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Preface

This book deals with the challenge of exploiting ambient vibrational energy, which
can be used to power small and low-power electronic devices, e.g., wireless sensor
nodes. Generally, particularly for low voltage amplitudes, low-loss rectification is
required to achieve high conversion efficiency. In the special case of piezoelectric
energy harvesting, pulsed charge extraction has the potential to extract more power
compared to a full-bridge rectifier. Therefore, a fully autonomous CMOS inte-
grated interface circuit for piezoelectric generators which fulfills these require-
ments is presented. This book covers three main aspects of the integrated interface
circuit:

First of all, the book explains in detail the different circuit blocks on transistor
level and highlights techniques to reduce the power consumption. Hence, only a
very small fraction of the power delivered by the generator is wasted, which is
extremely important in order to achieve a high overall harvesting efficiency,
especially in case the piezoelectric generator outputs little power.

Second, the book analyzes the various loss mechanisms within the CMOS chip,
such as conduction losses, switching losses, etc. Therefore, a mathematical method
of approximating the conduction losses is presented, which reduces calculation
effort and gives deep insight into the loss dependency on different parameters. A
detailed breakdown of the actual chip losses identifies the most dominant loss
mechanisms and gives ideas how these losses can be further reduced.

Third, since the performance of the CMOS chip strongly depends on the used
power source, lot of effort is spent on investigating the interaction between the
interface circuit and the piezoelectric generator. For accurate simulations, a model
which takes into account this electromechanical feedback is used. A CMOS chip
has been fabricated and tested under laboratory conditions in combination with one
custom-made and one commercially available piezoelectric generator. By com-
paring measurement and simulation results, the used model could be verified.

The presented CMOS chip has been shown to be fully autonomous and self-
powered down to a piezoelectric output power in the range of 10 uW. It enables
cold-startup and enhances the extracted power compared to the commonly known
diode rectifiers by up to 127 %, depending on the excitation conditions. For low
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excitations, due to the boosting effect, the chip harvests power where a diode
rectifier would harvest nothing. The chip operates properly for piezoelectric
voltage amplitudes in the range of 1.3-20 V and for excitation frequencies from 50
Hz to 2 kHz.

Due to these key properties enabling universal usage, other CMOS designers
working in the field of energy harvesting will be encouraged to use some of the
shown structures for their own implementations. The book highlights the design
process from scratch to the final chip. Therefore, it gives the designer a compre-
hensive guide of how to

e setup an appropriate harvester model to get realistic simulation results,

e design the integrated circuits for low power operation,

e setup a laboratory measurement environment in order to extensively charac-
terize the chip in combination with the real harvester,

e and finally interpret the simulation and measurement results in order to improve
the chip performance.

Since the dimensions of all devices (transistors, resistors etc.) are given, readers

and other designers can easily re-use the presented circuit concepts.

Villingen-Schwenningen, Germany Thorsten Hehn
Freiburg, Germany Yiannos Manoli
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Quality factor of electrical damping (—)

Output power/load resistance for resonant excitation (W,2)
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Dimensionless parasitic damping (-)
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Chapter 1
Introduction

In the last few years, energy harvesters have decreased in size, and at the same time
increased their output power. These properties make energy harvesting attractive for
powering wireless sensor nodes (WSNs) which are originally battery powered, with
the goal of prolongating their lifetime. This chapter starts with a rough review of the
main energy harvesting mechanisms, covering the thermoelectric, radio frequency
(RF) and vibration based principles. For each mechanism, some representative appli-
cation examples are shown, followed by possible applications of these conversion
mechanisms in WSNs are presented. After that, a detailed review of the state of the
art in interface circuits for vibration based energy harvesters is given. Therefore, the
interface circuits are separated in two categories, one of them focusing on efficient
AC/DC conversion, and the others incorporating impedance matching methods.

In order to classify the major achievements of the proposed interface circuit, a list
of aspects which should be fulfilled when designing general interface circuitry for
energy harvesters is given. Based on this list, the major achievements of this work
are then discussed. This chapter ends up with a brief description of the organization
of the book.

1.1 Energy Harvesting Principles

Energy harvesters' convert ambient energy into usable electrical energy. There
are many possible conversion mechanisms, which are briefly presented in the
following [49].

1 Usually, the term energy harvester or energy scavenger is used for a microscale device converting
small amounts of ambient energy into electrical energy. In the broader sense, such a device is of
course a generator, and sometimes is referred to as a converter or a transducer as well. In this book,
the terms energy harvester and generator are used as synonyms.

© Springer Science+Business Media Dordrecht 2015 1
T. Hehn and Y. Manoli, CMOS Circuits for Piezoelectric Energy Harvesters,
Springer Series in Advanced Microelectronics 38, DOI 10.1007/978-94-017-9288-2_1
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Fig. 1.1 Illustration of a sensor cube application integrating photovoltaic harvesters as packaging
[34] (reproduced with kind permission of Valer Pop)

The probably most popular ambient energy source is sunlight which is converted
into electrical energy by means of photovoltaic cells. Outdoors, they provide a power
density of 100 mW /cm?, which reduces to 10 — 100 wW /cm? for indoor application.
Their efficiencies range from 5 —30 %, depending on the material used. Hence, power
densities provided by photovoltaic cells usually are in the order of 10 mW outdoors
and 10 pW indoors. Figure 1.1 shows a sensor cube powered by photovoltaic cells,
providing 20 wW in indoor illuminating conditions.

Temperature gradients can also be converted into electrical energy, by exploiting
the Seebeck effect: In case two ends of a piece of thermoelectric material are kept
at a different temperature, i.e. a temperature gradient is present, an electrical voltage
appears between the ends. A thermocouple made of two different materials and a
metallic interconnect is the simplest thermoelectric generator. If several thermocou-
ples are connected thermally in parallel and electrically in series, a thermogener-
ator with useable output voltage and power levels can be realized. The company
Micropelt produces small-scale thermoelectric generators with a surface area of
14mm? and a thickness of 1 mm, producing a matched power of 1.5mW at
AT = 10K [29]. On one hand, these small generators allow the implementation
of small WSNs which have a long lifetime and are reliable due to the absence of
moving parts. But on the other hand, it is difficult to achieve a significant temperature
gradient over the small thickness, requiring large heat sinks, increasing total system
size. A photograph of Micropelt generator chips is depicted in Fig. 1.2.

Another possible source for energy harvesting are radio frequency (RF) waves
available everywhere due to public telecommunication services like Global System
for Mobile Communications (GSM) and Wireless Local Area Network (WLAN).
This conversion mechanism exhibits relatively low power densities. For distances of
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Fig. 1.2 Micropelt thermoelectric generator chip MPG-D751/MPG-D651 [29] (reproduced with
kind permission of Micropelt)

Fig. 1.3 RF harvesting system with a small loop antenna (reproduced with kind permission of
Tolgay Ungan)

25 — 100 m from a GSM base station, a power of 0.1 — 1 mW /m? may be achieved
from single frequencies. WLAN exhibits one magnitude lower power densities [48].
Alternatively, a dedicated RF source can be positioned in front of a WSN in order
to directly power this device at a small distance. Using this method, a transmission
power of 200 wW at a distance of 2 m has been reported [46]. Figure 1.3 shows the
corresponding RF system.

As a last conversion mechanism, harvesting energy from vibrations or motions is
discussed in the following. For that purpose, mainly three conversion mechanisms
exist: The capacitive [18, 52], the inductive [5, 41] and the piezoelectric [15, 20, 38]
principle. The capacitive principle exploits the relative movement of two capaci-
tor plates with respect to each other. This movement causes charges stored in the
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Fig. 1.4 Capacitive microgenerator chips, partly packaged in CLCC packages (reproduced with
kind permission of Daniel Hoffmann)

Fig. 1.5 SEM picture of a single triangular-curved piezoelectric cantilever which is an optimum
for a uniform load (reproduced with kind permission of Ingo Kiihne)

capacitor plates to be moved through an external load, producing electrical power.
Figure 1.4 shows an example of a capacitive microgenerator packaged in a ceramic
lead chip carrier (CLCC) package. For the inductive conversion principle, a perma-
nent magnet moves relatively to a coil, inducing a voltage across the coil. Lastly,
mechanical strain in a layer made of piezoelectric material produces a charge sepa-
ration in the piezoelectric material which turns into a voltage between both surfaces
of the layer. Figure 1.5 depicts a SEM image of a triangular-curved piezoelectric
cantilever.
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Each of the three main kinetic conversion principles (capacitive, inductive, piezo-
electric) has its own advantages and disadvantages, which are summarized in the
following [4, 40]:

e Compared to the other two principles, the capacitive conversion principle can be
realized most easily in micro-electro-mechanical systems (MEMS) technology,
and there exists a high level of corresponding process know-how. But unfortu-
nately, capactive harvesters require an initial polarizing voltage or charge. This
can be achieved by special materials called electrets which can provide the
initial polarization and these can maintain their charge over several years [3].
Electrostatic harvesters suffer from a high output impedance, limiting the achiev-
able output current. In contrast, the output voltage is usually very high (>100V),
posing a challenge in the interface circuit design. Parasitic capacitances within the
structure can sometimes lead to reduced generator efficiency and cause capacitor
electrodes shorting or sticking. Electrostatic generators exhibit by far the lowest
energy storage density [40].

e The inductive conversion principle offers a well-established technique, with a
variety of spring/mass configurations that can be used with various types of mate-
rial. High-performance bulk magnets and multi-turn, macro-scale coils are readily
available. A relatively high output current comes at the expense of a low output
voltage (<1 V), requiring highly efficient rectifiers and boost converters to provide
a voltage level suitable to supply common electronics. Problems exist in designing
MEMS devices, due to the poor properties of planar magnets, the limited number
of turns of planar coils, and the restricted vibration amplitude. The practical maxi-
mum energy density of inductive generators is much higher compared to capacitive
generators, but lower than what is achieved by piezoelectric generators [40].

e The piezoelectric conversion principle offers the simplest approach, because there
is no need for having complex geometries and numerous extra components. Vibra-
tions are directly converted into electricity through the electroded piezoelectric
material. Piezoelectric materials can be simply deposited using thin- and thick-
film, hence it is well suited for MEMS processes. Piezoelectric harvesters are
capable of producing relatively high output voltages but only at low electrical cur-
rents. Due to the fact that piezoelectric materials are strained directly, the piezo-
electric properties limit overall performance and lifetime. The commonly used
material lead circonate titanate (PZT) is very brittle and hence prone to crack if it
is over-stressed. The piezoelectric conversion principle is discussed more detailed
in Chap. 2. According to Roundy et al. [40], of the three kinetic conversion mecha-
nisms, piezoelectric generators offer the highest practical maximum energy storage
density.

According to [4, 39, 40], vibration-based energy harvesting is a viable means of
obtaining the small quantities of energy necessary to power WSNs. The three main
techniques of harvesting energy from ambient vibrations have been shown to be
capable of generating output power levels in the range of a few microwatts to several
hundred microwatts.
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