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Foreword

With the rapid development of nano sciences, the structural properties of semi-
conductors can be arranged on an atomic scale. This has led to massive down
scaling of electronic integrated circuits, compact semiconductor light sources with
highest power densities, and tiny sensors that monitor various physical properties
in complex environments. This development will continue in the future, and with
ongoing progress in the synthesis of complex nanostructures, the inclusion of a
wider field of chemical elements and as result even more functionality and better
performance will be feasible.

At the heart of understanding the electronic, optical, or magnetic properties
in nanostructures is the dispersion relation for electrons and holes. It represents
a quantum mechanical property of the electron, namely the energy versus its
wave vector. The latter can also be viewed as momentum, using the de Broglie
relation. The dispersion relation contains a plethora of information, namely the
phase velocity (which in classical electromagnetics is related to the refractive
index), the group velocity, and the effective mass, only to name few. In free space,
solving Schrödinger’s equation for a single electron gives the well-known parabolic
dispersion relation. Now if the electron is located in a semiconductor crystal, it is
surrounded by a periodic arrangement of nuclei, a large number of core and valence
electrons. Inclusion of the respective potentials in the Hamiltonian leads to a large
coupled many-particle quantum mechanical problem, which, for nanostructures,
cannot be solved with current numerical or analytical methods.

It is due to three formidable approximations that we can study the physical
properties of nanostructures with the sophisticated mathematical and numerical
methods that are presented in this book. First, the core electrons of the fully occupied
orbitals can be lumped together with the nuclei, which leads to potentials of ionic
cores. This removes all the equations for the core electrons from the system. The
next simplification is called Born-Oppenheimer approximation: the ion cores are
much heavier than the remaining valence electrons. Therefore, they move much
slower and are basically stationary to the electrons. As a consequence, the electronic
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vi Foreword

properties can be calculated using fixed nuclei positions, and the nuclei dynamics
can be separated into an interaction Hamiltonian. At last, the so-called mean field
approximation treats all valence electrons (except the electron of interest) as average
background potential. That way, the electron–electron coupling can be treated by a
single uncoupled effective potential, and the remaining equation resembles a single
particle Schrödinger equation.

A fundamental property of this single particle equation for crystals is the
periodicity of the ionic core potentials, which leads directly to Bloch wave functions
as solutions, and a separation of the Hamiltonian into a part independent of the
wave vector and dependent on the wave vector, containing a k�p term (therefore
the name k�p is sometimes used for this equation). The presence of the periodic
potential introduces band gaps in the dispersion relation and a plethora of significant
deviations from the free-electron case. Time-dependent or stationary perturbation
theory can be applied to solve the k�p Schrödinger equation in an elegant fashion,
where the terms containing the wave vector are treated again as perturbation
in the Hamiltonian. Hence, the solution is more exact for small wave vector
magnitudes, depending on the order of perturbation included. In order to study
realistic nanostructures, many more perturbations need to be added to the single
particle Hamiltonian. These perturbations and the mathematics and numerics to
solve the resulting Schrödinger equation is the subject of this book. They include
the band-to-band coupling, spin–orbit interaction, the presence of hetero interfaces,
mechanical strain, and surfaces or carrier scattering and their statistics. This way,
the electronic dispersion relation (band structure) or even the carrier dynamics
of complex semiconductor nanostructures can be calculated with high numerical
efficiency. It gives us information such as the effective masses, the strength and
energies of optical transitions or the spin–orbit interaction, or the density of states
for charge carriers, which are of fundamental importance to understand electronic,
optical, or magnetic properties in nano devices.

The book starts with three chapters on the physical models, from a multi-
band description aiming at quantum transport properties of carriers within the
multi-band formalism, to a focus on state-of-the-art k�p models for quantum dots,
emphasizing symmetry considerations. The second part is devoted to numerical
methods for solving the k�p type equation framework, with one chapter on the
finite element method, and the second one on the plane wave expansion. In the third
part, applications of the k�p method are presented, demonstrating the capabilities
of the framework for describing challenging but nonetheless realistic situations
in band structure calculations. In the final chapter, advanced mathematical topics
are discussed, such as a time-dependent effective mass multi-band formalism
dealing with carrier dynamics, and the topic of transparent boundary conditions for
termination of the simulation domain.

The reader of this book will gain a detailed insight into the status of the
multi-band effective mass method for semiconductor nanostructures. Both users of
the k�p method and advanced researchers who want to advance the k�p method
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further will find helpful information to work with this method and use it as a tool to
characterize the physical properties of semiconductor nanostructures.

Kassel, Germany Bernd Witzigmann
June 2014





Preface

The operational principle of modern semiconductor nanostructures, such as quan-
tum wells, quantum wires, or quantum dots, relies on quantum mechanical effects.
The goal of numerical simulations using quantum mechanical models in the devel-
opment of semiconductor nanostructures is threefold: First, they are needed for a
deeper understanding of experimental data and of the operational principle. Second,
is to predict and optimize in advance qualitative and quantitative properties of new
devices in order to minimize the number of prototypes needed. Semiconductor
nanostructures are embedded as an active region in semiconductor devices. Finally,
the results of quantum mechanical simulations of semiconductor nanostructures can
be used by upscaling methods to deliver parameters needed in semi-classical models
for semiconductor devices such as quantum well lasers. This book covers in detail
all these three aspects using a variety of illustrating examples.

Multi-band effective mass approximations have been increasingly attracting
interest over the last decades, since it is an essential tool for effective models in
semiconductor materials. This book is concerned with several mathematical models
from the most relevant class of k�p-Schrödinger Systems. We will present both
mathematical models and state-of-the-art numerical methods to solve adequately
the arising systems of differential equations. The designated audience is graduate
and Ph.D. students of mathematical physics, theoretical physics and people working
in quantum mechanical research or semiconductor/opto-electronic industry who are
interested in new mathematical aspects.

The principal audience of this book is graduate and Ph.D. students of (mathe-
matical) physics, research lecturer of mathematical physics, and research people
working in semiconductor, opto-electronic industry for a professional reference.

Wuppertal, Germany Matthias Ehrhardt
Berlin, Germany Thomas Koprucki
June 2014
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Stanko Tomić and Nenad Vukmirović
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Chapter 1
Kinetic and Hydrodynamic Models
for Multi-Band Quantum Transport in Crystals

Luigi Barletti, Giovanni Frosali, and Omar Morandi

Abstract This chapter is devoted to the derivation of k�p multi-band quantum
transport models, in both the pure-state and mixed-state cases. The first part of
the chapter deals with pure-states. Transport models are derived from the crystal
periodic Hamiltonian by assuming that the lattice constant is small, so that an
effective multi-band Schrödinger equation can be written for the envelopes of the
wave functions of the charge carriers. Two principal approaches are presented
here: one is based on the Wannier-Slater envelope functions and the other on
the Luttinger-Kohn envelope functions. The concept of Wannier functions is then
generalized, in order to study the dynamics of carriers in crystals with varying
composition (heterostructures). Some of the most common approximations, like the
single band, mini-bands and semi-classical transport, are derived as a limit of multi-
band models. In the second part of the chapter, the mixed-state (i.e. statistical) case
is considered. In particular, the phase-space point of view, based on Wigner function,
is adopted, which provides a quasi-classical description of the quantum dynamics.
After a theoretical introduction to the Wigner-Weyl theory, a two-band phase-space
transport model is developed, as an example of application of the Wigner formalism
to the k�p framework. The third part of the chapter is devoted to quantum-fluid
models, which are formulated in terms of a finite number of macroscopic moments
of the Wigner function. For mixed-states, the maximum-entropy closure of the
moment equations is discussed in general terms. Then, details are given on the
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multi-band case, where “multi-band” is to be understood in the wider sense of
“multi-component wave function”, including therefore the case of particles with
spin or spin-like degrees of freedom. Three instances of such systems, namely
the two-band k�p model, the Rashba spin-orbit system and the graphene sheet, are
examined.

1.1 Introduction

The derivation of mathematical models for particle transport in semiconductor
devices of last generation cannot discard quantum effects. In particular, quantum
dynamics involving two or several energy bands of a semiconductor, forces to
consider “quantum multi-band models”, that are the subject of the present chapter.
As an example, particle transitions between the conduction and the valence band
states could in some case increase considerably the peak-to-valley ratio of the
resonant current through a double-barrier. Resonant interband tunneling diodes
(RITD) are examples of devices which exploit this phenomenon; they are of
paramount importance in nanotechnology for their applications to high-speed
miniaturized systems [101, 118].

Quantum multi-band models have largely been formulated and analyzed in the
recent past (see references throughout this chapter). Similarly to other models
for semiconductor devices, they can be divided in two main classes: pure-state
(non statistical) and mixed-state (statistical) models. The former are based on
wave functions, and, therefore, on Schrödinger equation, while the latter require
a density-operator framework which can be more conveniently formulated in
terms of the phase-space formalism provided by Wigner functions. Such a quasi-
classical description provides some advantages in terms of simplicity in the physical
interpretation and the availability of feasible method for the inclusion of irreversible
processes like thermalization or phase breaking mechanisms. Another category of
models is that of quantum-fluid models which, analogously to classical fluids, are
formulated in terms of a finite number of macroscopic moments of the Wigner
function. The equations of a quantum fluid, therefore, can be deduced from the
underlying phase-space description.

In this chapter, we describe the multi-band models that have recently been
formulated in both classes (statistical and non-statistical). Attention is given to
the definitions of the relevant quantities which characterize each model and to the
advantages and disadvantages of each model compared to others. The technical
details of the derivations of the various models, as well as the rigorous proofs of
consistency and existence of the solutions, are diverted directly to the papers where
the models have been described and that are cited in the chapter.

The chapter is organized as follows. In Sect. 1.2 we briefly recall the k�p
envelope-function theory. We first discuss the Wannier-Slater approach and, sec-
ondly, the Luttinger-Kohn approach. Since in many practical cases the dynamics of
carriers in crystals with varying composition (heterostructures) is of considerable
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interest, then a section is devoted to non-uniform materials, introducing the concept
of generalized Wannier functions. Since the microscopic simulation of the particle
transport in a fully quantum many-band context is extremely complex and usually
unfeasible, the last part of Sect. 1.2 is devoted to review a few theoretical works
where some of the most common approximations, like the single band, mini-
bands and semi-classical transport, are derived as a limit of a multi-band model.
In Sect. 1.3 we deal with the statistical kinetic models based on the Wigner-function
approach. The multi-band k�p models can be easily adapted to the Wigner-Weyl
framework, providing a quasi-classical description of the quantum motion which
offers some advantages in terms of simplicity in the physical interpretation. As an
example of the application of the Wigner formalism to the k�p framework, a two-
band model is considered. Section 1.4 is devoted to quantum fluid models. After
a short review of quantum hydrodynamics in the single-band/scalar case, we turn
to the multi-band case, indicating by this term a general framework where discrete
degrees of freedom are involved. Rather than developing a general theory (which is
probably beyond to come), we shall examine three instances, namely the two-band
k�p model, the Rashba spin-orbit system and the transport of electrons on a graphene
sheet.

1.2 Envelope k�p Models

The study of periodic crystalline solids leads naturally to a representation of the
electronic ground state in terms of Bloch waves. They are the Schrödinger wave
functions of particles with a given momentum that interact with the periodic
“frozen” ionic lattice. As an alternative, the particle motion can be represented in
terms of localized orbitals or Wannier functions. They are formally defined in terms
of a suitable unitary transformation applied to the Bloch orbital. In the simplest case
the link between the Bloch and the Wannier waves is the Fourier transform from the
reciprocal to the direct lattice space. The Wannier representation is a useful starting
point for various formal developments, such as the semiclassical theory of electron
dynamics or more generally, the envelope function methods [74].

Many different methods have been employed for the study of the electronic
structure and the optical properties of the semiconductors. In particular, the envelope
function, the tight-binding, the pseudo-potential, and the density functional methods
constitute the most common approaches. For the simplicity and ease of interpre-
tation, the envelope-function method is one of the most developed approach for
modeling the electrons motion in bulk semiconductor and in heterostructures. The
envelope-function approach is a quite general theory and applies both to periodic
and quasi-periodic materials. Various details concerning the physical composition of
the sample and the band structures can be easily included. Moreover, the envelope-
function method represents the theoretical basis of the common effective-mass
approximation [5]. It provides a detailed description of conduction and valence
subbands near the center of the Brillouin zone and it is widely used to calculate
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confined-state energies and subband structure of III–V and II–VI semiconductor
systems. A simple and rather complete description of the spectrum of a bulk
semiconductor around the band gap includes the conduction band and the three
highest valence bands, namely the heavy-hole, light-hole, and spin-split-off bands.
More complex semiconductors like strained-layer heterostructures, strained crystals
and indirect-gap material are characterized by a more structured valence band.
A variety of envelope models, from two to a total of eight bands are found in
literature. All the electronic properties of the materials enter in the model via few
macroscopic parameters (Luttinger-Kohn parameters) that are easily characterized
by direct measurement on the bulk crystals [13, 36].

One of the main interest in the study of multi-band models is the possibility to
reproduce the band-to-band tunneling. This phenomenon explains the transition of
a particle between two disconnected parts of the band diagram. In many situations,
the various branches of the energy spectrum of a semiconductor belong to spectral
regions which are separated by a certain energy gap (forbidden region). Particles
can travel from one band to one other (for example from the conduction to the
valence band) by two distinguished mechanisms: (1) overcoming the energy gap
by gaining or loosing energy; (2) tunneling the energy gap. The first mechanism is
an incoherent process that involves the interaction of the particle with some other
particle or dynamical field. The second mechanism takes place when a static field
(and in this case this phenomenon is known as Zener tunneling) or a (usually strong)
discontinuity in the ionic lattice is present. The particle transition from one band to
the other can be easily characterized from a mathematical point of view. Let �
represent the Schrödinger wave function of a particle in the solid. The conservation
of the total particle probability is expressed by the normalization of the L2 norm
k�.t/kL2 D 1 for each time t . The description of the particle motion, in terms of
a multi-band approach, requires the projection of the wave function in a suitable
orthonormal set of given functions �n;R

�.x; t/ D
X

n;R

fn.R; t/�n;R.x/ :

The index n is denoted band index and R are the vectors of the lattice sites. The new
unknowns of the problem fn.R; t/ are defined envelope functions. The conservation
of the total probability and the orthonormality of the �n;R imply that the sum over
n and R of the squared modulus of the envelope functions is constant in timeP

n kfnk2`2R D 1, where kfnk2`2R �
P

R jfn.R; t/j2. In general @
@t
kfnk`2R ¤ 0

holds true. Since kfnk2`2R is interpreted as the probability to find the particle in

the n-th band, the previous relation is the mathematical formulation of the band
transition process. In particular, the situation where there exists an index n such that
@
@t
kfnk`2R ' 0, is indicated by single band motion.
In the following sections we introduce some of the most common k�p models.
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1.2.1 Wannier-Slater Envelope Functions Approach

The motion of electrons in a semiconductor is governed by the effective one-electron
potential U.x/, generated by the crystal ions with the periodicity property

U.xC R/ D U.x/

for all vectors R of the Bravais lattice L of the crystal. The total single particle

Hamiltonian is H D p2

2m
C U.x/, where p D �i„r is the momentum operator

and p D jpj, m is the electron mass, and „ is the Planck’s constant over 2� . From
the Bloch’s theorem it is well-known that the one-electron Hamiltonian H has a
complete system of eigenfunctions jn;ki with eigenvalues En.k/ (that in the solid
state framework are usually defined energy bands)

H jn;ki D En.k/ jn;ki : (1.1)

In the position representation the Bloch functions can be written in the form

bn.x;k/ D eik�xun;k.x/ � hxjn;ki; (1.2)

where k is the quasimomentum (or crystal momentum) running over the first
Brillouin zone B . The first Brillouin zone is a special primitive cell in reciprocal
space L �, defined as all points k 2 R

3 which are closer to the � point than to any
other point of L �. The Bloch wave are completely characterized by their behavior
in a single Brillouin zone, in fact

un;k.xC R/ D un;k.x/ :

The Bloch functions are normalized as
Z

R3

bn.x;k/bn.x;k0/ dx D jBjınn0ı.k� k0/ ;

where jBj denotes the measure of the Brillouin zone. Hereafter, the delta function
with continuous variable denotes the Dirac’s distribution and with discrete suffix
denotes the Kronecker’s delta. The set of the Bloch functions provides a (general-
ized) basis of the L2 space. Any function � 2 L2 can be thus expanded as

�.x/ D
X

n

Z

B

'n.k/bn.x;k/ dk; (1.3)

where

'n.k/ D
Z

R3

bn.x;k/�.x/ dx ; (1.4)

with the bar denoting complex conjugation.
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Following [114], we define the Wannier-Slater envelope functions by the Fourier
transform of 'n.k/

fn.x/ D 1

.2�/3=2

Z

B

'n.k/ eix�k dk : (1.5)

If� represents the particle wave function in the crystal, the square modulus of fn.x/
is proportional to the probability to find the particle in the n-th energy band. We
remark that, by definition, the Fourier transform of the Wannier envelope functions
fn is compactly supported in the first Brillouin zone. Consequently, any spatial
oscillation with wave length smaller than the lattice constant cannot be present in
fn. For that reason, the envelope functions can be considered a class of intrinsically
smooth functions. On the contrary, the original function � and the Bloch functions
bn.x;k/may display high oscillations induced by the periodic ionic potential. When
projected on the Wannier-Slater basis, these high frequency oscillations are filtered
to high energy bands. One of the advantages of the envelope function theory is that
for many purposes, the knowledge of the full wave function is not longer necessary
and only few bands have to be considered. The relationship between the Wannier
envelope functions and the full wave function is given by

fn.x/ D
Z

R3

an.x0; x/�.x0/ dx0 ; (1.6)

where the Wannier functions an are defined by

an.x; x0/ D 1

.2�/3=2

Z

B

bn.x;k/e�ix
0�k dk : (1.7)

Conversely, the wave function in terms of the Wannier functions is given by

�.x/ D
X

n

1

jBj
Z

R3

an.x; x0/fn.x0/ dx0: (1.8)

In this section we discuss the derivation of the Wannier-Slater model, that essentially
consists in replacing as unknown of the problem the original wave function �
with the envelope functions defined in Eq. (1.5). According to (1.1), an ideal
homogeneous material is completely described by the Bloch functions. The utility
of the expansion given in (1.8) becomes evident when an external non periodic field
is added to the ionic potential. For the sake of simplicity, we consider the effect of
a purely electrostatic potential denoted by V . In particular, V may take in account
different effects, like the device energy-band offset for the heterojunctions, the bias
voltage applied across the device, the contribution from the doping impurities and
from the self-consistent field produced by the mobile electronic charge.

The dynamics of the Wannier envelope functions can be deduced from the
Schrödinger equation for � and Eq. (1.6). Following [1] (see also [14] for the details
of the derivation), we have



1 Kinetic and Hydrodynamic Models for Multi-Band Quantum Transport in Crystals 9

i„@fn
@t

.x; t/ D QEn .�ir/ fn.x; t/C
X

n0

Z

R3

V W
nn0.x; x0/fn0.x0; t/ dx0: (1.9)

Here,

V W
nn0.x; x0/ D 1

jBj
Z

R3

an.y; x/ V .y/ an.y; x0/ dy (1.10)

are matrix-elements of the external potential with respect to the Wannier functions
and QEn .�ir/ are pseudo-differential operators associated to the energy bands with
a cut-off outside the Brillouin zone, namely

QEn .�ir/ fn.x/ D 1

.2�/3

Z

B

En.k/ fn.x0/ eik�.x�x0/ dx0 dk:

The system (1.9) defines an infinite hierarchy of coupled equations. As stated before,
the envelope function fn represents the probability to find the electron in the n-th
band. This is equivalent to say that the fn envelope functions describe particles
whose energy is around the band edge En. For this reason it seems reasonable to
ignore the contribution of all the envelope functions of the remote bands En0 such
that jEn � En0j � 1. We remark that, despite this argument is roughly correct,
in some case the remote bands could influence significatively the particle motion
around the Fermi energy [63, 115].

1.2.1.1 Approximated Dynamics

In order to introduce some simple and quite general approximations it is convenient
to write the set of equations (1.9) in the Fourier transformed space. We obtain

i„@'n
@t
.k/ D En.k/'n.k/C

X

n0

Z

B

hn;kjV jn0;k0i'n.k0/ dk0 ; (1.11)

where we use the Dirac’s bracket notation in order to compact the notation. After
some algebra the previous system can be recast as (see [84] for more details)

i„@'n
@t
.k/ D En.k/'n.k/C

Z

B

QV .k � k0/'n.k0/ dk0 (1.12)

�i „
2

m0

X

n0¤n

Z

B

QV .k� k0/'n0.k0/
.2�/3

˝

Z

u�cell
un;k.x/

k� k0

4En;n0

� run0.k0; x/ dx dk0 ;

where QV denotes the Fourier transform of the potential V , ˝ is the volume of the
unitary cell (u-cell) and
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4En;n0.k;k0/ � En0.k0/� En.k/C „2
2m0

�
k02 � k2� :

This set of equations is still too complex for practical applications. Anyway, it is in
a form that can be easily simplified. The idea is to expand with respect to k the last
term of Eq. (1.12). In particular, at the leading order we get

� i
X

n0¤n

„2Pn;n0

m04En;n0

�
Z

B

�
k � k0

� QV .k� k0/'n0.k0/ dk0 ; (1.13)

where

Pn;n0 D .2�/3

˝

Z

u�cell
un;0.x/run0;0.x/ dx : (1.14)

After the k expansion is performed, the set of equations can be restored in terms of
the original variable fn by applying the inverse Fourier transform. We give here the
final result in the simplest case where only two bands (“conduction” and “valence”)
are taken into account and the parabolic band approximation (with positive curvature
for the conduction and negative for the valence band) is assumed

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

i„@fc
@t
D � „

2

2m�c
�fc C Vfc C Ecfc � „

2Pc;v � rV
m0Eg

fv

i„@fv
@t
D „2

2m�v
�fv C Vfv CEvfv � „

2Pc;v � rV
m0Eg

fc

: (1.15)

Herem�n is the effective mass in the n-band. These equations describe the intraband
dynamics and contain an interband coupling, proportional to the momentum matrix
element P, that is responsible for tunneling between different bands induced by the
applied electric field proportional to the gradient of V .

1.2.2 Luttinger-Kohn Envelope Functions

A different definition of envelope function was given by Luttinger and Kohn [70]
(see also [15, 30]). The crucial observation is that the set of the periodic functions
un;k.x/ is complete for each fixed value of the quasi-momentum k. For that reason,
all the previous expansion formulae are still valid if we substitute formally un;k.x/
with un;0.x/. More precisely, Eq. (1.8) becomes
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un;k W �.x/ D 1

jBj.2�/3=2
X

n

X

j

fn.Rj /

Z

B

un;k.x/e�i.x�Rj /�k dk

un;k ! un;0 W �.x/ D 1

jBj
X

n

X

j

fn.Rj /un;0.x/
Z

B

e�i.x�Rj /�k dk

�.Ri / D
X

n

X

j

ıi;j fn.Rj /un;0.Ri / D
X

n

fn.Ri /un;0.Ri /

where the Ri denote the atomic sites and we substituted the integral over the
space with a sum over the atomic sites (which gives the correct normalization).
Interpolation over all the space gives the expansion formula

�.x/ D
X

n

fn.x/un;0.x/ : (1.16)

This formula is the starting point of the Luttinger-Kohn (L-K) procedure. The
Schrödinger equation takes the form

i„@'n.k/
@t

D
X

n0

Z

B

H
kp

nn0 .k;k0/ 'n0.k0/ dk0 (1.17)

where, coherently with Eq. (1.5), 'n.k/ is the Fourier transform of the envelope
function fn.x/. The Hamiltonian matrix elements are

H
kp

nn0 .k;k0/D
��
EnC „

2k2

2m0

�
ınn0 C „

m0

k�Pnn0

�
ı.k�k0/C QV .k�k0/ınn0 :

(1.18)

In order to proceed, it is convenient to consider the quasi-unitary transformation�
that diagonalizes the Hamiltonian in the momentum space up to second order in k.
The new Hamiltonian reads

H LK D ��1H kp� ; (1.19)

the matrix elements of � are

hn;kj�jn0;k0ikp D
�
ınn0 � „

m0

Pnn0 �k
�Enn0

�
ı.k�k0/ ; (1.20)

where hxjn;kikp D un;0.x/eikx. Equation (1.19) defines a basis rotation. The
elements of the new basis correspond to an expansion of the un;k.x/ functions up
to the first order in k

hxjn;kiLK D eik�x
�

un;0.x/C k
@un;0.x/
@k

ˇ̌
ˇ̌
0

�
: (1.21)
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Applying the Fourier transform, we obtain the evolution equation for the Luttinger-
Kohn envelope function. As a final result, we report here the complete Luttinger-
Kohn four band model (we ignore the spin degeneracy) for direct band gap
semiconductors like GaAs. This model takes into account two light and two heavy
holes branches. The equation of motion takes the form of a Schrödinger equation
with effective Hamiltonian. The expansion given in (1.16) describes the projection
of the solution on the four degenerate Bloch wave functions at the center of the
Brillouin zone. The set of the four envelope functions can be arranged in a vector

F D .f3=2; f1=2; f�1=2; f�3=2/ ;

where the ˙3=2 and the ˙1=2 components describe the heavy and the light hole
band, respectively (see [20] for more details). The Hamiltonian of the system is

H LK D

0
BBBB@

P CQ �S R 0

�S� P �Q 0 R

R� 0 P �Q S

0 R� S� P CQ

1
CCCCA
; (1.22)

where the symbol � denotes the formal adjoint. The matrix elements are given in
terms of the Luttinger parameters �1, �2, �3 [35]

P D „
2

2m
�1� ;

Q D „
2

2m
�2

�
@2

@x2
C @2

@y2
� 2 @

2

@z2

�
;

R D „
2

2m

p
3

�
��2

�
@2

@x2
� @2

@y2

�
C 2i�3 @

@y

@

@x

�
;

S D „
2

m

p
3�3

�
@2

@x2
� i @

2

@y2

�
@

@z
:

1.2.3 Non Uniform Materials and Generalized Wannier
Functions

In the previous sections, the derivation of the k�p models have been focused
on the description of a uniform bulk material in the presence of some small
perturbation field. In many practical cases, the crystal translation symmetry is
broken (or considerably affected) by various factors like the presence of a strong
external electric or magnetic field, impurity, or, in graded mixed semiconductor and
graded heterojunctions, by the variation of chemical composition. An important
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theoretical effort was devoted to understand how the simple models based on
the effective mass equation should be modified in order to incorporate all the
aforementioned effects. The first attempts to describe the dynamics of carriers in
crystals with varying composition was based on the phenomenological assumptions
of a position-dependent energy gap and of a position-dependent effective mass. In
this approach, the particles move in a force field, the strength of which depends
on the band they occupy [68, 112]. Although this assumption could be considered
reasonable for systems that deviate slightly from the ideal case (like for example in
semiconductors with highly diluted impurities), serious problems arise when abrupt
junctions between two different materials are considered. In this case, a common
approximation consists in discarding the difference between the band edge Bloch
functions in the two different materials. The heterostructures are thus characterized
in terms of their bulk properties alone. Theoretical studies proved the foundation of
such an hypothesis for slowly varying perturbation and for some particular abrupt
junctions [48].

The ground properties of a non-uniform material and the study the interface
effects could be in principle deduced by a microscopic approach based for example
on the density functional theory. Anyway, the computational cost demanded for
the solution of such models is extremely high and the inclusion of dynamical
effects is still unfeasible. One of the main difficulties connected with the study
of the interfaces is to provide an accurate approximation of the Bloch functions
between the two media. A number of envelope-function models incorporating this
difference have been proposed in recent years, but most of these requires extensive
microscopic calculations. A widely used approach assumes a “symmetrized” form
of the contact Hamiltonian. Few examples of different solutions to the question are
given in [4, 30, 80, 85]. The description of position-dependent material properties
is most easily attached by using a localized basis in the direct space such as the
Wannier functions presented in the previous section. The Wannier functions play a
central role in qualitative as well as quantitative aspects of the one-electron theory
of solids. Differing from the elements of the Bloch basis, the Wannier functions are
not eigenfunctions of the Hamiltonian. They have the theoretical advantage that
in many cases they are exponentially localized around a given lattice cell. This
particularly useful property makes the Wannier functions an interesting object for
the description of a wide class of complex materials [59]. In particular, based on
the theory of ordinary differential equations, Kohn in 1959 showed a rigorous result
of exponential localization of the Wannier functions for a one-dimensional lattice
[64]. An important contribution toward the generalization to higher dimension was
given by Cloizeaux that proved the exponential localization in arbitrary dimension
for a single isolated Bloch band [37]. One of the difficulties for a possible extension
of this result that consider many bands relies on the lake of regularity around the
regions where the bands cross [91]. For more recent achievements for two and three
dimensions insulators see [31, 94]. Despite these theoretical results, it is anyway
quite difficult to construct such a maximally localized Wannier basis. Indeed, for
the application of the envelope function method to complex electronic devices,
other approaches are also considered in literature. As an example, in the following,
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we will discuss the Foreman approach to non-uniform lattices [49]. In this method,
the evolution equations for the envelope functions take the form of local, spatially
varying, k�p equations, with additional terms describing the explicit effects of the
interface or inhomogeneity. In order to describe a graded crystal, Foreman defined
the following quasi-periodic ionic potential

W .x/ D 1

˝.2�/d

X

i

W .x;Ri /

Z

B

ei.Ri�x/k dk : (1.23)

Here, the potential W.x;Ri / is periodic with respect the first variable, W.xCRj ;Ri /

D W.x;Ri / for all i , j and the Ri run on the atomic sites. The idea of this
representation is that the second variable of W labels the macroscopic position on
the crystal lattice while the first gives the fine resolution around each Wigner-Seitz
cell. The integral on the quasi-momentum in (1.23), can be viewed as a continuous
function approximating the Dirac’s delta in Rj (more precisely, it tends to a Dirac’s
delta when the first Brillouin zone extends to infinity). With this remark, it becomes
evident that the real potential W .x/ is nearly equal to the value of the periodic
potential W.x;Ri / with Ri equal to the coordinate of the cell containing x. By
using this definition it is possible to describe a large class of non-homogeneous
media (more details are given in [48]). In particular, in this approach the existence
of a common symmetry group of W.x;Ri / for all Ri and, consequently, a unique
first Brillouin are assumed.

The essential element of the Foreman approach is to obtain a localized-in-space
basis that extends the definition given by Luttinger and Kohn. The new basis
functions are defined as

	n.x;Rj / D un;0
�
x;Rj

� 1

.2�/d

Z

B

ei.Rj�x/k dk ; (1.24)

where, coherently with (1.16), the periodic function un;0 is the center-band periodic
part of the Bloch wave related to a “virtual” bulk lattice obtained by the periodical
rearrangement of the Rj Wigner-Seitz cells. More precisely, un;0.x;Rj / is obtained
by the eigenvalue equation

h
�„

2

2
�x CW .x;Ri /

i
un;0

�
x;Rj

� D Ej
n un;0

�
x;Rj

�
: (1.25)

It is possible to prove that the wave function  can be expanded in the extended
L-K basis as

 .x; t/ D
X

n;j

fn.Rj ; t/	n.x;Rj / : (1.26)

Since the aim of the use of the Foreman approach is to provide a theoretical basis
for the description of the particle motion in a graded semiconductor, here we


