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Foreword by the Supervisor 

Laboratory in-vitro models that mimic in-vivo conditions to follow the 
response of cells to changes in their micro-environment, including 
treatment with drugs and toxic compounds, is still a challenging and 
demanding aim for scientists. In particular for drug research it is very 
important to know all the effects that can be triggered in mammalian cells 
when exposed to a bioactive, potential drug or toxic compound. Such a 
system will be very useful in the field of medicinal chemistry as well as 
for pharmaceutical companies. Newly synthesized compounds designed 
for therapeutic applications may not only act on their designated targets, 
but rather interfere with various biochemical pathways, which could have 
negative and beneficial impact on their application. These effects have to 
be carefully monitored before drugs can be used in therapeutic 
applications in the clinic. 

For this, all drug candidates and other chemical compounds are 
analyzed in great detail to understand their biological activities and 
modes of action. Nevertheless, many commonly used laboratory model 
systems are very limited. A major problem of most laboratory assays as 
well as animal studies is that the results are analyzed after a given 
treatment time in a so-called end-point assay. This means that after 
treatment is initiated the response to the treatment is only analyzed at 
predefined time points. Although, these assays provide very informative 
information, this is limited to these predefined time points. With the 
biosensor assay system implemented here for the analysis of drugs and 
other chemical compounds, the cellular response is monitored 
continuously and biochemical activity is recorded in real time. 

Using a continuous flow system, important limitations of traditional 
tissue culture requiring high nutrient concentrations such as glucose or 
amino acids can be avoided and conditions closer to the physiological in-
vivo nutrient condition can be used. 

Thus, a system is needed, in which we will be able the monitor 
biological effects in real time and keep cells in a continuous-flow 
perfusion enabling to feed cells with physiological levels of nutrients. 
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In his research project, Dr. Hamed Alborzinia nicely presents the 
advantages of both time-resolved analysis of cells using online sensor 
measurement and continuous feeding in a flow-perfusion system. In his 
work he developed cell-based biosensor culture conditions with specific 
tissue properties that can be used for detailed analysis of cell 
metabolism. To learn different methods of sensor technology, he spent 
several months in the research lab of a small company, where he got 
introduced to biosensor chip technology and learned basic properties of 
electronic chip sensors. The initial experiments he performed there have 
been so successful that we obtained funding from the German Ministry 
for Research (BMBF) to set up this technology in our lab in Heidelberg. 
His work with this sensor technology led to a large number of important 
publications studying the activity of potential anticancer drugs, which 
could not have been described properly otherwise. Dr. Hamed Alborzinia 
established this technology as a highly efficient research platform and 
combined biosensor analysis with biochemical and other cell-based 
assays for more detailed molecular analysis to follow biological changes 
at key time points observed in the metabolic measurements. He also 
demonstrated that the biosensor system can be used to investigate the 
cellular response to growth factors, general toxic challenges, and to 
monitor the impact of important regulatory proteins such as SIRT3 and 
N-MYC on cancer cell metabolism. The impact of his thesis work is 
nicely visible in several peer-reviewed publications in medicinal 
chemistry and basic cancer biology and is very likely to attract 
significantly more attention in the future. 

Prof. Dr. Stefan Wölfl
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Summary 

Analysis and identification of biological activities of drug and drug 
candidates is one of the most challenging tasks in modern drug 
research. To avoid unnecessary and costly tests in animal models it is 
very important that in-vitro test systems are available to provide detailed 
information regarding the biological activity and toxicity of potential drug 
candidates. Currently, most cell-based in-vitro bioanalytical methods 
used in pharmaceutical research are end-point measurements. This 
means that in each experimental assay only information for one 
particular time point is obtained, i.e.: i) cells are treated with compounds, 
ii) then at a preselected defined time point of interest the cells are fixed, 
lysed, or labeled, and iii) the resulting effects of the compound are 
monitored. By doing so, important information about the time 
dependence of biological activities are lost, or many repeated 
experiments have to be performed to cover all time points of interest. 

To overcome this problem, novel biosensor chip analysis systems are 
enabling the continuous monitoring of cell metabolism and cell 
morphology in real-time, without any labeling or further disturbance of 
the system. The Bionas 2500 biosensor chip system used in this work 
allows the continuous monitoring of three important metabolic and 
morphological parameters: i) oxygen consumption using Clark-type 
electrodes, ii) pH change of the extracellular environment using ion-
sensitive field effect transistors, and iii) the impedance between two 
interdigitated electrode structures to register the impedance under and 
across the cell layer on the chip surface. It also can be used with any 
adherent cell type, allowing further elucidation of specific drug properties.  

In this thesis the biosensor chip was used to monitor the metabolic and 
morphological changes in five cancer cell lines in real-time in response to: 
(1) cisplatin (CDDP) treatment, one of the most widely used anticancer 
drugs; (2) overexpression of sirtuin deacetylase SIRT3, a key 
regulatory enzyme of cellular metabolism; and (3) a choice of several 
organometallic compounds, potential new anticancer drug candidates. 
To ensure that the observed parameters are of pharmacological 
relevance and not just an experimental artifact, further experimental 
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analysis was performed to confirm the validity of the measured 
parameters. This included the role of the experimental conditions, like 
glucose concentration and uptake, but also detailed downstream 
analysis of molecular changes for the molecular interpretation of the 
observed results. 

In the specific analysis of drug activity and molecular manipulation of the 
cells the following major results were obtained:  

(1) All cell lines treated with cisplatin showed a first effect on respiration, 
which was followed by interference with glycolysis in four of the five cell 
lines, HT-29, HCT-116, HepG2, and MCF-7 but not in the cisplatin-
resistant MDA-MB-231. Most strikingly, the cisplatin-sensitive cell lines 
start cell death within 10–11 h of treatment, indicating a clear timeline 
from first exposure to the drug, to cisplatin-induced lesions, and to cell 
fate decision. Further analysis at time points of most significant changes 
upon cisplatin treatment in the breast cancer cell line MCF-7 revealed 
important molecular changes underlying these activities. For this 
purpose, the phosphorylation of selected signal transduction mediators 
connected with cellular proliferation, as well as changes in gene 
expression, were analyzed in samples obtained directly from sensor 
chips at the time points when changes in glycolysis and impedance 
occurred. The reported online biosensor measurements reveal details in 
the timeline of metabolic responses to cisplatin treatment leading up to 
the onset of cell death. 

(2) Overexpression of the metabolic regulator SIRT3 led to an increase 
in cellular respiration of up to 35%. To ensure that this can indeed be 
attributed to the concentration of SIRT3 protein in the cells, the changes 
in protein levels were confirmed by Western blot directly from cells grown 
on the biosensor chips.  

(3) The biological activity of potential organometallic drug candidates, 
containing the covalently bound (or chelated) metals, iron, rhodium, 
ruthenium, or gold, revealed not only antitumor activity but also 
unexpected striking biological activities. While most ruthenium 
complexes strongly reduced cell impedance but only slightly affected 
respiration and glycolysis, others immediately caused significant effects 
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on respiration or glycolysis. Cell-line and drug-specific responses were 
identified, confirming the versatility of these biosensor chip measure-
ments.  

In essence, this work provides i) real-time measurements of basic cancer 
cell metabolism of different cancer cell lines; ii) a detailed timeline of the 
metabolic response to cisplatin treatment and clear detection of the time 
span between start of cisplatin treatment and onset of cell death, which 
reflects the time required for the underlying molecular mechanisms of 
cell fate decision; iii) direct functional measurement of the biological 
activity of a key regulatory protein of cellular metabolism following the 
kinetic change in respiration upon SIRT3 overexpression; and iv) the 
time-resolved impact of several organometallic compounds on cell 
metabolism and cell morphology, including unexpected and not yet 
understood highly significant and specific effects on cell-cell interaction 
and adhesion. 
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Zusammenfassung 

Die Analyse und Identifizierung der biologischen Wirksamkeit von 
zugelassenen und in der Testphase befindlichen Arzneistoffen ist eine 
der größten Herausforderung in der modernen Arzneimittelforschung. 
Die Verwendung von in-vitro-Systemen ermöglicht unnötige und 
aufwendige Untersuchungen in Tiermodellen zu vermeiden wobei 
detaillierte Informationen bezüglich der biologischen Wirksamkeit und 
der möglichen Toxizität potenzieller Arzneimittelkandidaten gewonnen 
werden können. Die meisten derzeit in der Pharmaforschung 
verwendeten zell-basierten bioanalytischen in-vitro-Methoden beruhen 
auf Endpunkt- Messungen. Das heißt, dass in jeder experimentellen 
Untersuchung nur Informationen für einen bestimmten Zeitpunkt 
gewonnen werden können: i) Zellen werden zunächst mit der 
Wirksubstanz behandelt, ii) daraufhin werden die Zellen zu einem 
vorbestimmten Zeitpunkt fixiert, lysiert oder markiert, und iii) die 
eingetreten Wirkung der Substanz festgestellt. Auf diese Weise gehen 
wertvolle Informationen zur zeitabhängigen Wirkung verloren, oder man 
muss viele solcher Messungen in Serie wiederholen um den gesamten 
Zeitraum zu erfassen.  

Zur Vermeidung dieses Problems, wurden in letzter Zeit neuartige 
Biosensor-Chip Analysesysteme entwickelt, die eine kontinuierliche 
Messung von Stoffwechselvorgängen und Zellstrukturveränderungen in 
Echtzeit ermöglichen, ohne die Notwendigkeit von Markierungen oder 
andersartig störenden Eingriffen in das System. Das in dieser Arbeit 
verwendete Bionas 2500 Biosensor-Chip System ermöglicht 
kontinuierliche Messungen dreier wichtiger Stoffwechsel- und 
morphologischer Parameter: i) Sauerstoffverbrauch durch Clark-
Elektroden, ii) pH-Änderungen des außerzellulären Milieus anhand von 
ionenempfindlichen Feldeffekt-Transistoren und iii) Widerstand 
zwischen zwei interdigitierten Elektroden, welches entsprechende 
Messergebnisse von unterhalb und entlang der auf der Chipoberfläche 
befindlichen Zellschicht liefert. Das System kann auch für jedwede Art 
von adhärenten Zelltypen verwendet werden, womit verschiedene 
spezifische Eigenschaften von Arzneistoffen untersucht werden können.  


