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Preface

In this book, we review nonparametric Bayesian methods and models. The orga-
nization of the book follows a data analysis perspective. Rather than focusing on
specific models, chapters are organized by traditional data analysis problems. For
each problem, we introduce suitable nonparametric Bayesian models and show
how they are used to implement inference in the given data analysis problem. In
selecting specific nonparametric models, we favor simpler and traditional models
over specialized ones. The organization by inferential problem leads to some
repetition in the discussion of specific models when the same nonparametric prior
is used in different contexts.

Historically, Bayesian nonparametrics and indeed Bayesian statistics in general
remained largely theoretical except for very simple models. The “discovery” and
subsequent widespread use of Markov chain Monte Carlo and other Monte Carlo
methods in the 1990s has made Bayesian nonparametric models an attractive and
computationally viable possibility only in the last 20 years. Thus, a review of
Bayesian nonparametric data analysis would be incomplete without a discussion
of posterior simulation methods. We include pointers to available software, in
particular public domain R packages. R code for some of the examples is available
at a software page for the book at

https://www.ma.utexas.edu/users/pmueller/bnp/.
In the text, references to the software page are labeled as “Software note.”

Chapter 1 introduces the framework for nonparametric and semiparametric infer-
ence and discusses the distinction between Bayesian and classical nonparametric
inference. Chapters 2 and 3 start with a discussion of density estimation problems.
Density estimation is one of the simplest statistical inference problems, and has
traditionally been a popular application for nonparametric Bayesian methods. The
emphasis is on the Dirichlet process, Polya trees, and related models. Chapter 4
is about nonparametric regression, including nonparametric priors on residual
distributions, nonparametric mean functions, and fully nonparametric regression.
The latter is also known as density regression. Chapter 5 introduces methods for
categorical data, including contingency tables for multivariate categorical data and
methods specifically for ordinal data. Chapter 6 discusses applications to survival


https://www.ma.utexas.edu/users/pmueller/bnp/
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Levy proc
SSM (=CRM=ind.incr)
/ \ normalize
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Fig. 1 Overview of some popular Bayesian nonparametric models for random probability mea-
sures. An arrow from model M1 to model M2 indicates that M2 is a special case of M1. For
the case of NRMI and NTR, the arrow indicates that the descendant model is defined through a
transformation of the CRM. Notice the central role of the Dirichlet process (DP) model

analysis. Probability models for a hazard function and random probability models
for event times are a traditional use of nonparametric Bayesian methods. Perhaps
this is the case because for event times it is natural to focus on details of
the unknown distribution, beyond just the mean. Chapter7 considers the use of
random probability models in hierarchical models. Nonparametric priors for random
effects distributions are some of the most successful and widespread applications
of nonparametric Bayesian inference. In Chap. 8, we discuss models for random
clustering and for feature allocation problems. Finally, in Chap.9, we conclude
with a brief discussion of some more problems. In the Appendix, we include a brief
introduction to DPpackage, a public domain R package that implements inference
for many of the models that are discussed in this book.

Figure 1 gives an idea of how popular nonparametric Bayesian models relate
to each other. The Dirichlet process (DP), Polya tree (PT), Pitman Yor process
(PY), normalized random measures (NRMI), and stick-breaking priors are discussed
as priors for random probability measures in Chaps.2 and 3. The dependent DP
(DDP) is used to define a fully nonparametric regression model in Chap. 4, and
then also features again in Chap. 6 for survival regression, and again in Chap. 7 to
define a prior for a family of dependent random probability measures. Neutral to
the right (NTR) processes come up in Chap. 6. The product partition model (PPM)
and Gibbs-type priors are introduced as priors for random partitions, that is, cluster
arrangement, in Chap. 8. The Indian buffet process (IBP) is introduced as a feature
allocation model, also in Chap. 8.

The selection and focus is necessarily tainted by subjective choices and pref-
erences. Finally, we recognize that the outlined classification of data analysis
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problems is arbitrary. Meaningful alternative organizations could have focused on
the probability models, or on application areas.

Austin, TX, USA Peter Miiller
Santiago, Chile Fernando Andrés Quintana
Santiago, Chile Alejandro Jara

Columbia, SC, USA Tim Hanson






Acronyms

We use the following acronyms. When applicable we list a corresponding section
number in parentheses. We omit acronyms that are only used within specific

examples.

AH
AFT
ANOVA DDP
BART
BNP
CALGB
CART
c.d.f.
CI
CPO
CRM
CSDP
DDP
DPy
DPM
DPT
DP
FFNN
FPT
GLM
GLMM
GP
HDPM
IBP
LDTFP
LPML
MAD

Accelerated hazards (Sect. 6.2.4)

Accelerated failure time (Sect. 6.2.2)

DDP with AN(C)OVA model on {my,, x € X} (Sect.4.4.2)
Bayesian additive regression trees (Sect. 4.3.4)
Bayesian nonparametric (model, inference)
Cancer and Leukemia Group B

Classification and regression tree (Sect.4.3.4)
Cumulative distribution function

Credible interval

Conditional predictive ordinate (Chap. 9)
Completely random measure (Sect. 3.5.2)
Centrally standardized Dirichlet process (Sect. 5.2.1)
Dependent Dirichlet process (Sect. 4.4.1)

Finite Dirichlet process (Sect. 2.4.6)

Dirichlet process mixture (Sect. 2.2)

Dependent Polya tree (Sect. 4.4.3)

Dirichlet process (Sect.2.1)

Feed-forward neural network (Sect.4.3.1)

Finite Polya tree (Sect. 3.2.2)

Generalized linear model (Sect.5.2.)

Generalized linear mixed model (Sect. 5.2.2)
Gaussian process (Sect. 4.3.3)

Hierarchical Dirichlet process mixture (Sect. 7.3.1)
Indian buffet process (Sect. 8.5.2)

Linear dependent tail-free process (Sect. 4.4.3)
Log pseudo marginal likelihood (Chap. 9)
MAP-based asymptotic derivation
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MAP Maximum a posterior estimate

MCMC Markov chain Monte Carlo (posterior simulation)

m.l.e. Maximum likelihood estimator

MPT Mixture of Polya tree (Sect.3.2.1)

NRMI Normalized random measure with independent increments (Sect.
35.2)

NTR Neutral to the right (Sect. 6.1.1)

p.d.f. Probability density function

PD Pharmacodynamics (Sect. 7.2)

PH Proportional hazards (Sect. 6.2.1)

PK Pharmacokinetics (Sect. 7.2)

PO Proportional odds (Sect. 6.2.3)

PPM Product partition model (Sect. 8.3)

PPMx Product partition model with regression on covariates (Sect. 8.4.1)

PT Polya tree (Sect.3.1)

PY Pitman-Yor process (Sect.2.5.2)

SSM Species sampling model (Sect. 2.5.2)

TF Tail free (Sect.2.5.1)

WBC White blood cell counts

WDDP Weight dependent Dirichlet process (Sect. 4.4.4).

We use the following notational conventions. Probability measures: We use p(-)
to generically indicate probability measures. The use of the arguments in p(-) or
the context clarifies which probability measure is meant. Only when needed we use
subindices, such as px(-), or introduce specific names, such as g(-). We use 7 (+)
to indicate (upper level) prior probability models, usually BNP priors on a random
probability measure, for example, 77 (G) for a random probability measure G. When
the use is clear from the context, we use p(-), etc. to also refer to the p.d.f, and
introduce separate notation only when we wish to highlight something. We use fy (-)
forkernels and f(-) = [ fy(-) dG(8) for a mixture. We use notation like Be(e | a, b)
to indicate that the random variable € follows a Be(a, b) distribution. Variables: We
use y; for observed outcomes, x; for known covariates, boldface (y) for vectors, and
uppercase symbols (A), or boldface uppercase (C) when needed for distinction or
emphasis, for matrices. Clusters: Many models include a notion of clusters. We use
* to mark quantities that are cluster-specific, such as yj*, Hj*, etc.
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Chapter 1
Introduction

Abstract We introduce the setup of nonparametric and semiparametric Bayesian
models and inference.

Statistical problems are described using probability models. That is, data are
envisioned as realizations of a collection of random variables yi, ..., y,, where y;
itself could be a vector of random variables corresponding to data that are collected
on the i-th experimental unit in a sample of n units from some population of
interest. A common assumption is that the y; are drawn independently from some
underlying probability distribution G. The statistical problem begins when there
exists uncertainty about G. Let g denote the probability density function (p.d.f.) of
G. A statistical model arises when g is known to be a member gy from a family
G = {go : 0 € O}, labeled by a set of parameters 6 from an index set ©.

Models that are described through a vector 6 of a finite number of, typically,
real values are referred to as finite-dimensional or parametric models. Parametric
models can be described as G = {gg : 0 € @ C RP}. The aim of the analysis
is then to use the observed sample to report a plausible value for 8, or at least to
determine a subset of @ which plausibly contains 6. In many situations, however,
constraining inference to a specific parametric form may limit the scope and type of
inferences that can be drawn from such models. Therefore, we would like to relax
parametric assumptions to allow greater modeling flexibility and robustness against
mis-specification of a parametric statistical model. In these cases, we may want to
consider models where the class of densities is so large that it can no longer be
indexed by a finite dimensional parameter #, and we therefore require parameters 6
in an infinite dimensional space.

Example 1 (Density Estimation) Consider a simple random sample y; | G S G,i=
1,...,n, from some unknown distribution G. One could now proceed by restricting
G to a normal location family, say G = {N(6,1) : 6 € R}. Figure 1.1a shows the
resulting inference conditional on an assumed random sample yy, .. ., y,. Naturally,
inference about the unknown G is restricted to the assumed normal location family
and does not allow for multi-modality or skewness. In contrast, a nonparametric
model would proceed with a prior probability model 7 for the unknown distribution
G. For example, later we will introduce the Dirichlet process mixture prior for G.

© Springer International Publishing Switzerland 2015 1
P. Mueller et al., Bayesian Nonparametric Data Analysis, Springer Series
in Statistics, DOI 10.1007/978-3-319-18968-0_1
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Fig. 1.1 Example 1. Inference on the unknown distribution G under a parametric model (panel
a) and nonparametric model (panel b). The histogram of the observed data is also displayed. The
dotted lines in panel (b) correspond to posterior draws

Figure 1.1b contrasts the parametric inference with the flexible BNP inference under
a Dirichlet process mixture prior.

In Example 1 the unknown, infinite dimensional, parameter is the distribution
G itself. Another example of an infinite-dimensional parameter space is the
space of continuous functions defined on the real line, S = {m(z) : z €
R, m(-) is a continuous function}. This could arise, for example, in a regression
model with unknown mean function m(z). Models with infinite-dimensional param-
eters are referred to as nonparametric models (Ghosh and Ramamoorthi 2003;
Tsiatis 2006). In some other cases, it is useful to write the infinite-dimensional
parameter 6 as (6,,6,), where 6, is a g-dimensional parameter and 6, is an
infinite-dimensional parameter. These models are referred to as semiparametric
models because both a parametric component #; and a nonparametric component
0, describe the model (see e.g., Tsiatis 2006). As an example of a semiparametric
model, consider the proportional hazards model that is commonly used in modeling
a survival time T as a function of a vector of covariates z. The model was first
introduced by Cox (1972). Let

. <T<t+h|T>tz
M 12) = Jim 32 - | ) (1.1)
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denote the conditional hazard rate, conditional on some covariates z. The propor-
tional hazards model assumes

At | z) = Ao(1) exp(@'B). (1.2)

where A¢(-) is the underlying or baseline hazard function and 8 is a g-dimensional
vector of regression coefficients. In the classical semiparametric version of the
model, the underlying hazard function is left unspecified. Since this function can
be any positive function in ¢, subject to some regularity conditions, it is an infinite-
dimensional parameter. The parameters § = (f8, A1¢) completely characterize the
data generating mechanism. In fact, the density fr of the survival time T is related
to the hazard function through

fr(t2) = Ao(?) exp(z'B) eXp{—eXp(Z’ﬂ) /0 ko(u)du} :

The parameters of interest can be written as #; = f and 6, = A(, where § =
(01,60,) € ® = R? x S and S is the infinite-dimensional space of all nonnegative
functions on R™ with infinite integral over [0, c0).

Example 2 (Oral Cancer) We use a dataset from Klein and Moeschberger (2003,
Sect. 1.11). The data report survival times for 80 patients with cancers of the mouth.
Samples are recorded as aneuploid (abnormal number of chromosomes) versus
diploid (two copies of each chromosome) tumors. We define z; € {0, 1} as an
indicator for aneuploid tumors and carry out inference under model (1.2) with a
BNP prior on Ay. Figure 1.2 shows the estimated hazard curves under z = 0 and

o o
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Fig. 1.2 Example 2. Hazard curves for aneuploid and diploid groups under the proportional hazard
model with point-wise 50 % Cls
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z = 1. The prior on log{A(-)} is a penalized B-spline, fit through the R package
R2BayesX.

To proceed with Bayesian inference in a nonparametric model we need to
complete the probability model with a prior on the infinite-dimensional parameter.
Such priors are known as Bayesian nonparametric (BNP) priors. We take this as a
definition of BNP models. That is, we define BNP priors as probability models for
infinite-dimensional parameters and refer to the entire inference model as a BNP
model. This highlights the similarities and distinctions of Bayesian versus classical
nonparametric inference. Under both BNP and classical nonparametric approaches
an infinite-dimensional parameter characterizes the family of sampling probability
models. The major difference between Bayesian and classical nonparametrics is that
Bayesian inference completes the model with a prior on the infinite-dimensional
parameter (random probability measure, regression function, etc.). As a result,
inference includes a full probabilistic description of all relevant uncertainties.
Classical nonparametrics, on the other hand, treats infinite-dimensional parameters
as nuisance parameters and derives procedures where they are left unspecified to
make inferences on finite-dimensional parameters of interest.

Infinite-dimensional parameters of interest are usually functions. Functions of
common interest include probability distributions, or conditional trends, e.g. mean
or median regression functions. Consideration of probability distributions requires
the definition of probability measures on a collection of distribution functions. Such
probability measures are generically referred to as random probability measures.

While our main focus is on data analysis and how to build models in some
important special cases, it is important to know that there is a solid body of theory
supporting the use of nonparametric models. In the upcoming discussion we will
briefly state some of the important results and the particular effect they have on
models. But we stop short of an exhaustive list of BNP prior models. An excellent
recent review of a large number of BNP models appears in Phadia (2013). See
also Figure 1.1 in Phadia (2013), which is an interesting variation of Fig. 1 in the
preface of the current text. Other recent discussions of BNP priors include Hjort
et al. (2010), including an excellent and concise review of BNP models beyond the
Dirichlet process in Lijoi and Priinster (2010), Hjort (2003), Miiller and Rodriguez
(2013), Miiller and Quintana (2004), Walker et al. (1999), and Walker (2013).
Gelman et al. (2014, Part V) includes a discussion of nonparametric Bayesian data
analysis. A mathematically rigorous discussion, with an emphasis on asymptotic
properties can be found in the forthcoming book by Ghoshal and van der Vaart
(2015).

In this text we will not prove any new results and therefore never need to
refer to measure theoretic niceties. We refer interested readers to Phadia (2013),
who discusses all the same models that also feature in this text. See also Ghosh
and Ramamoorthi (2003), Ghoshal (2010), and Ghoshal and van der Vaart (2015)
for a mathematically more rigorous discussion. Briefly summarized, assume an
underlying probability space (€2, .4, i) and let S be a complete and separable metric
space equipped with the Borel o-algebra 3. Denote by M(S) the space of probability
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measures on S endowed with the topology of weak convergence which makes it a
complete and separable space. Most BNP priors that we introduce in the following
discussion are distributions over M(S) or, in other terms, laws of random probability
measures i.e. random elements defined on 2 and taking values in M(S).
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Chapter 2
Density Estimation: DP Models

Abstract We discuss the use of nonparametric Bayesian models in density estima-
tion, arguably one of the most basic statistical inference problems. In this chapter
we introduce the Dirichlet process prior and variations of it that are the by far most
commonly used nonparametric Bayesian models used in this context. Variations
include the Dirichlet process mixture and the finite Dirichlet process. One critical
reason for the extensive use of these models is the availability of computation
efficient methods for posterior simulation. We discuss several such methods.

Density estimation is concerned with inference about an unknown distribution G on
the basis of an observed i.i.d. sample,

|GG, i=1,....n @2.1)

If we wish to proceed with Bayesian inference, we need to complete the model with
a prior probability model & for the unknown parameter G. Assuming a prior model
on G requires the specification of a probability model for an infinite-dimensional
parameter, that is, a BNP prior.

2.1 Dirichlet Process

2.1.1 Definition

One of the most popular BNP models is the Dirichlet process (DP) prior. The DP
model was introduced by Ferguson (1973) as a prior on the space of probability
measures.

Definition 1 (Dirichlet Process—DP) Let M > 0 and Gy be a probability measure
defined on S. A DP with parameters (M, Gy) is a random probability measure G
defined on S which assigns probability G(B) to every (measurable) set B such that
for each (measurable) finite partition {By, ..., By} of S, the joint distribution of the

© Springer International Publishing Switzerland 2015 7
P. Mueller et al., Bayesian Nonparametric Data Analysis, Springer Series
in Statistics, DOI 10.1007/978-3-319-18968-0_2



