CIVIL AVIONICS SYSTEMS
Aerospace Series List

Civil Avionics Systems, Second Edition
Moir, Seabridge and Jukes
August 2013

Modelling and Managing Airport Performance
Zografos
July 2013

Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes
Torenbeek
June 2013

Design and Analysis of Composite Structures: With Applications to Aerospace Structures, Second Edition
Kassapoglou
April 2013

Aircraft Systems Integration of Air-Launched Weapons
Rigby
April 2013

Design and Development of Aircraft Systems, Second Edition
Moir and Seabridge
November 2012

Understanding Aerodynamics: Arguing from the Real Physics
McLean
November 2012

Aircraft Design: A Systems Engineering Approach
Sadraey
October 2012

Introduction to UAV Systems, Fourth Edition
Fahlstrom and Gleason
August 2012

Theory of Lift: Introductory Computational Aerodynamics with MATLAB and Octave
McBain
August 2012

Sense and Avoid in UAS: Research and Applications
Angelov
April 2012

Morphing Aerospace Vehicles and Structures
Valasek
April 2012

Gas Turbine Propulsion Systems
MacIsaac and Langton
July 2011

Basic Helicopter Aerodynamics, Third Edition
Seddon and Newman
July 2011

Advanced Control of Aircraft, Spacecraft and Rockets
Tewari
July 2011

Cooperative Path Planning of Unmanned Aerial Vehicles
Tsourdos et al.
November 2010

Principles of Flight for Pilots
Swatton
October 2010

Air Travel and Health: A Systems Perspective
Seabridge et al.
September 2010

Unmanned Aircraft Systems: UAVS Design, Development and Deployment
Austin
April 2010

Introduction to Antenna Placement and Installations
Macnamara
April 2010

Principles of Flight Simulation
Allerton
October 2009

Aircraft Fuel Systems
Langton et al.
May 2009

The Global Airline Industry
Belobaba
April 2009

Computational Modelling and Simulation of Aircraft and the Environment: Volume 1 – Platform Kinematics and Synthetic Environment
Diston
April 2009

Handbook of Space Technology
Ley, Wittmann Hallmann
April 2009

Aircraft Performance Theory and Practice for Pilots
Swatton
August 2008

Aircraft Systems, Third Edition
Moir and Seabridge
March 2008

Introduction to Aircraft Aeroelasticity and Loads
Wright and Cooper
December 2007

Stability and Control of Aircraft Systems
Langton
September 2006

Military Avionics Systems
Moir and Seabridge
February 2006

Design and Development of Aircraft Systems
Moir and Seabridge
June 2004

Aircraft Loading and Structural Layout
Howe
May 2004

Aircraft Display Systems
Jukes
December 2003

Civil Avionics Systems
Moir and Seabridge
December 2002
This book is dedicated to Sheena, Sue and Marianne who once again allowed us to indulge our passion for aircraft engineering.

We also wish to acknowledge the passing of a friend, colleague, fellow author, and Series Editor: a major contributor to the Aerospace Series. A vital member of the global aerospace engineering community who passed away on 22 November 2012.

An aerospace systems engineer ‘par excellence’

Roy Langton, 1939 to 2012
Contents

About the Authors xix
Series Preface xxi
Preface to Second Edition xxii
Preface to First Edition xxiii
Acknowledgements xxv
List of Abbreviations xxvi

1 Introduction 1
1.1 Advances since 2003 1
1.2 Comparison of Boeing and Airbus Solutions 2
1.3 Outline of Book Content 2
 1.3.1 Enabling Technologies and Techniques 3
 1.3.2 Functional Avionics Systems 4
 1.3.3 The Flight Deck 4
1.4 The Appendices 4

2 Avionics Technology 7
2.1 Introduction 7
2.2 Avionics Technology Evolution 8
 2.2.1 Introduction 8
 2.2.2 Technology Evolution 8
2.3 Avionics Computing 11
 2.3.1 The Nature of an Avionics Computer 11
 2.3.2 Resolution (Digitisation) 13
 2.3.3 The Sampling Frequency (Refresh Rate) 14
2.4 Digital Systems Input and Output 19
 2.4.1 Introduction 19
 2.4.2 Analogue to Digital Process 20
 2.4.3 Sampling Rate 22
 2.4.4 Digital to Analogue Process 23
 2.4.5 Analogue Signal Conditioning 25
 2.4.6 Input Signal Protection and Filtering 27
 2.4.7 Analogue Signal Types 29
2.5 Binary Arithmetic
 2.5.1 Binary Notations 29
 2.5.2 Binary Addition, Subtraction, Multiplication
 and Division 32
 2.5.3 The Arithmetic Logic Unit 32
2.6 The Central Processing Unit (CPU)
 2.6.1 CPU Instruction Format 35
 2.6.2 Instruction Execution Sequence 35
 2.6.3 Extended Operand Addressing Modes 42
2.7 Software
 2.7.1 Software Introduction 43
 2.7.2 Assemblers and Compilers 43
 2.7.3 Software Engineering 44
 2.7.4 Software Design Process Assurance 45
 2.7.5 Languages 47
 2.7.6 Object-Oriented Design 49
 2.7.7 Auto-code Generation 50
 2.7.8 Real-Time Operating System (RTOS) 51
2.8 Microprocessors
 2.8.1 Moore’s Law 53
 2.8.2 Significant Microprocessors used in
 Aerospace Applications 54
 2.8.3 CPU Cache 57
 2.8.4 Microcontrollers 58
 2.8.5 Rock’s Law 59
2.9 Memory Technologies
 2.9.1 Desired Avionics Memory Attributes 60
 2.9.2 Available Memory Technology Attributes 60
 2.9.3 Memory Device Summary 64
 2.9.4 Memory Hierarchy 64
2.10 Application-Specific Integrated Circuits (ASICs)
 2.10.1 Main Types of ASICs 64
 2.10.2 Field Programmable Gate Array (FPGA) 66
 2.10.3 Semi-custom Standard Cell Design ASIC 68
 2.10.4 Design Tools 68
 2.10.5 RTCA-DO-254/ED 80 69
2.11 Integrated Circuits
 2.11.1 Logic Functions 70
 2.11.2 The MOS Field Effect Transistor (MOSFET) 70
 2.11.3 IC Fabrication 70
2.12 Integrated Circuit Packaging
 2.12.1 Wafer Probe and Test 74
 2.12.2 Wafer Separation and Die Attachment 74
 2.12.3 Wire Bonding 75
 2.12.4 Packaging 75
References 77
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Data Bus Networks</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>79</td>
</tr>
<tr>
<td>3.2</td>
<td>Digital Data Bus Basics</td>
<td>80</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Data Bus Overview</td>
<td>80</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Bit Encoding</td>
<td>82</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Attributes</td>
<td>83</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Transmission Classes</td>
<td>83</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Topologies</td>
<td>83</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Transmission Rates</td>
<td>84</td>
</tr>
<tr>
<td>3.3</td>
<td>Transmission Protocols</td>
<td>84</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Transmission Protocols Overview</td>
<td>84</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Time-Slot Allocation Protocol</td>
<td>86</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Command/Response Protocol</td>
<td>87</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Token Passing Protocol</td>
<td>88</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Contention Protocol</td>
<td>88</td>
</tr>
<tr>
<td>3.4</td>
<td>ARINC 429</td>
<td>88</td>
</tr>
<tr>
<td>3.4.1</td>
<td>ARINC 429 Overview</td>
<td>88</td>
</tr>
<tr>
<td>3.4.2</td>
<td>ARINC 429 Architecture Realisation</td>
<td>90</td>
</tr>
<tr>
<td>3.5</td>
<td>MIL-STD-1553B</td>
<td>91</td>
</tr>
<tr>
<td>3.5.1</td>
<td>MIL-STD-1553B Overview</td>
<td>91</td>
</tr>
<tr>
<td>3.5.2</td>
<td>MIL-STD-1553B Word Formats</td>
<td>92</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Bus Controller to Remote Terminal (BC-RT) Protocol</td>
<td>94</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Remote Terminal to Bus Controller (RT-BC) Protocol</td>
<td>94</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Remote Terminal to Remote Terminal (RT-RT) Protocol</td>
<td>95</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Broadcast Protocol</td>
<td>95</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Error Management</td>
<td>95</td>
</tr>
<tr>
<td>3.6</td>
<td>ARINC 629</td>
<td>97</td>
</tr>
<tr>
<td>3.6.1</td>
<td>ARINC 629 Overview</td>
<td>97</td>
</tr>
<tr>
<td>3.6.2</td>
<td>ARINC 629 Protocol</td>
<td>97</td>
</tr>
<tr>
<td>3.6.3</td>
<td>ARINC 629 Bus Coupler</td>
<td>99</td>
</tr>
<tr>
<td>3.6.4</td>
<td>ARINC 629 Architecture Realisation</td>
<td>99</td>
</tr>
<tr>
<td>3.7</td>
<td>ARINC 664 Part 7</td>
<td>100</td>
</tr>
<tr>
<td>3.7.1</td>
<td>ARINC 664 Overview</td>
<td>100</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Ethernet Frame Format</td>
<td>101</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Network Topology</td>
<td>101</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Contention Avoidance</td>
<td>103</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Virtual Links</td>
<td>105</td>
</tr>
<tr>
<td>3.7.6</td>
<td>Protocol</td>
<td>107</td>
</tr>
<tr>
<td>3.7.7</td>
<td>Summary</td>
<td>109</td>
</tr>
<tr>
<td>3.7.8</td>
<td>Cables</td>
<td>109</td>
</tr>
<tr>
<td>3.8</td>
<td>CANbus</td>
<td>110</td>
</tr>
<tr>
<td>3.8.1</td>
<td>CANbus Overview</td>
<td>110</td>
</tr>
<tr>
<td>3.8.2</td>
<td>CANbus Message Formats</td>
<td>110</td>
</tr>
<tr>
<td>3.8.3</td>
<td>CANbus Variants</td>
<td>112</td>
</tr>
<tr>
<td>3.9</td>
<td>Time Triggered Protocol</td>
<td>113</td>
</tr>
<tr>
<td>3.10</td>
<td>Fibre-optic Data Communications</td>
<td>113</td>
</tr>
</tbody>
</table>
3.10.1 Attributes of Fibre-optic Data Transmission 113
3.10.2 Physical Implementation 114

3.11 Data Bus Summary 115
3.11.1 Data Bus Overview 115
3.11.2 Contrasting Traffic Management Techniques 117

References 118

4 System Safety 119
4.1 Introduction 119
4.2 Flight Safety 120
 4.2.1 Introduction 120
 4.2.2 Flight Safety Overview 120
 4.2.3 Accident Causes 124
4.3 System Safety Assessment 124
 4.3.1 Introduction 124
 4.3.2 Key Agencies, Documents and Guidelines 125
 4.3.3 Failure Classification 126
 4.3.4 In-Service Experience 127
 4.3.5 Safety Assessment Processes 127
4.4 Reliability 128
 4.4.1 Introduction 128
 4.4.2 Failure Mechanisms 128
 4.4.3 The Relationship between Probability and Mean Time between Failures 130
 4.4.4 Assessment of Failure Probability 132
 4.4.5 Reliability Management 133
4.5 Availability 134
 4.5.1 Introduction 134
 4.5.2 Classic Probability Theory 135
 4.5.3 Simplex Architecture 135
 4.5.4 Triplex Architecture 136
 4.5.5 Triplex Architecture plus Backup 136
4.6 Integrity 138
 4.6.1 Built-in-Test 139
 4.6.2 Cross-Monitoring 140
4.7 Redundancy 141
 4.7.1 Simplex Architecture 142
 4.7.2 Duplex Architecture 142
 4.7.3 Dual Command: Monitor Architecture 143
 4.7.4 Triplex Architecture 145
 4.7.5 Quadruplex Architecture 146
 4.7.6 Summary 147
4.8 Analysis Methods 148
 4.8.1 Top-Down Methods 148
 4.8.2 Bottom-Up Methods 149
 4.8.3 Lighting System Example 149
5 Avionics Architectures

5.1 Introduction

5.2 Avionics Architecture Evolution

5.2.1 Overview of Architecture Evolution

5.2.2 Distributed Analogue Architecture

5.2.3 Distributed Digital Architecture

5.2.4 Federated Digital Architecture

5.2.5 Integrated Modular Avionics

5.2.6 Open System Standards

5.3 Avionic Systems Domains

5.3.1 The Aircraft as a System of Systems

5.3.2 ATA Classification

5.4 Avionics Architecture Examples

5.4.1 The Manifestations of IMA

5.4.2 The Airbus A320 Avionics Architecture

5.4.3 The Boeing 777 Avionics Architecture

5.4.4 Honeywell EPIC Architecture

5.4.5 The Airbus A380 and A350

5.4.6 The Boeing 787

5.5 IMA Design Principles

5.6 The Virtual System

5.6.1 Introduction to Virtual Mapping

5.6.2 Implementation Example: Airbus A380

5.6.3 Implementation Example: Boeing 787

5.7 Partitioning

5.8 IMA Fault Tolerance

5.8.1 Fault Tolerance Principles

5.8.2 Data Integrity

5.8.3 Platform Health Management

5.9 Network Definition

5.10 Certification

5.10.1 IMA Certification Philosophy

5.10.2 Platform Acceptance

5.10.3 Hosted Function Acceptance

5.10.4 Cost of Change

5.10.5 Configuration Management

5.11 IMA Standards

References
6 Systems Development 205

6.1 Introduction 205
 6.1.1 Systems Design 205
 6.1.2 Development Processes 206

6.2 System Design Guidelines 206
 6.2.1 Key Agencies and Documentation 206
 6.2.2 Design Guidelines and Certification Techniques 207
 6.2.3 Guidelines for Development of Civil Aircraft and Systems – SAE ARP 4754A 208
 6.2.4 Guidelines and Methods for Conducting the Safety Assessment – SAE ARP 4761 208
 6.2.5 Software Considerations – RTCA DO-178B 209
 6.2.6 Hardware Development – RTCA DO-254 209
 6.2.7 Integrated Modular Avionics – RTCA DO-297 209
 6.2.8 Equivalence of US and European Specifications 210

6.3 Interrelationship of Design Processes 210
 6.3.1 Functional Hazard Assessment (FHA) 210
 6.3.2 Preliminary System Safety Assessment (PSSA) 212
 6.3.3 System Safety Assessment (SSA) 213
 6.3.4 Common Cause Analysis (CCA) 213

6.4 Requirements Capture and Analysis 213
 6.4.1 Top-Down Approach 214
 6.4.2 Bottom-Up Approach 214
 6.4.3 Requirements Capture Example 215

6.5 Development Processes 217
 6.5.1 The Product Life-Cycle 217
 6.5.2 Concept Phase 218
 6.5.3 Definition Phase 219
 6.5.4 Design Phase 220
 6.5.5 Build Phase 221
 6.5.6 Test Phase 222
 6.5.7 Operate Phase 223
 6.5.8 Disposal or Refurbish Phase 223

6.6 Development Programme 224
 6.6.1 Typical Development Programme 224
 6.6.2 ‘V’ Diagram 226

6.7 Extended Operations Requirements 226
 6.7.1 ETOPS Requirements 226
 6.7.2 Equipment Requirements 228

6.8 ARINC Specifications and Design Rigour 229
 6.8.1 ARINC 400 Series 229
 6.8.2 ARINC 500 Series 229
 6.8.3 ARINC 600 Series 229
 6.8.4 ARINC 700 Series 230
 6.8.5 ARINC 800 Series 230
 6.8.6 ARINC 900 Series 230
6.9 Interface Control

6.9.1 Introduction 231
6.9.2 Interface Control Document 231
6.9.3 Aircraft-Level Data-Bus Data 231
6.9.4 System Internal Data-Bus Data 233
6.9.5 Internal System Input/Output Data 233
6.9.6 Fuel Component Interfaces 233

References 233

7 Electrical Systems 235

7.1 Electrical Systems Overview 235
7.1.1 Introduction 235
7.1.2 Wider Development Trends 236
7.1.3 Typical Civil Electrical System 238

7.2 Electrical Power Generation 239
7.2.1 Generator Control Function 239
7.2.2 DC System Generation Control 240
7.2.3 AC Power Generation Control 242

7.3 Power Distribution and Protection 248
7.3.1 Electrical Power System Layers 248
7.3.2 Electrical System Configuration 248
7.3.3 Electrical Load Protection 250
7.3.4 Power Conversion 253

7.4 Emergency Power 254
7.4.1 Ram Air Turbine 255
7.4.2 Permanent Magnet Generators 256
7.4.3 Backup Systems 257
7.4.4 Batteries 258

7.5 Power System Architectures 259
7.5.1 Airbus A320 Electrical System 259
7.5.2 Boeing 777 Electrical System 261
7.5.3 Airbus A380 Electrical System 264
7.5.4 Boeing 787 Electrical System 265

7.6 Aircraft Wiring 268
7.6.1 Aircraft Breaks 269
7.6.2 Wiring Bundle Definition 270
7.6.3 Wiring Routing 271
7.6.4 Wiring Sizing 272
7.6.5 Aircraft Electrical Signal Types 272
7.6.6 Electrical Segregation 274
7.6.7 The Nature of Aircraft Wiring and Connectors 274
7.6.8 Used of Twisted Pairs and Quads 275

7.7 Electrical Installation 276
7.7.1 Temperature and Power Dissipation 278
7.7.2 Electromagnetic Interference 278
7.7.3 Lightning Strikes 280
7.8 Bonding and Earthing
7.9 Signal Conditioning
 7.9.1 Signal Types
 7.9.2 Signal Conditioning
7.10 Central Maintenance Systems
 7.10.1 Airbus A330/340 Central Maintenance System
 7.10.2 Boeing 777 Central Maintenance Computing System

References
Further Reading

8 Sensors
8.1 Introduction
8.2 Air Data Sensors
 8.2.1 Air Data Parameters
 8.2.2 Pressure Sensing
 8.2.3 Temperature Sensing
 8.2.4 Use of Pressure Data
 8.2.5 Pressure Datum Settings
 8.2.6 Air Data Computers (ADCs)
 8.2.7 Airstream Direction Detectors
 8.2.8 Total Aircraft Pitot-Static System
8.3 Magnetic Sensors
 8.3.1 Introduction
 8.3.2 Magnetic Field Components
 8.3.3 Magnetic Variation
 8.3.4 Magnetic Heading Reference System
8.4 Inertial Sensors
 8.4.1 Introduction
 8.4.2 Position Gyroscopes
 8.4.3 Rate Gyroscopes
 8.4.4 Accelerometers
 8.4.5 Inertial Reference Set
 8.4.6 Platform Alignment
 8.4.7 Gimballed Platform
 8.4.8 Strap-Down System
8.5 Combined Air Data and Inertial
 8.5.1 Introduction
 8.5.2 Evolution of Combined Systems
 8.5.3 Boeing 777 Example
 8.5.4 ADIRS Data-Set
 8.5.5 Further System Integration
8.6 Radar Sensors
 8.6.1 Radar Altimeter
 8.6.2 Weather Radar

References
9 Communications and Navigation Aids

9.1 Introduction
- **9.1.1 Introduction and RF Spectrum** 329
- **9.1.2 Equipment** 331
- **9.1.3 Antennae** 332

9.2 Communications
- **9.2.1 Simple Modulation Techniques** 332
- **9.2.2 HF Communications** 335
- **9.2.3 VHF Communications** 337
- **9.2.4 SATCOM** 339
- **9.2.5 Air Traffic Control (ATC) Transponder** 342
- **9.2.6 Traffic Collision Avoidance System (TCAS)** 345

9.3 Ground-Based Navigation Aids
- **9.3.1 Introduction** 347
- **9.3.2 Non-Directional Beacon** 348
- **9.3.3 VHF Omni-Range** 348
- **9.3.4 Distance Measuring Equipment** 348
- **9.3.5 TACAN** 350
- **9.3.6 VOR/TAC** 350

9.4 Instrument Landing Systems
- **9.4.1 Overview** 350
- **9.4.2 Instrument Landing System** 351
- **9.4.3 Microwave Landing System** 354
- **9.4.4 GNSS Based Systems** 354

9.5 Space-Based Navigation Systems
- **9.5.1 Introduction** 354
- **9.5.2 Global Positioning System** 355
- **9.5.3 GLONASS** 358
- **9.5.4 Galileo** 359
- **9.5.5 COMPASS** 359
- **9.5.6 Differential GPS** 360
- **9.5.7 Wide Area Augmentation System (WAAS/SBAS)** 360
- **9.5.8 Local Area Augmentation System (LAAS/LBAS)** 360

9.6 Communications Control Systems

References

10 Flight Control Systems

10.1 Principles of Flight Control
- **10.1.1 Frame of Reference** 365
- **10.1.2 Typical Flight Control Surfaces** 366

10.2 Flight Control Elements
- **10.2.1 Interrelationship of Flight Control Functions** 368
- **10.2.2 Flight Crew Interface** 370

10.3 Flight Control Actuation
- **10.3.1 Conventional Linear Actuation** 372
- **10.3.2 Linear Actuation with Manual and Autopilot Inputs** 372
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.3</td>
<td>ECAM Pages</td>
<td>466</td>
</tr>
<tr>
<td>12.5.4</td>
<td>Qantas Flight QF32</td>
<td>466</td>
</tr>
<tr>
<td>12.5.5</td>
<td>The Boeing Engine Indicating and Crew Alerting System (EICAS)</td>
<td>468</td>
</tr>
<tr>
<td>12.6</td>
<td>Standby Instruments</td>
<td>468</td>
</tr>
<tr>
<td>12.7</td>
<td>Head-Up Display Visual Guidance System (HVGS)</td>
<td>469</td>
</tr>
<tr>
<td>12.7.1</td>
<td>Introduction to Visual Guidance Systems</td>
<td>469</td>
</tr>
<tr>
<td>12.7.2</td>
<td>HVGS on Civil Transport Aircraft</td>
<td>470</td>
</tr>
<tr>
<td>12.7.3</td>
<td>HVGS Installation</td>
<td>470</td>
</tr>
<tr>
<td>12.7.4</td>
<td>HVGS Symbology</td>
<td>471</td>
</tr>
<tr>
<td>12.8</td>
<td>Enhanced and Synthetic Vision Systems</td>
<td>473</td>
</tr>
<tr>
<td>12.8.1</td>
<td>Overview</td>
<td>473</td>
</tr>
<tr>
<td>12.8.2</td>
<td>EVS, EFVS and SVS Architecture Diagrams</td>
<td>474</td>
</tr>
<tr>
<td>12.8.3</td>
<td>Minimum Aviation System Performance Standard (MASPS)</td>
<td>474</td>
</tr>
<tr>
<td>12.8.4</td>
<td>Enhanced Vision Systems (EVS)</td>
<td>474</td>
</tr>
<tr>
<td>12.8.5</td>
<td>Enhanced Flight Vision Systems (EFVS)</td>
<td>478</td>
</tr>
<tr>
<td>12.8.6</td>
<td>Synthetic Vision Systems (SVS)</td>
<td>481</td>
</tr>
<tr>
<td>12.8.7</td>
<td>Combined Vision Systems</td>
<td>484</td>
</tr>
<tr>
<td>12.9</td>
<td>Display System Architectures</td>
<td>486</td>
</tr>
<tr>
<td>12.9.1</td>
<td>Airworthiness Regulations</td>
<td>486</td>
</tr>
<tr>
<td>12.9.2</td>
<td>Display Availability and Integrity</td>
<td>486</td>
</tr>
<tr>
<td>12.9.3</td>
<td>Display System Functional Elements</td>
<td>487</td>
</tr>
<tr>
<td>12.9.4</td>
<td>Dumb Display Architecture</td>
<td>488</td>
</tr>
<tr>
<td>12.9.5</td>
<td>Semi-Smart Display Architecture</td>
<td>490</td>
</tr>
<tr>
<td>12.9.6</td>
<td>Fully Smart (Integrated) Display Architecture</td>
<td>490</td>
</tr>
<tr>
<td>12.10</td>
<td>Display Usability</td>
<td>491</td>
</tr>
<tr>
<td>12.10.1</td>
<td>Regulatory Requirements</td>
<td>491</td>
</tr>
<tr>
<td>12.10.2</td>
<td>Display Format and Symbology Guidelines</td>
<td>492</td>
</tr>
<tr>
<td>12.10.3</td>
<td>Flight Deck Geometry</td>
<td>492</td>
</tr>
<tr>
<td>12.10.4</td>
<td>Legibility: Resolution, Symbol Line Width and Sizing</td>
<td>494</td>
</tr>
<tr>
<td>12.10.5</td>
<td>Colour</td>
<td>494</td>
</tr>
<tr>
<td>12.10.6</td>
<td>Ambient Lighting Conditions</td>
<td>496</td>
</tr>
<tr>
<td>12.11</td>
<td>Display Technologies</td>
<td>498</td>
</tr>
<tr>
<td>12.11.1</td>
<td>Active Matrix Liquid Crystal Displays (AMLCD)</td>
<td>499</td>
</tr>
<tr>
<td>12.11.2</td>
<td>Plasma Panels</td>
<td>501</td>
</tr>
<tr>
<td>12.11.3</td>
<td>Organic Light-Emitting Diodes (O-LED)</td>
<td>501</td>
</tr>
<tr>
<td>12.11.4</td>
<td>Electronic Paper (e-paper)</td>
<td>502</td>
</tr>
<tr>
<td>12.11.5</td>
<td>Micro-Projection Display Technologies</td>
<td>503</td>
</tr>
<tr>
<td>12.11.6</td>
<td>Head-Up Display Technologies</td>
<td>504</td>
</tr>
<tr>
<td>12.11.7</td>
<td>Inceptors</td>
<td>505</td>
</tr>
<tr>
<td>12.12</td>
<td>Flight Control Inceptors</td>
<td>506</td>
</tr>
<tr>
<td>12.12.1</td>
<td>Handling Qualities</td>
<td>507</td>
</tr>
<tr>
<td>12.12.2</td>
<td>Response Types</td>
<td>507</td>
</tr>
<tr>
<td>12.12.3</td>
<td>Envelope Protection</td>
<td>508</td>
</tr>
<tr>
<td>12.12.4</td>
<td>Inceptors</td>
<td>508</td>
</tr>
</tbody>
</table>

References 509
13 Military Aircraft Adaptations 511
13.1 Introduction 511
13.2 Avionic and Mission System Interface 512
 13.2.1 Navigation and Flight Management 515
 13.2.2 Navigation Aids 516
 13.2.3 Flight Deck Displays 517
 13.2.4 Communications 518
 13.2.5 Aircraft Systems 518
13.3 Applications 519
 13.3.1 Green Aircraft Conversion 519
 13.3.2 Personnel, Material and Vehicle Transport 521
 13.3.3 Air-to-Air Refuelling 521
 13.3.4 Maritime Patrol 522
 13.3.5 Airborne Early Warning 528
 13.3.6 Ground Surveillance 528
 13.3.7 Electronic Warfare 530
 13.3.8 Flying Classroom 530
 13.3.9 Range Target/Safety 530
Reference 531
Further Reading 531

Appendices 533
 Introduction to Appendices 533

Appendix A: Safety Analysis – Flight Control System 534
A.1 Flight Control System Architecture 534
A.2 Dependency Diagram 535
A.3 Fault Tree Analysis 537

Appendix B: Safety Analysis – Electronic Flight Instrument System 539
B.1 Electronic Flight Instrument System Architecture 539
B.2 Fault Tree Analysis 540

Appendix C: Safety Analysis – Electrical System 543
C.1 Electrical System Architecture 543
C.2 Fault Tree Analysis 543

Appendix D: Safety Analysis – Engine Control System 546
D.1 Factors Resulting in an In-Flight Shut Down 546
D.2 Engine Control System Architecture 546
D.3 Markov Analysis 548
 Simplified Example (all failure rates per flight hour) 549

Index 551
About the Authors

Ian Moir, after 20 years in the Royal Air Force as an engineering officer, went on to Smiths Industries in the UK where he was involved in a number of advanced projects. Since retiring from Smiths (now GE aviation), he is now in demand as a highly respected consultant. Ian has a broad and detailed experience working in aircraft avionics systems in both military and civil aircraft. From the RAF Tornado and Army Apache helicopter to the Boeing 777 electrical load management system (ELMS), Ian’s work has kept him at the forefront of new system developments and integrated systems in the areas of more-electric technology and system implementations. With over 50 years of experience, Ian has a special interest in fostering training and education and further professional development in aerospace engineering.

Allan Seabridge was until 2006 the Chief Flight Systems Engineer at BAE Systems at Warton in Lancashire in the UK. In over 45 years in the aerospace industry, his work has included the opportunity to work on a wide range of BAE Systems projects including Canberra, Jaguar, Tornado, EAP, Typhoon, Nimrod, and an opportunity for act as reviewer for Hawk, Typhoon and Joint Strike Fighter, as well being involved in project management, research and development, and business development. In addition, Allan has been involved in the development of a range of flight and avionics systems on a wide range of fast jets, training aircraft, and ground and maritime surveillance projects. From experience in BAE Systems with Systems Engineering education, he is keen to encourage a further understanding of integrated engineering systems. An interest in engineering education continues since retirement with the design and delivery of systems and engineering courses at a number of UK universities at undergraduate and postgraduate level. Allan has been involved at Cranfield University for many years and has recently started a three-year period as External Examiner for the MSc course in Aerospace Vehicle Design.

Malcolm Jukes has over 35 years of experience in the aerospace industry, mostly working for Smiths Aerospace at Cheltenham, UK. Among his many responsibilities as Chief Engineer for Defence Systems Cheltenham, Malcolm managed the design and experimental flight trials of the first UK electronic flight instrument system (EFIS) and the development and application of head-up displays, multifunction head-down displays, and mission computing on the F/A-18, AV8B, Eurofighter Typhoon, Hawk and EH101 aircraft. In this role, and subsequently as Technology Director, he was responsible for product technical strategy and the acquisition of new technology for Smiths UK aerospace products in the areas of displays and controls, electrical power management systems, fuel gauging and management systems, and health
and usage monitoring systems. One of his most significant activities was the application of AMLCD technology to civil and military aerospace applications. Malcolm was also a member of the UK Industrial Avionics Working Group (IAWG), and is now an aerospace consultant and university lecturer operating in the areas of displays, display systems, and mission computing.

Between them the authors have been actively involved in undergraduate, postgraduate and supervisory duties in aerospace at the Universities of Bristol, Bath, City, Cranfield, Lancaster, Loughborough, Imperial, Manchester, and the University of the West of England. The authors are course leaders for the postgraduate Avionics Systems and Aircraft Systems modules for the Continuous Professional Development in Aerospace (CPDA) course delivered by a consortium of the Universities of Bristol, Bath and the West of England to UK aerospace companies including BAE Systems, Airbus UK and Augusta Westland.
Series Preface

The field of aerospace is wide ranging and covers a variety of products, disciplines and domains, not merely in engineering but in many related supporting activities. These combine to enable the aerospace industry to produce exciting and technologically challenging products. A wealth of knowledge is retained by practitioners and professionals in the aerospace fields that is of benefit to other practitioners in the industry, and to those entering the industry from University.

The Aerospace Series aims to be a practical and topical series of books aimed at engineering professionals, operators, users and allied professions such as commercial and legal executives in the aerospace industry. The range of topics is intended to be wide ranging, covering design and development, manufacture, operation and support of aircraft as well as topics such as infrastructure operations, and developments in research and technology. The intention is to provide a source of relevant information that will be of interest and benefit to all those people working in aerospace.

Avionic systems are an essential and key component of modern aircraft that control all vital functions, including navigation, traffic collision avoidance, flight control, data display and communications. It would not be possible to fly today’s advanced aircraft designs without such sophisticated systems.

This 2nd edition of Civil Avionics Systems provides many additions to the original edition, taking into account many of the innovations that have appeared over the past decade in this rapidly advancing field. The book follows the same successful format of the first edition, and is recommended for those wishing to obtain either a top-level overview of avionic systems or a more in-depth description of the wide range of systems used in today’s aircraft.

Peter Belobaba, Jonathan Cooper and Allan Seabridge
Preface to Second Edition

It has been over ten years since the first edition of Civil Avionics Systems was published. The book has been in print since that time and it is used as a course text book for a number of university undergraduate and postgraduate courses. It continues to be popular with students and practitioners, if the sales are anything to go by, and the authors continue to use it as the basis of lectures whilst continuously updating and improving the content.

However, much has happened in the world of commercial aviation and in the technological world of avionics since the first publication, prompting a serious update to the book. Despite worldwide economic recession, people still feel a need to fly for business and leisure purposes. Airlines have introduced new and larger aircraft and also introduced more classes to improve on the basic economy class, with more people choosing premium economy and even business class for their holiday flights. This has seen the introduction of the world’s largest airliner, the Airbus A380, and an airliner seriously tackling some of the environmental issues in the form of the Boeing B787.

In the field of avionics there have been many advances in the application of commercial data bus networks and modular avionic systems to reduce the risk of obsolescence. Global navigation systems including interoperability of European, US, Russian and Chinese systems and associated standards will seek to improve the ability of aircraft to navigate throughout the world, maybe leading to more ‘relaxed’ rules on navigation and landing approaches. The crew have been served well with ergonomically improved flight decks providing improved situational awareness through larger, clearer, head-down displays and the addition of head-up displays, with enhanced flight vision and synthetic vision systems.

Propulsion systems have improved in the provision of thrust, reduced noise, improved availability and economic operation. Modern airliners are beginning to move towards more-electric operation.

All these topics and more are covered in this new edition, at considerable effort to keep the book to a reasonable number of pages.
Preface to First Edition

This book on ‘Civil Avionic Systems’ is a companion to our book on ‘Aircraft Systems’. Together the books describe the complete set of systems that form an essential part of the modern military and commercial aircraft. There is much read across – many basic aircraft systems such as fuel, air, flight control and hydraulics are common to both types, and modern military aircraft are incorporating commercially available avionic systems such as liquid crystal cockpit displays and flight management systems.

Avionics is an acronym which broadly applies to AVIation (and space) electrONICS. Civil avionic systems are a key component of the modern airliner and business jet. They provide the essential aspects of navigation, human machine interface and external communications for operation in the busy commercial airways. The civil avionic industry, like the commercial aircraft industry it serves, is driven by regulatory, business, commercial and technology pressures and it is a dynamic environment in which risk must be carefully managed and balanced against performance improvement. The result of many years of improvement by systems engineers is better performance, improved safety and improved passenger facilities.

‘Civil Avionic Systems’ provides an explanation of avionic systems used in modern aircraft, together with an understanding of the technology and the design process involved. The explanation is aimed at workers in the aerospace environment – researchers, engineers, designers, maintainers and operators. It is, however, aimed at a wider audience than the engineering population, it will be of interest to people working in marketing, procurement, manufacturing, commercial, financial and legal departments. Furthermore it is intended to complement undergraduate and post graduate courses in aerospace systems to provide a path to an exciting career in aerospace engineering. Throughout the book ‘industry standard’ units have been used, there is therefore a mix of metric and Imperial units which reflects normal parlance in the industry.

The book is intended to operate at a number of levels:

- Providing a top level overview of avionic systems with some historical background.
- Providing a more in-depth description of individual systems and integrated systems for practitioners.
- Providing references and suggestions for further reading for those who wish to develop their knowledge further.
We have tried to deal with a complex subject in a straightforward descriptive manner. We have included aspects of technology and development to put the systems into a rapidly changing context. To fully understand the individual systems and integrated architectures of systems to meet specific customer requirements is a long and complicated business. We hope that this book makes a contribution to that understanding.

Ian Moir and Allan Seabridge 2002
Acknowledgements

Many people have helped us with this book, albeit unknowingly in a lot of cases. Some of the material has come from our lecturing to classes of short-course delegates and continuing professional development students. The resulting questions and discussions inevitably help to develop and improve the material. Thanks are due to all those people who patiently listened to us and stayed awake.

Colleagues in industry have also helped us in the preparation. Mike Hirst critiqued a number of chapters, and Brian Rawnsley of GE Aviation reviewed and advised upon the latest regulatory issues. Our Airbus UK course mentors Barry Camwell, Martin Rowlands and Martin Lee provided invaluable advice and really gave a stimulus to generating a lot of new material. We have also been helped by Leon Skorczewski and Dave Holding who have joined in the avionics courses by providing material and lectures.

BAE Systems, Cranfield University and the University of the West of England have invited us to lecture on their continuing professional development courses, which opens the door to discussions with many mature students. We wish to thank the organisers of the courses and also the students.

We have been guided throughout the preparation of the manuscript by Anne Hunt, Tom Carter and Eric Willner at John Wiley’s at Chichester, and also to Samantha Jones, Shikha Jain from Aptara Delhi and Wahidah Abdul Wahid from Wiley Singapore for the proof-reading, copy-editing and publishing stages of production. Their guidance and patience is, as always, gratefully received.

Ian Moir, Allan Seabridge and Malcolm Jukes

January 2013
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-D</td>
<td>three-dimensional</td>
</tr>
<tr>
<td>4-D</td>
<td>four-dimensional</td>
</tr>
<tr>
<td>ABS</td>
<td>automatic braking system</td>
</tr>
<tr>
<td>AC</td>
<td>alternating current</td>
</tr>
<tr>
<td>AC</td>
<td>Advisory Circular</td>
</tr>
<tr>
<td>ACARS</td>
<td>ARINC Communications and Reporting System</td>
</tr>
<tr>
<td>ACE</td>
<td>actuator control electronics</td>
</tr>
<tr>
<td>ACK</td>
<td>receiver acknowledge</td>
</tr>
<tr>
<td>ACFD</td>
<td>Advanced Civil Flight Deck</td>
</tr>
<tr>
<td>ACP</td>
<td>audio control panel</td>
</tr>
<tr>
<td>ADC</td>
<td>air data computer</td>
</tr>
<tr>
<td>ADC</td>
<td>analogue to digital conversion/converter</td>
</tr>
<tr>
<td>ADD</td>
<td>airstream direction detector</td>
</tr>
<tr>
<td>ADF</td>
<td>automatic direction finding</td>
</tr>
<tr>
<td>ADI</td>
<td>attitude director indicator</td>
</tr>
<tr>
<td>ADI</td>
<td>aircraft direction indicator</td>
</tr>
<tr>
<td>ADIRS</td>
<td>Air Data & Inertial Reference System</td>
</tr>
<tr>
<td>ADIRU</td>
<td>Air Data and Inertial Reference Unit (B777)</td>
</tr>
<tr>
<td>ADM</td>
<td>air data module</td>
</tr>
<tr>
<td>ADP</td>
<td>air-driven pump</td>
</tr>
<tr>
<td>ADS-A</td>
<td>automatic dependent surveillance – address</td>
</tr>
<tr>
<td>ADS-B</td>
<td>automatic dependent surveillance – broadcast</td>
</tr>
<tr>
<td>AEW</td>
<td>airborne early warning</td>
</tr>
<tr>
<td>AEW&C</td>
<td>Airborne Early Warning and Control</td>
</tr>
<tr>
<td>AFDC</td>
<td>autopilot flight director computer</td>
</tr>
<tr>
<td>AFDS</td>
<td>autopilot flight director system</td>
</tr>
<tr>
<td>AFDX</td>
<td>Aviation Full Duplex</td>
</tr>
<tr>
<td>AH</td>
<td>artificial horizon</td>
</tr>
<tr>
<td>AHRS</td>
<td>attitude and heading reference system</td>
</tr>
<tr>
<td>AIM</td>
<td>Apple–IBM–Motorola alliance</td>
</tr>
<tr>
<td>AIMS</td>
<td>Aircraft Information Management System (B777)</td>
</tr>
<tr>
<td>Al</td>
<td>aluminium</td>
</tr>
<tr>
<td>ALARP</td>
<td>As Low as Reasonably Practical</td>
</tr>
<tr>
<td>ALT</td>
<td>barometric altitude</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ALU</td>
<td>arithmetic logic unit</td>
</tr>
<tr>
<td>AM</td>
<td>amplitude modulation</td>
</tr>
<tr>
<td>AMCC</td>
<td>Applied Micro Circuits Corporation</td>
</tr>
<tr>
<td>AMLCD</td>
<td>active matrix liquid crystal display</td>
</tr>
<tr>
<td>ANO</td>
<td>Air Navigation Order</td>
</tr>
<tr>
<td>ANP</td>
<td>actual navigation performance</td>
</tr>
<tr>
<td>AoA</td>
<td>angle of attack</td>
</tr>
<tr>
<td>AOC</td>
<td>airline operation communication</td>
</tr>
<tr>
<td>AOR-E</td>
<td>Azores Oceanic Region – East</td>
</tr>
<tr>
<td>AOR-W</td>
<td>Azores Oceanic Region – West</td>
</tr>
<tr>
<td>APEX</td>
<td>Application Executive</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>APU</td>
<td>auxiliary power unit</td>
</tr>
<tr>
<td>AR</td>
<td>Authorisation Required</td>
</tr>
<tr>
<td>ARINC</td>
<td>Air Radio Inc.</td>
</tr>
<tr>
<td>ARM</td>
<td>Advanced RISC machine</td>
</tr>
<tr>
<td>ASCB</td>
<td>Avionics Standard Communications Bus (Honeywell)</td>
</tr>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>ASI</td>
<td>airspeed indicator</td>
</tr>
<tr>
<td>ASIC</td>
<td>application-specific integrated circuit</td>
</tr>
<tr>
<td>ASPCU</td>
<td>air supply and pressure control unit</td>
</tr>
<tr>
<td>ASTOR</td>
<td>Airborne Stand-off Radar</td>
</tr>
<tr>
<td>ATA</td>
<td>Air Transport Association</td>
</tr>
<tr>
<td>ATC</td>
<td>air traffic control</td>
</tr>
<tr>
<td>ATI</td>
<td>air transport indicator</td>
</tr>
<tr>
<td>A to D</td>
<td>analogue to digital</td>
</tr>
<tr>
<td>ATM</td>
<td>air traffic management</td>
</tr>
<tr>
<td>ATN</td>
<td>aeronautical telecommunications network</td>
</tr>
<tr>
<td>ATR</td>
<td>Air Transport Radio</td>
</tr>
<tr>
<td>ATS</td>
<td>air traffic services</td>
</tr>
<tr>
<td>ATSU</td>
<td>Air Traffic Service Unit – Airbus unit to support FANS</td>
</tr>
<tr>
<td>AWACS</td>
<td>Airborne Warning and Control System</td>
</tr>
<tr>
<td>AWG</td>
<td>American Wire Gauge</td>
</tr>
<tr>
<td>B</td>
<td>Blue Channel (hydraulics) Airbus</td>
</tr>
<tr>
<td>BAG</td>
<td>bandwidth allocation gap</td>
</tr>
<tr>
<td>BAT</td>
<td>battery</td>
</tr>
<tr>
<td>BC</td>
<td>bus controller</td>
</tr>
<tr>
<td>BCD</td>
<td>binary coded decimal</td>
</tr>
<tr>
<td>BGA</td>
<td>ball grid array</td>
</tr>
<tr>
<td>BGAN</td>
<td>Broadcast Global Area Network</td>
</tr>
<tr>
<td>BIT</td>
<td>built-in-test</td>
</tr>
<tr>
<td>BLT</td>
<td>battery line contactors</td>
</tr>
<tr>
<td>BPCU</td>
<td>bus power control unit</td>
</tr>
<tr>
<td>BPCU</td>
<td>brake power control unit</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>bps</td>
<td>bits per second</td>
</tr>
<tr>
<td>BRNAV</td>
<td>basic area navigation</td>
</tr>
<tr>
<td>BSCU</td>
<td>brake system control unit</td>
</tr>
<tr>
<td>BTB</td>
<td>bus tie breaker</td>
</tr>
<tr>
<td>BTC</td>
<td>bus tie contactor</td>
</tr>
<tr>
<td>BTMU</td>
<td>brake temperature monitoring unit</td>
</tr>
<tr>
<td>C</td>
<td>Centre</td>
</tr>
<tr>
<td>C</td>
<td>Centre Channel (hydraulic) Airbus</td>
</tr>
<tr>
<td>C</td>
<td>C Band (3.90 to 6.20 GHz)</td>
</tr>
<tr>
<td>C1</td>
<td>Centre 1 (Boeing 777)</td>
</tr>
<tr>
<td>C2</td>
<td>Centre 2 (Boeing 777)</td>
</tr>
<tr>
<td>CA</td>
<td>Course/Acquisition – GPS Operational Mode</td>
</tr>
<tr>
<td>CAA</td>
<td>Civil Airworthiness Authority</td>
</tr>
<tr>
<td>CANbus</td>
<td>a widely used industrial data bus developed by Bosch</td>
</tr>
<tr>
<td>CAS</td>
<td>calibrated air speed</td>
</tr>
<tr>
<td>CAST</td>
<td>Certification Authorities Software Team</td>
</tr>
<tr>
<td>Cat I</td>
<td>Automatic Approach Category I</td>
</tr>
<tr>
<td>Cat II</td>
<td>Automatic Approach Category II</td>
</tr>
<tr>
<td>Cat III</td>
<td>Automatic Approach Category III</td>
</tr>
<tr>
<td>Cat I</td>
<td>Category I Autoland</td>
</tr>
<tr>
<td>Cat II</td>
<td>Category II Autoland</td>
</tr>
<tr>
<td>Cat IIIA</td>
<td>Category IIIA Autoland</td>
</tr>
<tr>
<td>Cat IIIB</td>
<td>Category IIIB Autoland</td>
</tr>
<tr>
<td>CCA</td>
<td>common cause analysis</td>
</tr>
<tr>
<td>CCR</td>
<td>common computing resource</td>
</tr>
<tr>
<td>CCS</td>
<td>communications control system</td>
</tr>
<tr>
<td>CD</td>
<td>collision detection</td>
</tr>
<tr>
<td>Cd/m²</td>
<td>candela per square metre</td>
</tr>
<tr>
<td>CDU</td>
<td>control and display unit</td>
</tr>
<tr>
<td>CDR</td>
<td>critical design review</td>
</tr>
<tr>
<td>CF</td>
<td>constant frequency</td>
</tr>
<tr>
<td>CFIT</td>
<td>controlled flight into terrain</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CLB</td>
<td>configurable logic block</td>
</tr>
<tr>
<td>CMA</td>
<td>common mode analysis</td>
</tr>
<tr>
<td>CMCS</td>
<td>Central Maintenance Computing System (Boeing)</td>
</tr>
<tr>
<td>C-MOS</td>
<td>complementary metal-oxide semiconductor</td>
</tr>
<tr>
<td>CMS</td>
<td>Central Maintenance System (Airbus)</td>
</tr>
<tr>
<td>CNS</td>
<td>Communications, Navigation, Surveillance</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>C of G</td>
<td>centre of gravity</td>
</tr>
<tr>
<td>COM</td>
<td>command</td>
</tr>
<tr>
<td>COMMS</td>
<td>communications mode</td>
</tr>
</tbody>
</table>