8	Log Amplitude Ratio and Phases Difference Method	288
		7.6.9	Fitting Procedure	288
	7.7	EXAFS	S ACCURACY AND LIMITATIONS	289
	7.8	XANES	5	290
	7.9	XAFS S	SPECTROSCOPY APPLIED TO GLASS STRUCTURE:	
		SOME	EXAMPLES	291
		7.9.1	Silicate Glasses	292
		7.9.2	Silica Glass	294
		7.9.3	Silica at High Temperature	294
		7.9.4	Silica and Germania Glasses under High Pressure	297
		7.9.5	Nanoparticles Embedded in Glasses	300
		7.9.6	Study of Ionic Conductivity in Superionic Conducting	
			Glasses Doped with Agl	307
	7.10	SUMN	MARY AND CONCLUSIONS	309
	REF	ERENCI	ES	310
8	NUC		MAGNETIC RESONANCE SPECTROSCOPY	245
	Scot	GLASSI t Kroeke	=> r	315
	8 1	INITD		315
	8.2	THEC		316
	0.2	821	Zeeman Effect	316
		827	Magnetic Shielding	319
		822	Quadrupolar Interaction	310
		824	Dinolar Interactions	320
		82.4	High Resolution Methodologies	320
		0.2.5	men resolution methodologies	520

ix

	8.3	INSTR	UMENTATION	323
		8.3.1	Magnet	323
		8.3.2	Probe	325
		8.3.3	Radiofrequency Components	326
		8.3.4	Computer Control	326
		8.3.5	Measurement Uncertainty	327
	8.4	DATA .	ANALYSIS AND STRUCTURAL INTERPRETATION	329
		8.4.1	Chemical Shift Assignments	329
		8.4.2	Information from Quadrupolar Effects	330
		8.4.3	Low-y Nuclei	332
		8.4.4	Paramagnetic Effects	333
	8.5	CASE	STUDIES	333
		8.5.1	Borophosphate Glasses	333
		8.5.2	Aluminosilicate Glasses	336
		8.5.3	Borosilicate Glasses	337
		8.5.4	Modifier Cations in Alkali Borate Glasses	340
	8.6	CONC	LUSIONS	341
	ACKI	NOWLE	DGMENTS	342
	REFE	ERENCE	S	342
~				
9	ADV	ANCED	DIPOLAR SOLID STATE NMR SPECTROSCOPY	
	OF G	LASSE	5	345
	Helln	iut Ecker		245
	9.1	INTRO		345
	9.2	THEOR	RETICAL ASPECTS	347
		9.2.1	Direct Magnetic Dipole–Dipole Coupling	348
		9.2.2	Indirect Magnetic Dipole–Dipole Coupling	349
	9.3	HETER	CONUCLEAR EXPERIMENTS	349
		9.3.1	Spin Echo Double Resonance	349
		0 2 7	Rotational Echo Double Resonance	350
		9.5.2		250
		9.3.2	Rotational Echo Adiabatic Passage Double Resonance	353
		9.3.2 9.3.3 9.3.4	Rotational Echo Adiabatic Passage Double Resonance Cross-polarization	353 354
		9.3.2 9.3.3 9.3.4 9.3.5	Rotational Echo Adiabatic Passage Double Resonance Cross-polarization Connectivity Studies Based on the Detection of Indirect Spin–Spin Interactions	353 353 354
		9.3.2 9.3.3 9.3.4 9.3.5 9.3.6	Rotational Echo Adiabatic Passage Double Resonance Cross-polarization Connectivity Studies Based on the Detection of Indirect Spin–Spin Interactions Instrumental Considerations and Caveats.	353 353 354 358 358
	9.4	9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 HOMC	Rotational Echo Adiabatic Passage Double Resonance Cross-polarization Connectivity Studies Based on the Detection of Indirect Spin–Spin Interactions Instrumental Considerations and Caveats. NUCLEAR EXPERIMENTS	353 353 354 358 358 360
	9.4	9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 HOMC 9.4.1	Rotational Echo Adiabatic Passage Double Resonance Cross-polarization Connectivity Studies Based on the Detection of Indirect Spin–Spin Interactions Instrumental Considerations and Caveats. NUCLEAR EXPERIMENTS Static Spin Echo Decay Spectroscopy	353 354 358 358 360 360
	9.4	9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 HOMC 9.4.1 9.4.2	Rotational Echo Adiabatic Passage Double Resonance Cross-polarization Connectivity Studies Based on the Detection of Indirect Spin–Spin Interactions Instrumental Considerations and Caveats. NUCLEAR EXPERIMENTS Static Spin Echo Decay Spectroscopy Homonuclear Dipolar Recoupling Experiments	353 354 358 358 360 360 360 362

	9.5	CASE	STUDIES	370
		9.5.1	Spatial Distributions of Mobile Ions in Alkali Silicate and Borate Glasses	370
		9.5.2	Connectivity Distribution in 70 SiO_2 -30 [(Al ₂ O ₃)x(P2O5)1-x] Glasses	374
		9.5.3	Speciations and Connectivity Distributions in Borophosphate and Thioborophosphate Glasses	380
A	ACKN	NOWLE	DGMENTS	386
F	REFE	RENCE	S	386
10	ATC	OM PR	OBE TOMOGRAPHY OF GLASSES	391
	Dar	iel Schr	eiber and Joseph V. Ryan	
	10.1	I INTF	RODUCTION	391
	10.2	2 BAC	KGROUND AND THEORY	392
	10.3	3 INST	'RUMENTATION	395
		10.3.	1 APT Specimen Preparation	399
		10.3.	2 Experimental Procedure and Parameters	401
		10.3.	3 Data Reconstruction	403
	10.4	ANA	LYSIS METHODS	409
		10.4.	1 Estimating Error	412
	10.5	5 CAS	E STUDIES	417
		10.5.	1 Composition	418
		10.5.	2 Interfaces	420
		10.5.	3 Conclusions	424
	ACI	KNOWL	LEDGMENTS	425
	REF	FERENC	CES	425
Inde	ex			431

PREFACE

It is a fair statement to say that the study of glass has relied heavily on the development of new and improved experimental techniques. The amorphous nature of the material has always presented a particular challenge to researchers, and insights had to wait until technology was able to provide a clearer picture of its structure and behavior. And although our understanding of the basic properties and atomic arrangement is far better than it was when Zachariasen wrote his landmark paper, the essential role of state-of-the-art experimental techniques remains true.

This book provides a snapshot of the state of several spectroscopic techniques, and it is to be considered a follow-up to the wonderful tome edited by C.J. Simmons and O.H. El-Bayoumi, *Experimental Techniques of Glass Science*, published in 1993. Indeed, some of the chapters cover the same techniques, though technology has progressed significantly in the intervening 22 years. Thus, nuclear magnetic resonance (NMR) counts on a plethora of pulse sequences and multidimensional measurements that were nonexistent back then. Other chapters, like the one covering Atom Probe Tomography, represent completely new advances. In all cases, the chapters have been designed to serve a pedagogical purpose, presenting background and details for the graduate student and researcher beginning to explore the capabilities of each technique. To enhance this purpose, chapters include case studies and common mistakes, and the theoretical background has been kept, where possible, short.

All edited books are exposed to the preferences of the editor, and to the availability of authors. This one is no different. Nuclear Magnetic Resonance has two chapters devoted to it, a decision I made based on its current importance in the field. This division also allows for readers to explore NMR based on their background and interest. Another example of editorial choice is the first chapter, on density and calorimetry, two techniques that are affordable by beginning researchers. Finally, other common techniques such as Raman, Brillouin, and infrared spectroscopy provide an overview of vibrational, light-based techniques, a coherence I found important.

It is of course quite obvious that the book would not be possible without the chapter authors. Their work and patience are much appreciated. I made a special effort to gather true experts in the field, researchers who combined expertise in the particular technique with broad knowledge of the field of glass science. This combination, critical in my eyes, will provide readers with a very special look at the use of current, state-of-the-art techniques on these challenging materials, with all of the nuances it entails. It is my sincerest hope that it will prove useful to our scientific community.

MARIO AFFATIGATO

Cedar Rapids, IA August 2015

LIST OF CONTRIBUTORS

Mario Affatigato, Coe College, Cedar Rapids, IA, USA

- **Rui M. Almeida,** Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Christopher J. Benmore, X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
- Giuseppe Dalba, Department of Physics, University of Trento, Italy
- Hellmut Eckert, Institut für Physikalische Chemie, WWU Münster, Germany, and Instituto da Física Sao Carlos, University of Sao Paulo, Sao Carlos, Brazil
- Steve Feller, Physics Department, Coe College, Cedar Rapids, IA, USA
- Alex C. Hannon, ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, UK
- **E.I. Kamitsos,** Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens, Greece
- John Kieffer, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
- Scott Kroeker, Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
- Francesco Rocca, IFN-CNR, Institute for Photonics and Nanotechnologies, Unit "FBK-Photonics" of Trento, Povo (Trento), Italy
- Joseph V. Ryan, Pacific Northwest National Laboratory, Richland, WA, USA
- Luís F. Santos, Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Daniel Schreiber, Pacific Northwest National Laboratory, Richland, WA, USA

1

DENSITY, THERMAL PROPERTIES, AND THE GLASS TRANSITION TEMPERATURE OF GLASSES

Steve Feller Physics Department, Coe College, Cedar Rapids, IA, USA

Part I: Introduction to Physical Properties and Their Uses

Any computer-generated or spectroscopic determination of the atomic structure of glass is tempered by the necessity that the resulting structural model be consonant with physical property measurements. As a result the basic physical properties play a key role in the acceptance of any model of atomic arrangements. In this chapter, two of the most fundamental properties are examined: density (ρ) and thermal properties with a focus on the glass transition temperature (T_g). How these measurements are made and interpreted will be discussed. Also, some comparisons between the resulting properties and models of glass structure are given.

First, however, a note of caution is provided. It is not possible to go from direct measurements of the physical properties to a unique model of atomic arrangement. This multiplicity of paths is an example of an *ill-posed problem*. What can be done is to use experimental property data to provide a consistency check on models. That is significant.

Density is perhaps the single-most fundamental and important measure of a glass. Its value is needed in manifold experimental techniques such as neutron, electron, and

Modern Glass Characterization, First Edition. Edited by Mario Affatigato.

© 2015 The American Ceramic Society and John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

x-ray scattering. It is also an essential value in molecular dynamics simulations. In addition, density stands on its own as an intrinsic property capable of casting light on various ranges of order within glasses [1].

Furthermore, density can be used to extract a variety of useful volumes including the molar volume, the volume per mole glass former, and for a given model of atomic structure, the volumes of the individual atomic-level structural units themselves. Another useful parameter directly derived from density is the dimensionless packing fraction, the ratio of filled space to total volume within a glass [2]. Additionally, as these property data have become available from a wide variety of glass systems over extended compositional regimes, it has become possible to gain greater insight into atomic arrangement comparisons between systems. What has emerged from this work is a comprehensive set of data which has been quantitatively linked to models of both the short range and intermediate order.

The glass transition temperature is a defining universal condition for a material to be a glass. It is an independent and useful parameter in its own right but the experimental thermogram can also be used to determine other temperatures as well (recrystallization temperature, melting points, pre-glass transition temperature exothermic rearrangements, and more) and to extract the fictive temperature. It will be shown in this chapter that the atomic structure of glass gives rise to systematic changes in T_g with composition. For example, it will be shown that in borate glasses the presence of tetrahedral borons increases T_g .

Part II: Density

1.1 DENSITY: EXPERIMENTAL BACKGROUND AND THEORY

1.1.1 Overview

In this section, methods of how density is determined in a number of ways will be discussed at some length. Density, ρ , is defined by

$$\rho = \text{mass/volume.}$$
 (1.1)

Density is a function of a number of experimental variables including ambient temperature, chemical purity of the sample, the presence of bubbles, thermal history (fictive temperature), and more. Thus, the conditions under which the samples were prepared and the density measured need to be specified in any reporting of such experimental data. In the following it is assumed that a sample of high quality has been prepared without bubbles, with a known thermal history, and whose composition is well characterized.

In summary, in this section of this chapter several of the various methods by which density is determined are described. Later in the chapter some illustrative examples of density trends in glass forming systems are examined.

1.1.2 Experimental Methods and Theory

1.1.2.1 Direct Determination of Mass and Volume In principle, the most straightforward way of determining density is the direct determination of the mass and volume of the object. For example, a high quality cylinder may have its volume determined by measuring its diameter D, and length L, and using a precision mass scale for mass M. Then the density would be simply

$$\rho = M/V = M/(\pi D^2 L/4) = (4M/(\pi D^2 L))$$
(1.2)

This method is not often used for glasses due to the need for such highly symmetric shapes. The most important source of error in this method will likely be in the determination of volume since mass may be routinely determined to high accuracy in a modern laboratory.

1.1.2.2 Archimedes' Principle: Wet/Dry Weighing This beautiful method relies on weighing the glass sample in both a liquid ($W_{\text{sample in liquid}}$) and in air ($W_{\text{sample in air}}$). Separate measurements of mass and volume are not needed. Rather, Archimedes' principle states that the buoyant force, *B*, exerted on a solid immersed in a liquid is given by the weight of the displaced fluid, $W_{\text{displaced fluid}}$:

$$B = W_{\text{displaced fluid}} = \rho_{\text{liquid}} V_{\text{sample}} g \tag{1.3}$$

where ρ_{liquid} is the density of the liquid, V_{sample} is the sample volume, and g is the acceleration due to gravity. Ignoring the small buoyant force of air makes, $W_{\text{sample in air}} = W_{\text{sample}}$, and allows $W_{\text{sample in liquid}}$ to be expressed by

$$W_{\text{sample in liquid}} = W_{\text{sample in air}} - B$$
 (1.4)

Noting that V_{sample} is $M_{\text{sample}}/\rho_{\text{sample}}$ produces

$$W_{\text{sample in liquid}} = W_{\text{sample in air}} - B = W_{\text{sample in air}} - \rho_{\text{liquid}} V_{\text{sample}} g$$

$$W_{\text{sample in liquid}} = W_{\text{sample in air}} - \rho_{\text{liquid}} (M_{\text{sample}} / \rho_{\text{sample}}) g \quad (1.5)$$

$$W_{\text{sample in liquid}} = W_{\text{sample in air}} - \rho_{\text{liquid}} (W_{\text{sample}} / \rho_{\text{sample}}) g$$

This leads to the working equation

$$\rho_{\text{sample}} = \rho_{\text{liquid}}(W_{\text{sample in air}} / (W_{\text{sample in air}} - W_{\text{sample in liquid}}))$$
(1.6)

The density is then determined using Eq. 1.6 after having measured $W_{\text{sample in liquid}}$ and $W_{\text{sample in air,}}$ and with knowledge of ρ_{liquid} . This method is commonly used and has several advantages.

- There is no limitation on the density of the sample.
- It is inexpensive to perform.

- Sample shape does not matter.
- Pure water can often be used as the working fluid if the density is not very high and if the sample is not hygroscopic.

There are some disadvantages that make it difficult to exceed 1% accuracy in the final density.

- The density of the working fluid tends to be more temperature dependent than the sample leading to the need for good temperature control of the fluid.
- It is not easy to perform the wet weighing and one must be extremely careful for precision results. Be on the lookout for fluid adhering to the fine thread that holds the sample.
- Bubbles would lead to an underreporting of the density.

1.1.2.3 Archimedes' Principle: Sink-Float Method The sink-float method also relies on Archimedes' Principle [1]. In this technique, the sample is initially sunk in a solution of two miscible fluids such as acetone ($\rho_{ace} = 0.78$ g/cc) and diiodomethane ($\rho_{dii} = 3.32$ g/cc). The acetone-diiodomethane solution that is prepared is chosen to have a slightly smaller density than that approximated for the sample. Drops of diiodomethane are added until the sample floats (usually done in duplicate to ensure reliability and to provide a better estimate of error). A magnetic stirrer stirs the solution to ensure homogeneity.

It has been determined experimentally that this additive solution is fully miscible for these fluids. Thus, the volumes of the two fluids very nearly satisfy

$$V_{\text{liquid}} = V_{\text{ace}} + V_{\text{dii}} \tag{1.7}$$

Under these conditions, at the point where the sample just floats

$$\rho_{\text{sample}} = \rho_{\text{liquid}} = M_{\text{liquid}} / V_{\text{liquid}} = (M_{\text{ace}} + M_{\text{dii}}) / (V_{\text{ace}} + V_{\text{dii}})$$
$$= (1 + M_{\text{dii}} / M_{\text{ace}}) / ((V_{\text{ace}} + V_{\text{dii}}) / M_{\text{ace}})$$

or

$$\rho_{\text{sample}} = \rho_{\text{ace}} (1 + Q) / ((1 + Q) \rho_{\text{ace}} / \rho_{\text{dii}})$$
(1.8)

where Q is the mass ratio, $M_{\rm dii}/M_{\rm ace}$.

Equation 1.8 is the working equation for density for the sink-float method. Note that in the limit of Q going to zero, the density becomes that of acetone whereas as Q becomes large the equation predicts a density near that of diiodomethane. The range of observed glass densities is therefore, 0.78 g/cc < $\rho_{\text{glass}} < 3.32$ g/cc.

If the densities of the two fluids are well known then the sink-float method has the advantage of needing just the masses of the two fluids (easy to measure) to determine the density of a glass flake as small as a few tens of milligrams. Furthermore, the sample may be of an irregular shape. The method has the disadvantage of being limited to the range of the densities of the working fluids, as mentioned above.

In some cases the fluids may react with the samples. In such circumstances the sample density may be found by bracketing the glass densities with mixtures of closely varying densities.

1.1.2.4 Pycnometry Gas pycnometry is an experimental method that determines volume. It involves the use of the ideal gas law to convert pressure changes to volume determination.

In the following discussion, we assume the use of helium, the least reactive, most penetrating, and most ideal of all gases, although other gases may be used such as nitrogen. Two volumes, the reference volume and the sample volume are used as shown below in Figure 1.1.

Previous to using the device it is assumed that the reference and sample chamber volumes have been calibrated. Standard metal spheres are typically used for this step. The reference and sample volumes are denoted V_1 and V_2 as shown in Figure 1.1.

A sample of unknown volume, V_s , is inserted into the sample chamber (in the photograph of the instrument in Figure 1.2, this is done by opening the black screw top lid and inserting the sample in a sample cup). Initially V_1 is filled with He when valve 1 is opened and valve 2 is left closed. Pressure P_1 is measured. Valve 2 is opened and Pressure P_2 is observed. For fixed temperature and cancelling out a common atmospheric pressure term the ideal gas law becomes

$$P_1 V_1 = P_2 (V_1 + V_2 - V_s) \tag{1.9}$$

This equation can be rearranged to find the working equation for V_s .

$$V_{\rm s} = V_1 (1 - P_1 / P_2) + V_2 \tag{1.10}$$

Use of a high quality electronic balance to find the sample mass then completes the measurement for density.

Figure 1.1. Schematic of a pycnometer's operation.

Figure 1.2. A Quantachrome[®] manual pycnometer.

This method has several advantages.

- There is no bound on what the density of the sample is.
- After the initial purchase of the pycnometer and balance (both may sum to \$10,000 or more in 2015 dollars) it is inexpensive to perform measurements. A tank of helium may last years.
- Shape does not matter. Powders can be measured readily.
- It is easy to perform multiple volume determinations on the same sample and determine high precision statistical measures of accuracy.

There are some disadvantages as well.

- There is a fairly strong temperature dependence on the pressure leading to the need for good temperature control of the instrument.
- Outgassing of the sample can be an issue.
- Be wary of bubbles. The presence of bubbles will give an artificially low density result.
- Sample size is limited by the sample cell. Typically, it is difficult to measure accurately sample volumes below 0.5 cc or so.

1.1.2.5 The Gradient Density Column—the ASTM D1505 Method for Determining Density In this method a long tube is filled with a fluid whose density changes with height. If the temperature is controlled, this method may be accurate to within 0.05 %. Where accuracy of 0.05 % or better is desired, the gradient tube is made so that vertical distances of 1 mm represent density differences no greater than 0.0001 g/cm³. The sensitivity of the column is then 0.0001 g/cm³·mm. For further details, including instrumentation needed, the reader is referred to the American Society for Testing and Materials (ASTM) method which is found at http://www.astm.org/Standards/D1505.htm. Furthermore, there are additional ASTM methods for determining density such as ASTM D792-08 Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement.

1.1.3 Instrumentation Used for Determining Density

1.1.3.1 Direct Determination of Mass and Volume Instrumentation Needed: Digital micrometer, typically accurate to ± 0.00001 m or better, and a precision digital balance. A modern digital balance needs to be precise to ± 0.0001 g. This would result in density being determined to better than $\pm 0.1\%$. For example, Masao Kodama found [3] the density of well-characterized boron oxide glass from this method to be 1.839 ± 0.001 g/cm³.

1.1.3.2 Archimedes' Principle: Wet/Dry Weighing Instrumentation Needed: Precision digital balance designed to do both dry and wet massings, a suitable and high purity fluid such as mineral oil, distilled water, or reagent grade diiodomethane, a beaker to hold the fluid, and a small container with fine thread to hold the sample for weighing. It is difficult to determine density by this technique to better than 1%. To do better precise temperature control of the fluid and knowledge of the fluid density would be essential. The greater the fluid density, the greater will be the difference in the weighings and hence the more precise the density measurement.

1.1.3.3 Archimedes' Principle: Sink-Float Method Instrumentation Needed: Glass cylinder, perhaps 20 cc in capacity or less with a ground glass stopper; suitable, miscible fluids such as reagent grade acetone and diiodomethane; magnetic stirrers with an external stirring apparatus, a microburrette to dispense the denser fluid, and a quality balance. The density maybe readily found to an accuracy of 1%. Relative densities may be found to be better than 0.1%.

1.1.3.4 Pycnometry *Instrumentation Needed*: a pycnometer, a mass balance, a tank of gas, preferably helium, although nitrogen may be used as well. With temperature control or correction density may be found to 0.1% for a sample volume of 1 cc.

1.1.3.5 General Considerations There are several common considerations that make density difficult to determine absolutely. The sample preparation is one such limitation. For example, once again considering boron oxide, there is a variation in density of a few percent in going from a rapidly quenched sample to a well annealed

glass [4]. It is best to study samples with similar thermal histories. Relaxation may play a role as the density may slightly vary over time as the sample relieves stress. Also, some techniques exhibit a sample size consideration in terms of precision. This is true for pycnometry and the Archimedes' wet/dry dual weighing methods.

1.1.4 Analysis of Data, Extraction of Useful Information, and Other Ways to Express Density

While density is useful in its own right there are several different ways to present these data in useful forms. Three alternatives will be discussed including molar volume, volume per mole glass former, and packing fraction. This will be followed by a brief discussion of the extraction of atomic level volumes directly from the density.

1.1.4.1 Molar Volume The molar volume, V_M, is defined by

$$V_{\rm M} = {\rm Mass} \, {\rm of} \, {\rm a} \, {\rm mole} \, {\rm of} \, {\rm glass} / \rho$$
 (1.11)

For a borate glass of composition $RM_2O.B_2O_3$ the molar volume can be rewritten by

$$V_{\rm M} = {\rm Mass}({\rm RM}_2 {\rm O.B}_2 {\rm O}_3) / ((1 + {\rm R})\rho)$$
(1.12)

where the factor 1+R comes about because there are R moles of M_2O and one mole of B_2O_3 .

Molar volume may also be written in terms of molar fractions by

$$V_{\rm M} = {\rm Mass}({\rm XM}_2 {\rm O}.(1-{\rm X}){\rm B}_2 {\rm O}_3)/\rho$$
(1.13)

where X is the molar fraction of alkali oxide and 1-X is the molar fraction of B_2O_3 . The units of V_M are cm³/mol for densities expressed in g/cm³ and mass in g/mol. The practical benefit of molar volume is the elimination of mass from the density making structural comparisons easier to observe.

As an example, Figure 1.3 shows the molar volumes of the alkali and alkaline-earth borate glass systems as a function of R [5].

Note, for example, in Figure 1.3, that the same trend is observed for molar volumes in the lithium, sodium, magnesium, and calcium borate glasses systems. This presumably implies that in borate systems in which the modifying ion is smaller than oxygen, the molar volume trend is dominated by the boron oxide network.

1.1.4.2 Volume per Mole Glass Former The volume per mole glass former, $V_{mole \text{ former}}$, is defined by

$$V_{\text{mole former}} = \text{Mass of a mol of glass former}/\rho$$
 (1.14)

Figure 1.3. Molar volumes of the alkali and alkaline-earth borate glass system [5]. R is the molar ratio of metal oxide to boron oxide. The error is smaller than the symbols used.

For the alkali borate system the volume per mol boron oxide is

$$V_{\text{mole former}} = \text{Mass}(\text{RM}_2\text{O}.\text{B}_2\text{O}_3)/\rho$$
(1.15)

This may linearize the volume trend (see discussion below of lithium silicates).

A comparison of the volume per mole of glass former three binary glass systems is shown in Figure 1.4 [6]. There is clear evidence in the figure for coordination changes in the borates (3 to 4) and germanates (4 to 5 or 6) by the presence of the minima in the volume per mole of glass former as a function of modifier content. No minimum is seen for the silicates, see Figure 1.4.

1.1.4.3 Packing Fraction The packing fraction, pf, is a dimensionless measure of density and is determined by the ratio of the filled space in a glass to the total volume available

pf = Volume of all ions in a mole of glass/
$$V_{\rm M} = \sum N_{\rm A}(4/3) \pi r_i^3 / V_{\rm M}$$
 (1.16)

Here r_i is the ionic radius of the *i*th atom in the chemical formula for the glass and N_A is Avogadro's number. Ionic radii are typically determined by diffraction and Shannon provides a good source for such numerical information [7]; see Table 1.1.

Figure 1.4. Molar volumes per mole glass former in the lithium borate, lithium silicate, and lithium germanate glass systems [6]. R is the molar ratio of lithia to silica, germania, or bora.

Figure 1.5 depicts the packing fractions of the alkali and alkaline-earth borates [8]. The packing trends reveal much about the structure. The lithium and magnesium systems have very similar pf values presumably because these ions are much smaller than oxygen. The result is a common compositional trend for the filling of space by the borate network as the glass is modified.

1.1.4.4 Atomic Volumes from the Alkali and Alkaline-Earth Borate Glass Systems Figure 1.6 depicts the density of the alkali and alkaline-earth borates as function of R, the molar ratio of modifying oxide to boron oxide [5]. It is evident that all systems follow a rapid increase in density followed by either a decrease or a milder increase in the density. Further analysis of the density itself is possible through knowledge of the atomic arrangements. For example, it is possible to determine the volumes of the short-range structural groups through knowledge of the density and the nuclear magnetic resonance (NMR)-determined fractions of the short-range units by

$$\rho(\mathbf{R}) = \text{Mass of the glass structural groups} / \left(\sum (f_i V_i)\right)$$
(1.17)

where f_i and V_i are the fractions and volumes of the *i*th structural group. These structural volumes of the atomic-level units, relative to that of the three-coordinated borons in boron oxide glass are given for the alkali borates in Table 1.2. The structural units in this table are reported as Q^{ni} where the integer *n* refers to the boron coordination and *i* denotes the number of bridging oxygens per boron.

			•	•													
	Be	Mg	Ca	Sr	Ba	Li	Na	К	Rb	Cs	0	Si	ШB	IVB	^{IV} Ge	VIGe	Ъ
Coordination	4	9	7–8	8	6	4	9	8	6	10	2	4	3	4	4	9	4
Radius (Å)	0.41	0.86	1.23	1.4	1.61	0.73	1.16	1.65	1.77	1.95	1.21	0.4	0.15	0.25	0.53	0.67	0.31
Radial	0.1	0.06	0.05	0.05	0.05	0.05	0.03	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01
uncertainty (Å)																	
Volume ($Å^3$)	0.29	1.50	7.80	11.49	17.48	1.63	6.54	14.71	19.16	31.06	7.42	0.25	0.01	0.07	0.62	1.26	0.12
Volume uncer- tainty($Å^3$)	0.22	0.56	0.95	1.23	1.63	0.34	0.51	0.6	0.8	1	0.37	0.02	0.003	0.008	0.04	0.06	0.02
Fractional	0.76	0.37	0.12	0.107	0.09	0.21	0.08	0.04	0.04	0.03	0.05	0.08	0.3	0.11	0.06	0.05	0.17
volume																	
uncertainty																	

œ
[]
size
and
lination
coord
lon
1.1.
ЗLЕ
_

Figure 1.5. Packing fractions from a series of alkali and alkaline-earth borate glasses. R is the molar ratio of alkali oxide to boron oxide [8].

Figure 1.6. The density of alkali and alkaline-earth borates as a function of R, the molar ratio of modifying oxide to boron oxide [5]. The error is smaller than the symbols. See plate section for a color version of this figure.