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Preface

Bilevel optimization is a vital field of active research. Depending on its formulation
it is part of nonsmooth or nondifferentiable optimization, conic programming,
optimization with constraints formulated as generalized equations, or set-valued
optimization. The investigation of many practical problems as decision making in
hierarchical structures, or situations where the reaction of nature on selected actions
needs to be respected, initiated modeling them as bilevel optimization problems. In
this way, new theories have been developed with new results obtained.

A first attempt was the use of the Karush-Kuhn-Tucker conditions in situations
when they are necessary and sufficient optimality conditions for the lower level
problem, or dual problems in case strong duality holds to model the bilevel opti-
mization problem. The result is a special case of the mathematical program with
equilibrium constraints (MPEC), or complementarity constraints (MPCC). The
latter has motivated the investigation of optimality conditions and the development
of algorithms solving such problems. Unfortunately, it has been shown very
recently that stationary points of an MPEC need not be related to stationary solu-
tions of the bilevel optimization problem. Because of that, the solution algorithms
must select the Lagrange multipliers associated with the lower level problem very
carefully. Another option is to avoid the explicit use of Lagrange multipliers
resulting in the so-called primal KKT transformation, which is an optimization
problem with a generalized equation as the constraint. Violation of the constraint
qualifications, often used to verify the optimality conditions and convergence of the
solution algorithms, at every feasible point are other challenges for research.

The idea of using the optimal value function of the lower level problem to model
the bilevel optimization problem is perhaps self-explanatory. The result yet is a
nondifferentiable equality constraint. One promising approach here is based on
variational analysis, which is also exploited to verify the optimality conditions for
the MPCC. So, bilevel optimization initiated some advances in variational analysis,
too.

Applications often force the use of integer variables in the respective models.
Besides suitable formulations, mixed-integer bilevel optimization problems renew
the question of existence of an optimal solution, leading to the notion of a weak

v



solution. Surprisingly, adding some constraints that are inactive at a global opti-
mum of the continuous bilevel problem, as well as replacing a discrete bilevel
problem with its continuous relaxation can destroy the global optimality of a fea-
sible point.

These and other questions are the topic of the first part of the monograph. In the
second part, certain applications are carefully investigated, especially a natural gas
cash-out problem, an equilibrium problem in a mixed oligopoly, and a toll
assignment problem. For these problems, besides the formulation of solution
algorithms, results of the first numerical experiments with them are also reported.

Bilevel optimization is a quickly developing field of research with challenging
and promising contributions from different topics of mathematics like optimization,
as well as from other sciences like economics, engineering, or chemistry. It was not
a possible aim of the authors to provide an overview of all the results available in
this area. Rather than that, we intended to show some interactions with other topics
of research, and to formulate our opinion about some directions for explorations in
the future.

Stephan Dempe
Vyacheslav Kalashnikov
Gerardo A. Pérez-Valdés
Nataliya Kalashnykova
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Chapter 1
Introduction

1.1 The Bilevel Optimization Problem

Since its first formulation by Stackelberg in his monograph on market economy in
1934 [294] and the first mathematical model by Bracken and McGill in 1972 [27]
there has been a steady growth in investigations and applications of bilevel optimiza-
tion. Formulated as a hierarchical game (the Stackelberg game), two decision makers
act in this problem. The so-called leader minimizes his objective function subject to
conditions composed (in part) by optimal decisions of the so-called follower. The
selection of the leader influences the feasible set and the objective function of the
follower’s problem, who’s reaction has strong impact on the leader’s payoff (and fea-
sibility of the leader’s initial selection). Neither player can dominate the other one
completely. The bilevel optimization problem is the leader’s problem, formulated
mathematically using the graph of the solution set of the follower’s problem.

The bilevel optimization has been shown to be N P-hard, even verification of
local optimality for a feasible solution is in general N P-hard, often used constraint
qualifications are violated in every feasible point. This makes the computation of an
optimal solution a challenging task.

Bilevel optimization problems are nonconvex optimization problems, tools of
variational analysis have successfully been used to investigate them. The results are
a larger number of necessary optimality conditions, some of them are presented in
Chap. 3 of this monograph.

A first approach to investigate bilevel optimization problems is to replace the
lower level problem by its (under certain assumptions necessary and sufficient) opti-
mality conditions, the Karush-Kuhn-Tucker conditions. This replaces the bilevel
optimization problem by a so-called mathematical program with complementarity
conditions (MPCC). MPCCs are nonconvex optimization problems, too. Algorithms
solving them compute local optimal solutions or stationary points. Recently it has
been shown that local optimal solutions of an MPCC need not to be related to local
optimal solutions of the corresponding bilevel optimization problem, new attempts
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2 1 Introduction

for the development of solution approaches for the bilevel problem are necessary.
Some results can be found in different chapters of this monograph.

The existence of an optimal solution, verification of necessary optimality con-
ditions, and convergence of solution algorithms are strongly related to continuity
of certain set-valued mappings. These properties can often not be guaranteed for
mixed-discrete bilevel optimization problems. This is perhaps one reason for the
small number of references on those class of problems. But, applied problems do
often lead to mixed-integer bilevel problems. One such problem is investigated in
Chap. 6. Focus on mixed-discrete bilevel optimization including the notion of a weak
optimal solution and some ideas for solving these problems is in Chap. 5.

The solution set of an optimization problem does in general not reduce to a
singleton, leading to the task of selecting a “good” optimal solution. If the quality
of an optimal solution is measured by a certain function, this function needs to be
minimized on the solution set of a second optimization problem. This is the so-called
simple bilevel optimization problem, investigated in Chap. 4.

Interest in bilevel optimization is largely driven by applications. Two of them
are investigated in details in Chaps. 6 and 7. The gas cash-out problem is a bilevel
optimization problem with one Boolean variable, formulated using nondifferentiable
functions. Applying results of the previous chapters, after some transformations and
the formulation of an approximate problem, a model is obtained which can efficiently
be solved. The obtained solutions have successfully be used in practice.

Due to its complexity, the dimension of bilevel optimization models is of primar-
ily importance for solving them. Large-scale problems can perhaps not be solved in
reasonable time. But, e.g. the investigation of stochastic bilevel optimization prob-
lems using methods to approximate the probability distributions leads to large-scale
problems and not all data are deterministic ones on many applications. This makes
ideas to reduce the number of variables important. Such ideas are the topic of Chap. 8.

1.2 Possible Transformations into a One-Level Problem

Bilevel optimization problems are optimization problems where the feasible set is
determined (in part) using the graph of the solution set mapping of a second para-
metric optimization problem. This problem is given as

min
y

{ f (x, y) : g(x, y) ≤ 0, y ∈ T }, (1.1)

where f : Rn × R
m → R, g : Rn × R

m → R
p, T ⊆ R

m is a (closed) set.
Let Y : Rn ⇒ R

m denote the feasible set mapping:

Y (x) := {y : g(x, y) ≤ 0},

ϕ(x) := min
y

{ f (x, y) : g(x, y) ≤ 0, y ∈ T }

http://dx.doi.org/10.1007/978-3-662-45827-3_6
http://dx.doi.org/10.1007/978-3-662-45827-3_5
http://dx.doi.org/10.1007/978-3-662-45827-3_4
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1.2 Possible Transformations into a One-Level Problem 3

the optimal value function, and Ψ : R
n ⇒ R

m the solution set mapping of the
problem (1.1) for a fixed value of x :

Ψ (x) := {y ∈ Y (x) ∩ T : f (x, y) ≤ ϕ(x)} .

Let
gph Ψ := {

(x, y) ∈ R
n × R

m : y ∈ Ψ (x)
}

be the graph of the mapping Ψ . Then, the bilevel optimization problem is given as

“min
x

”{F(x, y) : G(x) ≤ 0, (x, y) ∈ gph Ψ, x ∈ X}, (1.2)

where F : Rn × R
m → R, G : Rn → R

q , X ⊆ R
n is a closed set.

Problem (1.1), (1.2) can be interpreted as an hierarchical game of two decision
makers (or players) which make their decisions according to an hierarchical order.
The first player (which is called the leader) makes his selection first and communi-
cates it to the second player (the so-called follower). Then, knowing the choice of the
leader, the follower selects his response as an optimal solution of problem (1.1) and
gives this back to the leader. Thus, the leader’s task is to determine a best decision,
i.e. a point x̂ which is feasible for the problem (1.2): G (̂x) ≤ 0, x̂ ∈ X , minimizing
together with the response ŷ ∈ Ψ (̂x) the function F(x, y). Therefore, problem (1.1)
is called the follower’s problem and (1.2) the leader’s problem. Problem (1.2) is the
bilevel optimization problem.

Example 1.1 In case of a linear bilevel optimization problem with only one upper and
one lower level variables, where all functions F, f, gi are (affine) linear functions,
the bilevel optimization problem is illustrated in Fig. 1.1. Here, G(x) ≡ 0 and the set
{(x, y) : g(x, y) ≤ 0} of feasible points for all values of x is the hatched area. If x is
fixed to x0 the feasible set of the lower level problem (1.1) is the set of points (x0, y)

above x0. Now, if the lower level objective function f (x, y) = −y is minimized on
this set, the optimal solution of the lower level problem on the thick line is obtained.
Then, if x is moved along the x-axis, the thick line as the set of feasible solutions
of the upper level problem arises. In other words, the thick line equals the gph Ψ

of the solution set mapping of the lower level problem. This is the feasible set of
the upper level (or bilevel) optimization problem. Then, minimizing the upper level
objective function on this set, the (in this case unique) optimal solution of the bilevel
optimization problem is obtained as indicated in Fig. 1.1. �

It can be seen in Fig. 1.1 that the bilevel optimization problem is a nonconvex
(since gph Ψ is nonconvex) optimization problem. Hence, local optimal solutions
and also stationary points can appear.

Example 1.2 Consider the problem

“min
x

”{x2 + y : y ∈ Ψ (x)},
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feasible points

xx0

feasible points lower level for fixed parameter

optimal solution lower level

feasible set bilevel problem

lower level objective function
upper level objective function

optimal solution bilevel problem

Fig. 1.1 Illustration of the linear bilevel optimization problem

x

y

0

1

optimal solution lower 
level problem

x

objective function value 
F(x,y(x))upper level

Fig. 1.2 Mapping to be “minimized” in Example 1.2

where
Ψ (x) := Argmin

y
{−xy : 0 ≤ y ≤ 1}.

Then, the graph of the mapping Ψ is given in the figure on the left hand side of Fig. 1.2
and the graph of the mapping x �→ F(x, Ψ (x)) of the upper level objective function
is plotted in the figure on the right-hand side. Note, that this is not a function and
that its minimum is unclear since its existence depends on the response y ∈ Ψ (x)

of the follower on the leader’s selection at x = 0. If the solution y = 0 is taken
for x = 0, an optimal solution of the bilevel optimization problem exists. This
is the optimistic bilevel optimization problem introduced below. In all other cases,
the minimum does not exist, the infimum function value of the upper level objective
function is again zero but it is not attained. If y = 1 is taken, the so-called pessimistic
bilevel optimization problem arises. �

Hence, strictly speaking, the problem (1.2) is not well-posed in the case that the
set Ψ (x) is not a a singleton for some x , the mapping x �→ F(x, y(x)) is not a
function. This is implied by an ambiguity in the computation of the upper level
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objective function value, which is rather an element in the set {F(x, y) : y ∈ Ψ (x)}.
We have used quotation marks in (1.2) to indicate this ambiguity. To overcome such
an unpleasant situation, the leader has a number of possibilities:

1. The leader can assume that the follower is willing (and able) to cooperate. In this
case, the leader can take that solution within the set Ψ (x) which is a best one with
respect to the upper level objective function. This leads then to the function

ϕo(x) := min{F(x, y) : y ∈ Ψ (x)} (1.3)

to be minimized on the set {x : G(x) ≤ 0, x ∈ X}. This is the optimistic
approach leading to the optimistic bilevel optimization problem. The function
ϕo(x) is called optimistic solution function. Roughly speaking, this problem is
closely related to the problem

min
x,y

{F(x, y) : G(x) ≤ 0, (x, y) ∈ gph Ψ, x ∈ X}. (1.4)

If the point x is a local minimum of the function ϕo(·) on the set

{x : G(x) ≤ 0, x ∈ X}

and y ∈ Ψ (x), then the point (x, y) is also a local minimum of problem (1.4). The
opposite implication is in general not correct, as the following example shows:

Example 1.3 Consider the problem of minimizing the function F(x, y) = x
subject to x ∈ [−1, 1] and y ∈ Ψ (x) := Argmin

y
{xy : y ∈ [0, 1]}. Then,

y(x) ∈
⎧
⎨

⎩

[0, 1] for x = 0,

{1} for x < 0,

{0} for x > 0.

Hence, the point (x, y) = (0, 0) is a local minimum of the problem

min
x,y

{x : x ∈ [−1, 1], y ∈ Ψ (x)}

since, for each feasible point (x, y) with ‖(x, y) − (x, y)‖ ≤ 0.5 we have
x ≥ 0. But, the point x does not minimize the function ϕo(x) = x on [−1, 1]
locally. �

For more information about the relation between both problems, the interested
reader is referred to Dempe [52].

2. The leader has no possibility to influence the follower’s selection neither he/she
has an intuition about the follower’s choice. In this case, the leader has to accept
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the follower’s opportunity to take a worst solution with respect to the leader’s
objective function and he/she has to bound the damage resulting from such an
unpleasant selection. This leads to the function

ϕp(x) := max{F(x, y) : y ∈ Ψ (x)} (1.5)

to be minimized on the set {x : G(x) ≤ 0, x ∈ X} :

min{ϕp(x) : G(x) ≤ 0, x ∈ X} (1.6)

This is the pessimistic approach resulting in the pessimistic bilevel optimization
problem. The function ϕp(x) is the pessimistic solution function. This problem is
often much more complicated than the optimistic bilevel optimization problem,
see Dempe [52].
In the literature there is also another pessimistic bilevel optimization problem. To
describe this problem consider the bilevel optimization problem with connecting
upper level constraints and an upper level objective function depending only on
the upper level variable x :

“min
x

”{F(x) : G(x, y) ≤ 0, y ∈ Ψ (x)}. (1.7)

In this case, a point x is feasible if there exists y ∈ Ψ (x) such that G(x, y) ≤ 0,
which can be written as

min
x

{F(x) : G(x, y) ≤ 0 for some y ∈ Ψ (x)}.

Now, if the quantifier ∃ is replaced by ∀ we derive a second pessimistic bilevel
optimization problem

min
x

{F(x) : G(x, y) ≤ 0 for all y ∈ Ψ (x)}. (1.8)

This problem has been investigated in Wiesemann et al. [316]. The relations
between (1.8) and (1.6) should to be investigated in future.

3. The leader is able to predict a selection of the follower: y(x) ∈ Ψ (x) for all x . If
this function is inserted into the upper level objective function, this leads to the
problem

min
x

{F(x, y(x)) : G(x) ≤ 0, x ∈ X}.

Such a function y(·) is called a selection function of the point-to-set mapping
Ψ (·). Hence, we call this approach the selection function approach. One special
case of this approach arises if the optimal solution of the lower level problem is
unique for all values of x . It is obvious that the optimistic and the pessimistic
problems are special cases of the selection function approach.
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Even under restrictive assumptions (as in the case of linear bilevel optimization or if
the follower’s problem has a unique optimal solution for all x), the function y(·) is in
general not differentiable. Hence, the bilevel optimization problem is a nonsmooth
optimization problem.

Definition 1.1 A point z ∈ Z is a local optimal solution of the optimization problem

min{w(z) : z ∈ Z}

provided that there is a positive number ε > 0 such that

w(z) ≥ w(z) ∀ z ∈ Z satisfying ‖z − z‖ ≤ ε.

z is a global optimal solution of this problem if ε can be taken arbitrarily large.

This well-known notion of a (local) optimal solution can be applied to the bilevel
optimization problems and, using e.g. Weierstraß Theorem we obtain that problem
(1.4) has a global optimal solution if the function F is continuous and the set Z :=
{(x, y) : G(x) ≤ 0, (x, y) ∈ gph Ψ, x ∈ X} is not empty and compact. If this set is
not bounded but only a nonempty and closed set and the function F is continuous and
coercive (i.e. F(x, y) tends to infinity for ‖(x, y)‖ tending to infinity) problem (1.4)
has a global optimal solution, too. For closedness of the set Z we need closedness
of the graph of the solution set mapping of the lower level problem. We will come
back to this issue in Chap. 3, Theorem 3.3.

With respect to problem

min{ϕ0(x) : G(x) ≤ 0, x ∈ X} (1.9)

existence of an optimal solution is guaranteed if the function ϕ0(·) is lower semi-
continuous (which means that lim infx→x0 ϕ0(x) ≥ ϕ0(x0) for all x0) and the set Z
is not empty and compact by an obvious generalization of the Weierstraß Theorem.
Again boundedness of this set can be replaced by coercivity. Lower semicontinu-
ity of the function is again an implication of upper semicontinuity of the mapping
x �→ Ψ (x), see for instance Bank et al. [8] in combination with Theorem 3.3. It is
easy to see that a function w(·) is lower semicontinuous if and only if its epigraph
epi w := {(z, α) : w(z) ≤ α} is a closed set.

Example 1.2 showed already that an optimal solution of the problem (1.6) does
often not exist. Its existence is guaranteed e.g. if the function ϕp(·) is lower semi-
continuous and the set Z is not empty and compact (Lucchetti et al. [207]). But, for
lower semicontinuity of the function ϕp(·) lower semicontinuity of the solution set
mapping x �→ Ψ (x) is needed which can often only be shown if the optimal solution
of the lower level problem is unique (see Bank et al. [8]).

If an optimal solution of problem (1.6) does not exist we can aim to find a weak
(global) optimum by replacing the epigraph of the objective function by its closure:
Let ϕ p be defined such that

http://dx.doi.org/10.1007/978-3-662-45827-3_3
http://dx.doi.org/10.1007/978-3-662-45827-3_3
http://dx.doi.org/10.1007/978-3-662-45827-3_3
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epi ϕ p = cl epi ϕp.

Then, a local or global optimal solution of the problem

min{ϕ p(x) : G(x) ≤ 0, x ∈ X} (1.10)

is called a (local or global) weak solution of the pessimistic bilevel optimization
problem (1.6). Note that ϕ p(x0) = lim inf x→x0 ϕp(x). The function ϕ p(·) is the
largest lower semicontinuous function which is not larger than ϕp(·), see Fanghänel
[105]. Hence, a weak global solution of problem (1.6) exists provided that Z = ∅ is
compact.

1.3 An Easy Bilevel Optimization Problem: Continuous
Knapsack Problem in the Lower Level

To illustrate the optimistic/pessimistic approaches to the bilevel optimization prob-
lem consider

“min
b

”{d�y + f b : bu ≤ b ≤ bo, . . . , y ∈ Ψ (b)}, (1.11)

where
Ψ (b) := Argmin

y
{c�y : a�y ≥ b, 0 ≤ yi ≤ 1 ∀ i = 1, . . . , n}

and a, c, d ∈ R
n+. Note that the upper level variable is called b in this problem.

Assume that the indices are ordered such that

ci

ai
≤ ci+1

ai+1
, i = 1, 2, . . . , n − 1.

Then, for fixed b ∈
{

b : ∑k−1
i=1 ai ≤ b ≤ ∑k

i=1 ai

}
, the point

yi =

⎧
⎪⎨

⎪⎩

1, i = 1, . . . , k − 1
b−∑k−1

j=1 a j

ak
, i = k

0, i = k + 1, . . . , n

(1.12)

is an optimal solution of the lower level problem. Its optimal function value in the
lower level is

ϕ(b) =
k−1∑

i=1

ci + ck

ak
(b −

k−1∑

j=1

a j ),
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which is an affine linear function of b. The function b �→ ϕ(b) is convex. The optimal
solution of the lower level problem is unique provided that ck

ak
is unique in the set

{
ci
ai

: i = 1, . . . , n
}

. Otherwise, the indices i ∈
{

j : ci
ai

= ck
ak

}
need to be ordered

such that

dt ≤ dt+1 : t, t + 1 ∈
{

j : ci

ai
= ck

ak

}

for the optimistic and

dt ≥ dt+1 : t, t + 1 ∈
{

j : ci

ai
= ck

ak

}

for the pessimistic approaches. As illustration consider the following example:

Example 1.4 The lower level problem is

10x1 + 30x2 + 8x3 + 60x4 + 4x5 + 16x6 + 32x7 + 30x8 + 120x9 + 6x10 → min
5x1 + 3x2 + 2x3 + 5x4 + x5 + 8x6 + 4x7 + 3x8 + 6x9 + 3x10 ≥ b
∀ i : 0 ≤ yi ≤ 1,

and the upper level objective function is

F(x, f ) = 20x1 + 15x2 − 24x3 + 20x4 − 40x5

+ 80x6 − 32x7 − 60x8 − 12x9 − 60x10 + f b.

This function is to be minimized subject to y ∈ Ψ (b) and b is in some closed interval
[bu, bo]. Note that the upper level variable is b and the lower level one is x in this
example.

Using the above rules we obtain the the following sequence of the indices in the
optimistic approach:

i = 10 1 6 5 3 7 8 2 4 9
ci
ai

= 2 2 2 4 4 8 10 10 12 20
di
ai

= −20 4 10 −40 −12 −8 −20 5 4 −2

Using the pessimistic approach we get

i = 6 1 10 3 5 7 2 8 4 9
ci
ai

= 2 2 2 4 4 8 10 10 12 20
di
ai

= 10 4 −20 −40 −12 −8 −20 5 4 −2
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Fig. 1.3 The optimistic and
pessimistic objective value
functions in Example 1.4,
see Winter [317]
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Now, the functions ϕo(b) and ϕp(b) are plotted in Fig. 1.3. The upper function is the
pessimistic value function, computed according to (1.5), the lower one the optimistic
value function, cf. (1.3).

Both functions are continuous, but not convex. Local optima of both functions
can either be found at b ∈ (bu, bo) or at points

b ∈
{

∑

i∈I

ai : I ⊆ {1, 2, . . . , n}
}

.

Note that local optima can be found at vertices of the set

{

(x, b) : bu ≤ b ≤ b0, 0 ≤ xi ≤ 1, i = 1, . . . , n,

n∑

i=1

ai xi = b

}

. �

1.4 Short History of Bilevel Optimization

The history of bilevel optimization dates back to H.v. Stackelberg who in 1934
formulated in the monograph [294] an hierarchical game of two players now called
Stackelberg game. The formulation of the bilevel optimization problem goes back
to Bracken and McGill [27], the notion “Bilevel Programming” has been coined
probably by Candler and Norton [39], see also Vicente [305]. With the beginning
of the 80s of the last century a very intensive investigation of bilevel optimization
started. A number of monographs, see e.g. Bard [10], Shimizu et al. [288] and Dempe
[52], edited volumes, see Dempe and Kalashnikov [57], Talbi [297] and Migdalas
et al. [231] and (annotated) bibliographies, see e.g. Vicente and Calamai [306],
Dempe [53] have been published in that field.

One possibility to investigate bilevel optimization problems is to transform them
into one-level (or ordinary) optimization problems. This will be the topic of Chap. 3.

http://dx.doi.org/10.1007/978-3-662-45827-3_3
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In the first years linear bilevel optimization problems (where all the problem functions
are affine linear and the sets X and T equals the whole spaces) have been transformed
using linear optimization duality or, equivalently, the Karush-Kuhn-Tucker condi-
tions for linear optimization. Applying this approach, solution algorithms have been
suggested, see e.g. Candler and Townsley [40]. The transformed problem is a special
case of a mathematical program with equilibrium constraints MPEC (now sometimes
called mathematical program with complementarity constraints MPCC). We can call
this the KKT transformation of the bilevel optimization problem. This approach is
also possible for convex parametric lower level problems satisfying some regularity
assumption.

General MPCC’s have been the topic of some monographs, see e.g. Luo et al.
[208] and Outrata et al. [259]. Solution algorithms for MPCC’s (see for instance
Outrata et al. [259], Demiguel et al. [48], Leyffer et al. [201], and many others) have
been suggested also for solving bilevel optimization problems.

Since MPCC’s are nonconvex optimization problems, solution algorithms will
hopefully compute local optimal solutions of the MPCCs. Thus, it is interesting
if a local optimal solution of an the KKT transformation of a bilevel optimization
problem is related to a local optimal solution of the latter problem. This has been the
topic of the paper [55] by Dempe and Dutta. We will come back to this in Chap. 3.

Later on, the selection function approach to bilevel optimization has been inves-
tigated in the case when the optimal solution of the lower level problem is uniquely
determined and strongly stable in the sense of Kojima [191]. Then, under some
assumptions, the optimal solution of the lower level problem is a PC1-function, see
Ralph and Dempe [265] and Scholtes [283] for the definition and properties of PC1-
functions. This can then be used to determine necessary and sufficient optimality
conditions for bilevel optimization (see Dempe [50]).

Using the optimal value function ϕ(x) of the lower level problem (1.1), the bilevel
optimization problem (1.4) can be replaced with

min
x,y

{F(x, y) : G(x) ≤ 0, g(x, y) ≤ 0, f (x, y) ≤ ϕ(x), x ∈ X}.

This is the optimal value transformation. Since the optimal value function is non-
smooth even under restrictive assumptions, this is a nonsmooth, nonconvex opti-
mization problem. Using nonsmooth analysis (see e.g. Mordukhovich [241, 242],
Rockafellar and Wets [274]), optimality conditions for the optimal value transfor-
mation can be obtained (see e.g. Outrata [260], Ye and Zhu [324], Dempe et al.
[56]).

Nowadays, a large number of PhD thesis have been written on bilevel optimization
problems, very different types of (necessary and sufficient) optimality conditions
can be found in the literature, the number of applications is huge and both exact and
heuristic solution algorithms have been suggested.

http://dx.doi.org/10.1007/978-3-662-45827-3_3
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1.5 Applications of Bilevel Optimization

1.5.1 Optimal Chemical Equilibria

In the monograph Dempe [52] the following application of bilevel optimization in
the chemical industry is formulated:

In producing substances by chemical reactions we have often to answer the ques-
tion of how to compose a mixture of chemical substances such that

• the substance we like to produce really arises as a result of the chemical reactions
in the reactor and

• the amount of this substance should clearly be as large as possible or some other
(poisonous or etching) substance is desired to be vacuous or at least of a small
amount.

It is possible to model this problem as a bilevel optimization problem where the first
aim describes the lower level problem and the second one is used to motivate the
upper level objective function.

Let us start with the lower level problem. Although the chemists are technically
not able to observe in situ the single chemical reactions at higher temperatures, they
described the final point of the system by a convex optimization problem. In this
problem, the entropy functional f (y, p, T ) is minimized subject to the conditions
that the mass conservation principle is satisfied and masses are not negative. Thus,
the obtained equilibrium state depends on the pressure p and the temperature T in
the reactor as well as on the masses x of the substances which have been put into the
reactor:

N∑

i=1
ci (p, T )yi +

G∑

i=1
yi ln yi

z → min
y

z =
G∑

j=1
y j , Ay = Ax, y ≥ 0,

where G ≤ N denotes the number of gaseous and N the total number of reacting
substances. Each row of the matrix A corresponds to a chemical element, each column
to a substance. Hence, a column gives the amount of the different elements in the
substances; y is the vector of the masses of the substances in the resulting chemical
equilibrium whereas x denotes the initial masses of substances put into the reactor; A
is a submatrix of A consisting of the columns corresponding to the initial substances.
The value of ci (p, T ) gives the chemical potential of a substance which depends
on the pressure p and the temperature T (Smith and Missen [291]). Let y(p, T, x)

denote the unique optimal solution of this problem. The variables p, T, x can thus
be considered as parameters for the chemical reaction. The problem is now that there
exists some desire about the result of the chemical reactions which should be reached
as best as possible, as e.g. the goal that the mass of one substance should be as large
or as small as possible in the resulting equilibrium. To reach this goal the parameters
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p, T, x are to be selected such that the resulting chemical equilibrium satisfies the
overall goal as best as possible (Oeder [258]):

〈c, y〉 → min
p,T,x

(p, T, x) ∈ Y, y = y(p, T, x).

1.5.2 Optimal Traffic Tolls

In more and more regions of the world, traffic on the streets is due to tolls. To model
such a problem, use a directed graph G = (V, E) where the nodes v ∈ V :=
{1, 2, . . . , n} stand for the junctions in some region and the directed edges (or arcs)
(i, j) ∈ E ⊂ V × V are used to implement the streets leading from junction i to
junction j . Then, the graph is used to model the map of the streets in a certain region.
The streets are modeled as one-way roads here. If a street can be passed in both
directions, there are opposite directed edges in the graph. The streets are assumed to
have certain capacities which are modeled as a function u : E → R and the cost (or
time) to pass one street by a driver is given by a second function c : E → R. We
assume here for simplicity that the costs are independent of the flow on the street.
Assume further that there is a set T of pairs of nodes (q, s) ∈ V × V for which there
is a certain demand dqs of traffic running from the origin q to the destination nodes
s, (q, s) ∈ T . Then, if xqs

e is used to denote the part of the traffic with respect to the
origin-destination pair (O-D pair in short) (q, s) ∈ T using the street e = (i, j) ∈ E ,
the problem of computing the system optimum for the traffic can be modeled as a
multicommodity flow problem (Ahuja et al. [1]):

∑

(q,s)∈T

∑

e∈E

cexqs
e −→ min (1.13)

xe +
∑

(q,s)∈T

xqs
e = ue ∀e ∈ E (1.14)

∑

e∈O( j)

xqs
e −

∑

e∈I ( j)

xqs
e =

⎧
⎨

⎩

dqs, j = q
0, j ∈ V \ {q, s}
−dqs, j = s

∀(q, s) ∈ T (1.15)

xe, xqs
e ≥ 0 ∀(q, s) ∈ T,∀e ∈ E . (1.16)

Here O( j) and I ( j) denote the set of arcs e having the node j as tail or as head,
respectively, and xe is a slack variable for arc e, x is used to abbreviate all the lower
level variables (including slack variables).

Now, assume that the cost for passing a street does also depend on toll costs ct
e

which are added to the cost ce for passing a street. Then, the objective function (1.13)
is changed to
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∑

(q,s)∈T

∑

e∈E

(ce + ct
e)xqs

e −→ min. (1.17)

Let Ψ (ct ) denote the set of optimal solutions of the problem of minimizing the
function (1.17) subject to (1.14)–(1.16), then the problem of computing best toll
costs is

f (ct , x) → min s.t. x ∈ Ψ (ct ), ct ∈ C. (1.18)

Here, C is a set of admissible toll costs and the objective function f (ct , x) can be
used to express different aims, as e.g.:

1. Maximizing the revenue. In this case it makes sense to assume that, for each
origin-destination pair (q, s) ∈ T there is one (directed) path from q to s in the
graph which is free of tolls (Didi-Biha et al. [88] and other references),

2. Reducing traffic in ecologically exposed areas (Dempe et al. [58]) or
3. Forcing truck drivers to use trains from one loading station to another one (Wagner

[310]).

1.5.3 Optimal Operation Control of a Virtual Power Plant

Müller and Rehkopf investigated in the paper [247] the optimal control of a vir-
tual power plant. This power plant consists of a number of decentralized micro-
cogeneration units located in the residential houses of their owners and use natural
gas to produce heat and electricity. This is a very efficient possibility for heat and
energy supply. Moreover, the micro-cogeneration units can produce much more elec-
tricity than used in the houses and the superfluous electricity is injected into the local
electricity grid. For that, the residents get a compensation helping them to cover
the costs of the micro-cogeneration units. To realize this, the decentralized micro-
cogeneration units are joined into a virtual power plant (VP) which collects the
superfluous electricity from the decentralized suppliers and sells it on the electricity
market. For the VP, which is a profit maximizing unit, it is sensible to sell the elec-
tricity to the market in time periods when the revenue on the market is high. Hence,
the owner of the VP wants to ask the decentralized suppliers to inject power into the
system when the national demand for electricity is large. For doing this he can apply
ideas from principal-agent theory establishing an incentive system to motivate the
suppliers to produce and inject power into the grid in the desired time periods. In this
sense, the owners of the decentralized units are the followers (agents) and the owner
of the VP is the leader (principal).

To derive a mathematical model for the VP consider the owners of the micro-
cogeneration units first. It is costly to switch the units on implying that it makes
sense to restrict the number of time units when the system is switched on. This and
failure probability imply that a producing unit should keep working for a minimum
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time length and the time the system is switched off is also bounded from below after
turning it off. To abbreviate these and perhaps other restrictions for the decentralized
systems (which are in fact linear inequalities), we use the system Ay ≤ b.

Under these conditions, the owner of the decentralized systems has to minimize
the costs for power and heat generation depending on the costs of the used natural
gas, the expenses for switching on the unit and the prices for buying and selling
power. Let this function be abbreviated as f (y).

Now, assume that the owners of the decentralized micro-cogeneration units sell
their superfluous electricity to the VP which establishes an incentive system to control
time and amount of the injected power. Let z denote the premium payed for the power
supply. This value is, of course, bounded from below by some values, depending
on the expenses of the decentralized units resulting from switching them on and
from additional costs of natural gas. Moreover, since the costs for power and heat
generation do also depend on the premium payed, the owner of the decentralized units
now minimizes a function f̃ (y, z) subject to the constraints Ay ≤ b and some (linear)
conditions relating the received bonuses to the working times of the power units. Let
Ψ (z) denote the set of solutions of the owners of the decentralized units (production
periods of the units, delivered amount of power) depending on the premium z.

Then, the upper level problem of the VP consists of maximizing the revenue from
the electricity market for the power supply minus the bonuses payed to the subunits.
This function is maximized subject to restrictions from the above conditions that the
bonus payed is bounded by some unit costs in the lower level.

1.5.4 Spot Electricity Market with Transmission Losses

In the paper Aussel et al. [5] deregulated spot electricity markets are investigated.
This problem is modeled as a generalized Nash equilibrium problem, where each
player solves a bilevel optimization problem. To formulate the problem assume that
a graph G = G(V, E) is given where each agent (or player) is located at one of the
nodes i ∈ V . The arcs E are the electricity lines. The demand Di at each node is
supposed to be known and also that the real cost for generating qi units of electricity
at node i equals Ai qi + Bi q2

i .
Now, assume that there is an independent system operator (ISO) in the electricity

network who is responsible for the trade of electricity. Moreover, each agent bids his
cost bi q2

i + ai qi of producing qi units of electricity and his demand to the ISO, who
distributes the electricity between the agents. The goal of the ISO is to minimize the
total bid costs subject to satisfaction of the demand of the agents. Assume that Li j t2

i j
are the thermal losses along (i, j) ∈ E which are covered equally between agents at
nodes i and j if ti j is the amount of electricity delivered along (i, j) ∈ E . Then, the
problem of the ISO reads as
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|V |∑

i=1

(
bi q2

i + ai qi
) → min

q,t

qi ≥ 0, i ∈ V
qi − ∑

k:(i,k)∈E

(
tik + 0.5Lik t2

ik

) + ∑

k:(k,i)∈E

(
tki − 0.5Lki t2

ki

) ≥ Di , i ∈ V

ti j ≥ 0, (i, j) ∈ E .

Let Q(a, b) denote the set of optimal solutions of this problem depending on the bid
vectors announced by the producers. Then, the agents intend to maximize their profit
which equals the difference between the real and the bid function for the production
subject to the decision of the ISO. This leads to the following problem:

(
bi q

2
i + ai qi

)
−

(
Bi q

2
i + Ai qi

)
→ max

ai ,bi ,q,t

Ai ≤ ai ≤ Ai

Bi ≤ bi ≤ Bi

(q, t) ∈ Q(a, b).

This is a bilevel optimization problem with multiple leaders where the leaders act
according to a Nash equilibrium.

1.5.5 Discrimination Between Sets

In many situations as e.g. in robot control, character and speech recognition, in certain
finance problems as bank failure prediction and credit evaluation, in oil drilling, in
medical problems as for instance breast cancer diagnosis, methods for discriminating
between different sets are used for being able to find the correct decisions implied
by samples having certain characteristics (cf. DeSilets et al. [86], Hertz et al. [144],
Mangasarian [215, 216], Shavlik et al. [286], Simpson [289]). In doing so, a mapping
T0 is used representing these samples according to their characteristics as points
in the input space (usually the n-dimensional Euclidean space), see Mangasarian
[215]. Assume that this leads to a finite number of different points. Now, these
points are classified according to the correct decisions implied by their originals.
This classification can be considered as a second mapping T1 from the input space
into the output space given by the set of all possible decisions. This second mapping
introduces a partition of the input space into a certain number of disjoint subsets
such that all points in one and the same subset are mapped to the same decision (via
its inverse mapping). For being able to determine the correct decision implied by a
new sample we have to find that partition of the input space without knowing the
mapping T1.

Consider the typical case of discriminating between two disjoint subsets A and
B of the input space R

n [215]. Then, for approximating this partition, piecewise
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Fig. 1.4 Splitting of R2 into
three subsets each containing
points of one of the sets A
respectively B only

affine surfaces can be determined separating the sets A and B (cf. Fig. 1.4 where
the piecewise affine surfaces are given by the bold lines). For the computation of
these surfaces an algorithm is given by Mangasarian [215] which starts with the
computation of one hyperplane (say G1) separating the sets A and B as best as pos-
sible. Clearly, if both sets are separable, then a separating hyperplane is constructed.
In the other case, there are some misclassified points. Now, discarding all subsets
containing only points from one of the sets, the remaining subsets are partitioned
in the same way again, and so on. In Fig. 1.4 this means that after constructing the
hyperplane G1 the upper-left half-space is discarded and the lower-right half-space
is partitioned again (say by G2). At last, the lower-right corner is subdivided by G3.

This algorithm reduces this problem of discriminating between two sets to that
of finding a hyperplane separating two finite sets A and B of points as best as
possible. Mangasarian [216] formulated an optimization problem which selects the
desired hyperplane such that the number of misclassified points is minimized. For
describing that problem, let A and B be two matrices the rows of which are given
by the coordinates of the s and t points in the sets A and B, respectively. Then, a
separating hyperplane is determined by an n-dimensional vector w and a scalar γ as
H = {x ∈ R

n : 〈w, x〉 = γ } with the property that

Aw > γ es, Bw < γ et

provided that the convex hulls of the points in the sets A and B are disjoint. Up to
normalization, the above system is equivalent to

Aw − γ es − es ≥ 0, −Bw + γ et − et ≥ 0. (1.19)
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Then, a point inA belongs to the correct half-space if and only if the given inequality
in the corresponding line of the last system is satisfied. Hence, using the step function
a∗ and the plus function a+ which are component-wise given as

(a∗)i =
{

1 if ai > 0
0 if ai ≤ 0

, (a+)i =
{

ai if ai > 0
0 if ai ≤ 0

we obtain that the system (1.19) is equivalent to the equation

es�(−Aw + γ es + es)∗ + et�(Bw − γ et + et )∗ = 0. (1.20)

It is easy to see that the number of misclassified points is counted by the left-hand side
of (1.20). For a, c, d, r, u ∈ R

l , Mangasarian [216] characterized the step function
as follows:

r = a∗, u = a+ ⇐⇒
⎧
⎨

⎩

(
r
u

)
=

(
r − u + a
r + u − el

)

+
and r is minimal in case of uncertainty

.

Hence,
c = d+ ⇐⇒ c − d ≥ 0, c ≥ 0, c(c − d) = 0.

Using both relations, we can transform the problem of minimizing the number of
misclassified points or, equivalently, the minimization of the left-hand side function
in (1.20) into the following optimization problem, see Mangasarian [216]

es�r + et�s → min
w,γ,r,u,p,v

u + Aw − γ es − es ≥ 0 v − Bw + γ et − et ≥ 0
r ≥ 0 p ≥ 0

r�(u + Aw − γ es − es) = 0 p�(v − Bw + γ et − et ) ≥ 0
−r + es ≥ 0 −p + et ≥ 0

u ≥ 0 v ≥ 0
u�(−r + es) = 0 v�(−p + et ) = 0.

This problem is an optimization problem with linear complementarity constraints, a
generalized bilevel optimization problem. Mangasarian has shown in [215] that the
task of training neural networks can be modeled by a similar problem.

1.5.6 Support Vector Machines

Closely related to the topic of Sect. 1.5.5 are support vector machines (SVM) (Cortes
and Vapnik [45], Vapnik [302]), kernel methods (Shawe-Taylor and Christianini


