

 Beginning Objective-C

James Dovey
Ash Furrow

Beginning Objective-C

Copyright © 2012 by James Dovey and Ash Furrow

Th is work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system,
for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only
under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission
for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN 978-1-4302-4368-7

ISBN 978-1-4302-4369-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial
fashion and to the benefi t of the trademark owner, with no intention of infringement of the trademark.

Th e use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identifi ed as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. Th e publisher makes no warranty, express or implied, with respect to the material
contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Developmental Editor: Douglas Pundick
Technical Reviewer: Felipe Laso
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan

Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,
Jeff Olson, Jeff rey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Tom Welsh

Coordinating Editor: Katie Sullivan
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/

 For the bookends of the process: Clay Andres, who started the ball rolling three
years (!) ago, and J’aime Ohm, on whose birthday this is released.

 —James Dovey

v

 Contents at a Glance

About the Authors ... xv

About the Technical Reviewer .. xvii

Acknowledgments ... xix

Chapter 1: ■ Getting Started with Objective-C .. 1

Chapter 2: ■ Object-Oriented Programming ... 23

Chapter 3: ■ Foundational APIs .. 43

Chapter 4: ■ Objective-C Language Features ... 75

Chapter 5: ■ Using the Filesystem .. 107

Chapter 6: ■ Networking: Connections, Data, and the Cloud 159

Chapter 7: ■ User Interfaces: The Application Kit .. 189

Chapter 8: ■ Data Management with Core Data ... 225

Chapter 9: ■ Writing an Application ...269

Chapter 10: ■ Après Code: Distributing Your Application ...353

Index ... 371

vii

Contents

About the Authors ... xv

About the Technical Reviewer .. xvii

Acknowledgments ... xix

Chapter 1: ■ Getting Started with Objective-C .. 1

Xcode ..2

Creating Your First Project ...4

The Application Template ..5

Hello Interface Builder ..7

User Interface Controls ...7

Interface Bindings ..11

Running the App ...15

Language Fundamentals ...16

Types and Variables ..17

Pointers ..18

Functions and Declarations ..18

Scope ..19

Conditions ...20

Contentsviii

Loops ..21

Objective-C Additions ...22

Summary ...22

Chapter 2: ■ Object-Oriented Programming ... 23

Objects: Classes and Instances ...23

Encapsulation ...24

Inheritance ..24

Objects in Objective-C ...26

Message-Passing and Dynamism ..26

Writing Objective-C ...28

Allocation and Initialization...28

Sending Messages ...30

Memory Management ..31

Class Interfaces ..34

Methods ..35

Properties ...36

Protocols ...38

Implementation ...38

Summary ...41

Chapter 3: ■ Foundational APIs .. 43

Strings ...43

Mutable Strings ..46

Numbers ..48

Numeric Object Literals ..49

Data Objects ..50

Collections ...51

Arrays ...51

Sets...57

Dictionaries ...59

Rolling Your Own ...61

Contents

ix

Reflection and Type Introspection ...64

Threading and Grand Central Dispatch ...68

Run Loops..70

Coders and Decoders ..71

Property Lists ..73

Summary ...74

Chapter 4: ■ Objective-C Language Features ... 75

Strong and Weak References ..75

Autorelease Pools ..78

Exceptions ...81

Synchronization ...84

In-Depth: Messaging ...87

Message Orientation ...87

Sending Messages ...88

Proxies and Message Forwarding ...89

Blocks ..93

Lexical Closures ..95

Grand Central Dispatch ...100

Summary ...105

Chapter 5: ■ Using the Filesystem .. 107

Files, Folders, and URLs ..107

URLs ...108

Creating and Using URLs ..109

Managing Folders and Locations ..122

Accessing File Contents ...126

Random-Access Files ...127

Streaming File Contents ...129

Filesystem Change Coordination ...137

File Presenters ..137

Trying It Out ..138

Contentsx

Searching with Spotlight ...147

The Metadata API ..148

Files in the Cloud ...152

Summary ...157

Chapter 6: ■ Networking: Connections, Data, and the Cloud 159

Basic Principles ...160

Network Latency ...161

Asynchronicity ..161

Sockets, Ports, Streams, and Datagrams ...162

The Cocoa URL Loading System ..164

Using NSURLConnection ...166

Network Streams ..173

Network Data ..176

Reading and Writing JSON ..176

Working with XML...177

Network Service Location ...183

Service Resolution ..184

Publishing a Service ...186

Summary ...187

Chapter 7: ■ User Interfaces: The Application Kit .. 189

Coding Practices: Model-View-Controller ..189

Windows, Panels, and Views ...190

Controls ..193

Buttons ...194

Text Input ..195

Interface Builder ..196

User Interface Creation ...199

Layout and Animation ..206

Animating ...208

Layout and Render Flow ...210

Contents

xi

Drawing Your Interface ..211

Cocoa Graphics Primitives ..213

Video Playback ..219

Defi ning Documents ...219

The User Interface ..220

Document Code ..221

Tying It Together ...223

Summary ...224

Chapter 8: ■ Data Management with Core Data ... 225

Introducing Core Data ...226

Components of an Object Model ...228

Whose Fault Is It Anyway? ..229

Creating an Object Model ..230

A Better Model ..232

Relationships and Abstract Entities ..232

Custom Classes ..234

Transient Properties ..236

Validation ..238

Firing It Up ..241

Persistent Store Options ...243

Multithreading and Core Data ...244

Confi nement ...244

Private Queueing ..246

Main-Thread Queueing ...246

Hierarchical Contexts..246

Implementing Thread-Safe Contexts ..247

Populating Your Store ..250

Address Book Data ...250

The User Interface ...256

Sort Ordering ..258

Laying It Out ...259

Contentsxii

Adding and Removing People ...262

Viewing Addresses ...263

A More Complex Cell View ..266

Summary ...267

Chapter 9: ■ Writing an Application ...269

Enabling iCloud .. 269

Enabling the App Sandbox.. 270

Core Data and iCloud .. 271

Sharing Your Data ... 276

Creating an XPC Service .. 277

Remote Access Protocols .. 280

Initializing The Connection ... 282

Implementing the Browser ... 284

Service Discovery .. 287

Vending Your Data .. 289

Becoming a Vendor .. 290

Providing Data ... 292

Server-Side Networking ... 297

Data Encoding .. 302

Encoding Other Data .. 303

Encoding Commands ... 306

Clients and Commands .. 309

Incoming Command Data .. 310

Sending Responses ... 314

Command Processing .. 315

Accessing Remote Address Books ... 317

Reaching Out ... 317

Implementing the Remote Address Book .. 321

Contents

xiii

Displaying Remote Address Books ... 335

The Browser UI .. 335

Viewing Remote Address Books .. 341

Summary .. 351

Chapter 10: ■ Après Code: Distributing Your Application ...353

Whither iOS? .. 354

Distributing Your Application .. 356

Developer Certifi cate Utility ... 357

Setting Up The Application ... 362

The App Store .. 363

Developer ID Distribution ... 368

Summary .. 369

Index ... 371

xv

 About the Authors

Jim Dovey has been writing software exclusively for the Macintosh
(and later iOS) for 12 years now. A British expat, he works at Kobo
in Toronto, Canada, where until recently he was the lead architect
on the company's iOS applications, but these days he works
as a liaison with the publishing industry and various standards
committees and in the offi ce carries a big stick labeled "Implement
ePub 3" (no really; it looks kind of like Mallett's Mallet— Google
that). Under the nom-de-hackuerre (is that a thing? can we make
it a thing please?) he's the creator of many open source projects,
including AQGridView, the original grid view control for iOS;
AQXMLParser, the best event-based XML parser for the iPhone;
and the original third-party development kit for the Apple TV. He
also worked on Outpost, the original Basecamp client for iPhone
and created an Apple TV-based digital signage system. This is his
fi rst book, but he hopes to churn out many more in the future.

 Ash Furrow has been writing iOS application since the days of
iOS 2. While completing his undergraduate degree, he worked
on iOS applications for provincial elections and taught iOS
development at the University of New Brunswick. He has also
developed several of his own applications (for sale on the App
Store) and contributes to open source projects. In 2011, Ash
moved to Toronto to work with 500px to create their now wildly
popular iOS application.

 Currently, Ash works at 500px as the lead developer of the iOS
team. He also tweets, blogs, and photographs.

xvii

 About the Technical
Reviewer

 Felipe Laso Marsetti is a self-taught software developer
specializing in iOS development. He is currently employed as a
Systems Engineer at Lextech Global Services. Despite having
worked with many languages throughout his life, nothing makes
him happier than working on projects for iPhone and iPad. Felipe
has over two years of professional iOS experience. He likes to write
on his blog at http://iFe.li, create iOS tutorials and articles as a
member of www.raywenderlich.com, and work as a technical reviewer
for Objective-C and iOS related books. You can fi nd Felipe on Twitter
as @Airjordan12345, on Facebook under his name, or on App.net as
@iFeli. When he’s not working or programming, Felipe loves to read
and learn new languages and technologies, watch sports, cook, or
play the guitar and violin.

xix

 Acknowledgments

None of this would have come to pass without a chance meeting with Jeff LaMarche at
Macworld 2009, who subsequently introduced me to Clay Andres of Apress at WDC that
year. The authors and editors of the Apress family have all been a great help and inspiration,
especially Felipe Laso Marsetti, whose assistance has been invaluable in ensuring the
navigability of the mine of information within these pages; and editors Katie Sullivan, Douglas
Pundick, and Steve Anglin, who should particularly be rewarded for putting up with my
Douglas-Adams-like approach to deadlines over the last year.

—James Dovey

I've had a lot of help, both in the content I wrote for this book and with getting to a position where
I had enough experience to write it. No one gets where they are on their own; everyone has help
along their way. There are simply too many friends, teachers, and mentors to thank. I ran ideas and
passages past two friends in particular who have always been invaluable in helping me perfect my
writing; thank you to Jason Brennan and Paddy O'Brien for their discerning eyes.

My wife was absolutely supportive during my work on this book. She helped me keep working
through late nights and weekends, and I couldn't have done this without her.

— Ash Furrow

1

 Chapter 1
 Getting Started
with Objective-C

 The Objective-C programming language has a long history , and while it has languished in the
fringes as a niche language for much of that time, the introduction of the iPhone has catapulted
it to fame (or infamy): in January 2012, Objective-C was announced as the winner of the TIOBE
Programming Language Award for 2011. This award goes to the language that sees the greatest
increase in usage over the previous twelve months; in the case of Objective-C, it leaped from
eighth place to fifth on the index during 2011. You can see its sudden, sharp climb in Figure 1-1 .

 The Objective-C programming language was created in the early 1980s by Brad Cox and Tom
Love at their company StepStone. It was designed to bring the object-oriented programming
approach of the Smalltalk language (created at Xerox PARC in the 1970s) to the existing world
of software systems implemented using the C programming language. In 1988, Steve Jobs (yes,
that Steve Jobs) licensed the Objective-C language and runtime from StepStone for use in the
NeXT operating system. NeXT also implemented Objective-C compiler support in GCC, and
developed the FoundationKit and ApplicationKit frameworks, which formed the underpinnings of
the NeXTstep operating system’s programming environment. While NeXT computers didn’t take
the world by storm, the development environment it built using Objective-C was widely lauded
in the software industry; the OS eventually developed into the OpenStep standard, used by both
NeXT and Sun Microsystems in the mid-1990s.

 In 1997, Apple, in search of a solid base for a new next-generation operating system, purchased
NeXT. The NeXTstep OS was then used as the basis for Mac OS X, which saw its first
commercial release in early 2001; while libraries for compatibility with the old Mac OS line of
systems were included, AppKit and Foundation (by then known by the marketing name Cocoa)
formed the core of the new programming environment on OS X. NeXT’s programming tools,
Project Builder and Interface Builder, were included for free with every copy of Mac OS X, but
it was with the release of the iPhone SDK in 2008 that Objective-C began to really take off as
programmers rushed to write software for this exciting new device.

CHAPTER 1: Getting Started with Objective-C2

 In this chapter you will learn how to use the Xcode programming environment to create a simple
Mac application, including work on the UI and user interaction. After that you’ll look at some of
the details of the Objective-C language itself: the keywords, structure, and format of Objective-C
programs, and the capabilities provided by the language itself.

 Xcode
 Programming for the Mac and iPhone is done primarily using Apple’s free toolset, which chiefly
revolves around the Xcode integrated development environment (IDE). Historically, Xcode
shipped with all copies of OS X on disc or was available for download via the Apple Developer
Connection web site. In these days of the App Store, however, Xcode is primarily obtained
through it. Fire up the App Store application on your Mac, type “Xcode” into the search field, and
hit Enter. You’ll find yourself presented with the item you see in Figure 1-2 .

8.5

TIOBE Programming Community Index Objective-C

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
2002 2003 2004 2005 2006 2007

Time

No
rm

al
iz

ed
 fr

ac
tio

n
of

 to
ta

l h
its

 (%
)

2008 2009 2010 2011 2012

 Figure 1-1 . TPCI Objective-C Usage Trend, January 2002 – January 2012

CHAPTER 1: Getting Started with Objective-C

3

 Click to download it, and (admittedly some time later) you’ll have a copy of Xcode in your
Applications folder ready to use.

 Xcode comes with a lot more than just its namesake IDE application. It also contains many useful
debugging and profiling utilities, and provides optional downloads for command-line versions of
the GCC and LLVM compiler suites. Among the available tools you will find are the following:

 Instruments : An application for generating detailed runtime profiling
information for your applications—probably the most useful tool in your
arsenal for a Mac or iOS developer.

 Dashcode : An HTML and JavaScript editor designed to help you to easily
construct Dashboard widgets and Safari plug-ins.

 Quartz Composer : An application that enables the creation of complex
graphical transformations, filters, and animations using a no-code patch-bay
assembly technique.

 OpenGL Apps : A full suite of apps are provided to work with OpenGL (and
OpenGL ES on iOS). Here you’ll find profilers, performance monitors, shader
builders, and an OpenGL driver monitor.

 Figure 1-2 . The latest version of Xcode is freely available from the Mac App Store

CHAPTER 1: Getting Started with Objective-C4

 Network Link Conditioner : A dream come true for network-based software
engineers, this handy little tool lets you simulate a host of different network
profiles. It comes with defaults for the most commonly encountered
environments, and you can create your own, specifying bandwidth,
percentage of dropped packets, latency, and DNS latency. Want to debug
how your iOS app handles when it’s right on the very edge of a Wi-Fi
network? That becomes nice and easy with this little tool.

 Those are a few of our favorites, but it’s by no means an exhaustive list. As you will see later in
the book, the technology underlying a lot of the Xcode tools is if anything even more impressive.

 Creating Your First Project
 Upon launching Xcode for the first time, you will find yourself presented with the application’s
Welcome screen. The following steps will guide you through the creation of the new project.

 1. Click the button marked “Create a new Xcode project.” You will be asked
which type of project you would like to create.

 2. From the Mac OS X section, select Application, then the Cocoa
Application icon in the main pane.

 3. Click Next to be presented with some options to define your project.
Enter the details shown in Figure 1-3 , then click Next again and choose
where to save your project.

 Figure 1-3 . The options for your first project

CHAPTER 1: Getting Started with Objective-C

5

 Let’s go through the layout of Xcode and the new project. On the left of the window you can see
the Navigator, shown in Figure 1-4 . This is where you can browse your project’s source code
files, resources, libraries, and output. The Navigator will also let you browse your project’s class
hierarchy, search and replace across your entire project, and browse build logs.

 In the center pane of the Xcode window is the editor. Here’s where you’ll work with your code
and your user interface resources.

 On the right hand side is the Utilities pane. The upper part is context-sensitive and displays
different choices of tabs depending upon the content currently focused in the editor pane. Below
this is a palette from which you can drag user interface elements, new files based on templates,
code snippets, and media. You can add your own templates and snippets here, too.

 The Application Template
 The Cocoa Application template generated a lot of information for you already. In fact, you
already have a fully-functional application here. In the Navigator, switch to the browser tab (the
leftmost option) and look inside the Hello ObjC folder. Here you’ll see your primary source files
and the user interface definition (a .xib file). Also in here is a Supporting Files folder; it contains
the application’s main.m file, which is responsible for kicking off the application itself, and the
prefix header, which is included automatically into every file you add to the project. You’ll also
see Hello ObjC-Info.plist , which contains metadata about your application, and InfoPlist.
strings , which holds localized versions of the data in the .plist file. You usually won’t need to
change these directly, as the Info.plist is most commonly edited through the target editor, to
which you will be introduced in a later chapter.

 Figure 1-4 . The Xcode Navigator pane

CHAPTER 1: Getting Started with Objective-C6

 The one item here that you might want to change is Credits.rtf . The contents of this file will be
displayed within the application’s About dialog; and as it’s an .rtf file, you can style this as you
like. The contents will be placed in a scrollable multi-line text field on the About dialog.

 Below this is the Frameworks folder. It contains a list of all the frameworks and dynamic libraries
upon which your application relies. Note that this is not an automatically-managed list: you need
to add frameworks and libraries to the project yourself as you need them. Lastly, the Products
folder contains a reference to the compiled application. Right now its name is likely in red, since
it hasn’t yet been built.

 Click once on HelloAppDelegate.h to open it in the editor pane. Right now it looks a little bare,
as seen in Listing 1-1. The code declares the structure and interface of a class , in this case
named HelloAppDelegate . It tells the system that it implements all required methods defined in
a protocol called NSApplicationDelegate , and that it has one property called window . You’ll look
into the details of this syntax in the next chapter, but for now just take it on trust that this works
as expected.

 Listing 1-1. HelloAppDelegate.h

 #import <Cocoa/Cocoa.h>

 @interface HelloAppDelegate : NSObject <NSApplicationDelegate>

 @property (assign) IBOutlet NSWindow *window;

 @end

 Next is the implementation file, seen in Listing 1-2. This is similarly terse right now: in between
some delimiters declaring the implementation of the HelloAppDelegate class all you can see is
a directive named @synthesize , which seems to refer to the window property you saw a moment
ago. This is, in fact, exactly the case: this directive tells the Objective-C compiler to synthesize
getters and setters for the window property, saving you the need to write them yourself. It also
specifies that the instance member variable used to store the property should be called _window ;
the compiler will create that member variable for you, too, again saving on the need to write it
out explicitly.

 Listing 1-2. HelloAppDelegate.m

 #import "HelloAppDelegate.h"

 @implementation HelloAppDelegate

 @synthesize window = _window;

 - (void)applicationDidFinishLaunching:(NSNotification *)aNotification
 {
 // Insert code here to initialize your application
 }

 @end

CHAPTER 1: Getting Started with Objective-C

7

 Hello Interface Builder
 If you select the MainMenu.xib file, the editor changes into Interface Builder mode, so named
because the task of building user interfaces was until recently the domain of a separate (though
integrated) application titled, appropriately enough, Interface Builder. You can see what this
looks like in Figure 1-5 .

 In here you can see the application’s menu, and down the left side of the editor is the document
outline. All the objects in the interface document are listed here: at the top are the “inferred”
objects, which are present in all (or almost all) .xib documents. Below the divider are objects
explicitly added to the . nib file. The second item in this list is the application’s window. Select
that to make it appear in the editor.

 Now that it’s selected, the upper part of the Utilities pane on the right side of Xcode’s window
gains a lot more tabs. Click through these to see what they present; hovering the mouse over a
tab selector will show a tooltip informing you of that tab’s name.

 Now, thanks to a lot of behind-the-scenes cleverness in the Interface Builder, you can build a
nice application with user input and dynamically-updating feedback. What’s more, you’ll add
only three lines of code to the project to do so!

 User Interface Controls
 First of all, you want to have somewhere for the user to type. Fetch your controls from the object
palette in the lower half of the utilities pane; you can see all the items you’ll use in Figure 1-6 .

 Figure 1-5 . Interface Builder

CHAPTER 1: Getting Started with Objective-C8

 1. In the lower part of the Utilities pane, select the second tab from the right
(the box icon) to switch to the user interface Object Palette.

 2. Pull down the Object Library pop-up menu and select Controls to limit
the contents of the palette to just the standard controls for the moment
(see Figure 1-6).

 3. The first item you need is a text field. Scroll down a little way to find it.

 4. Now drag that row from the palette straight out and onto the window in
the editor. You’ll notice that it changes into a real text field as it does so.

 5. Move it up towards the top-right of the window’s content area and blue
lines will appear, helping snap the field into place. Position it there, at the
top-right, as in Figure 1-7 .

 Figure 1-6 . The Text Field, Label, and Multi-Line Label controls

CHAPTER 1: Getting Started with Objective-C

9

 6. Next you’ll look for a label (a non-editable text field with no special
background).

 7. Drag this up to the top left, but notice that, while it can click into the
top-left corner happily enough, guides also appear that cause it to align
with the bottom edge of the text field you’ve already placed, or with the
baseline of the text within that text field. This latter is the one you want to
use: drop the label there, as shown in Figure 1-8 .

 Figure 1-7 . Placing the text field

CHAPTER 1: Getting Started with Objective-C10

 8. To edit the label’s text, double-click it. Type “Your Name:” and press
Enter to store the change. Now clip the label’s size to that of its text by
pressing +=.

 9. Select the text field and move the mouse cursor over the leftmost edge
of the text field until the cursor changes to resize mode (a pair of arrows
pointing both left and right). Click and drag the edge of the field over
towards the label, and stop when the blue guide appears.

 10. Lastly, look for the Wrapping Label control in the Object Library, and drag
it into the center of the window, a little below the text field. More guides
will appear to help snap it into the horizontal center of the window and to
keep it well positioned below the text field itself. We suggest moving it a
little further down so it has a nice amount of space around it.

 11. Drag its edges out to meet the guides near the left and right edges of the
window; this means the text can grow nicely. Now click on the handle
in the center of the window’s bottom edge and drag that up a little,
shrinking the window so there’s not quite so much empty space there.

 Figure 1-8 . Positioning the label

CHAPTER 1: Getting Started with Objective-C

11

 Interface Bindings
 If you’re coming to Objective-C from another language, you might be used to the idea of
handling your UI by hooking up variables referencing the various UI elements for manipulation. In
Cocoa, however, that isn’t always necessary. Instead, there is a system called key-value coding
(KVC) , which allows observation of a given value contained in a given object, which is referenced
by a key. The key is either a method name or a member variable name—most commonly
a method. The property declaration you saw earlier actually generates code that conforms
precisely to that required by KVC, so that’s how you’ll be referencing and storing your values.

 We will cover KVC in more depth in a later chapter, but for now you’ll take advantage of a
technology built on top of it: bindings. The essence of the idea is that certain properties of a
user interface element can be bound to a value specified using KVC. This means that when one
changes, the other does, too: editing a text field will change the value to which it’s bound, and
vice versa. Many properties of UI elements can be bound in this manner, but here you’ll focus on
arguably the most important one: the element’s value .

 In the case of a text field, the element’s value is a string. So, first of all, you must create a string
property somewhere to which you’ll bind your interface. To do so, open up HelloAppDelegate.h
and enter a new line under the existing property (see the line in bold in Listing 1-3).

 Listing 1-3. The userName Property

 @interface HelloAppDelegate : NSObject <NSApplicationDelegate>

 @property (assign) IBOutlet NSWindow *window;
 @property (copy) NSString * userName;

 @end

 This tells the world at large that HelloAppDelegate has a property called userName and that it is
a string. It also states that the string is copied rather than referenced when set. Don’t worry if
you’re not sure what that means yet: you soon will. For now, just accept it as a Good Thing.

 This only declares the property, however. To actually implement it requires one more step. Open
 HelloAppDelegate.m and enter the highlighted line in Listing 1-4.

 Listing 1-4. Synthesizing the userName Property

 @implementation HelloAppDelegate

 @synthesize window = _window;
 @synthesize userName;

 @end

 Here you have asked the compiler to synthesize the implementation for you. Note that, unlike
the window property, you have opted not to provide a name for the property’s backing member
variable; by convention, this means that the member variable’s name matches the property’s
name exactly.

 The next steps both happen in the Interface Builder: click MainMenu.xib to open it once more.

CHAPTER 1: Getting Started with Objective-C12

 SYNTHESIZED VARIABLE NAMING

 There are a number of different approaches to the naming of properties and their corresponding instance variables.
Each developer no doubt has their own preference: we like to let the compiler handle the instance variables itself.

 The following are the two most commonly seen approaches:

 ■ No name specified : The compiler uses the exact same name for the creation of the
backing variable.

 ■ An underscored name : This matches Apple’s internal naming scheme for instance variables. We
and many other programmers follow this scheme, although Apple has, at times, recommended
against it due to a potential clash with any instance variable names they might add to a class in
the future.

 A number of people argue that you should always explicitly supply a variable name when synthesizing properties,
but we take the opposite approach as we believe it encourages the use of the accessor methods rather than directly
accessing the underlying variable. This becomes especially important when using atomically accessed properties:
the accessors are locked and synchronized, so nothing can read a variable mid-modification from a secondary
thread. Accessing the instance variable directly has no such guarantees, however.

 Binding User Input
 1. Select the text field.

 2. In the Utilities pane you’ll see some of its attributes appear; the fourth
tab contains the Attributes inspector where you can adjust the field’s
attributes: its font, colors, and some behavior. The fifth is the Size
inspector where you can adjust the field’s size and its placement, as
well as its behavior when resizing its containing view (in this case, the
window). The sixth is the Connections inspector, which you will see later
in the book. Following that is the Bindings inspector, which is what you’ll
use to hook up the field’s value.

 3. At the top of the Bindings inspector is a pop-open row titled “Value.”
Open it to see a lot of options.

 4. At the top is the “Bind to:” pop-up menu. In here you can see references
to the application itself, the file’s owner (the object that handles the
interface definition in this .xib file at runtime), the global font manager
and user defaults, and your app’s delegate object, Hello App Delegate .

CHAPTER 1: Getting Started with Objective-C

13

 DELEGATES

 The concept of a delegate is not peculiar to Objective-C, but due to the language’s dynamic nature it is one of the
core techniques used by the system libraries. A delegate object is an object that conforms to some predefined
protocol—a list of methods it agrees to implement—by which another object can request that it undertake some
actions or make some decisions on the other’s behalf. For instance, a text field’s delegate might check the text being
entered and tell the text field to reject certain characters.

 Delegation is a very powerful tool and is the reason why Objective-C applications rarely tend to subclass classes
such as the Application class: instead, a delegate object is created to make the important decisions and leaves
the Application instance alone to handle the guts of making the app “go.”

 5. Select Hello App Delegate from the pop-up menu. In the Model Key
Path field enter self.userName .

 6. Check the “Continuously Updates Value” checkbox. The result should
look like that in Figure 1-9 .

 Figure 1-9 . Binding the text field’s value

CHAPTER 1: Getting Started with Objective-C14

 This field’s value is now bound to the property created earlier; as the user types in the field, the
property’s value will be updated to match.

 The next step is to make some output from that value.

 1. Select the Multiline Label and open the Bindings inspector once more.
Here you’ll not just set the value, however: you’ll provide a pattern,
similar to a format string, which will be augmented by a bound value.

 2. Open the “Display Pattern Value1” item; it looks quite similar to Figure 1-9 ,
with the addition of a Display Pattern value. By default this field contains
 %{value1}@ , which is the way in which the Value1 binding created here
will be applied to the label. You’re going to bind to the same property
here that you did before.

 3. Select Hello App Delegate from the pop-up menu, and type
self.userName into the “Model Key Path” field.

 4. Now edit the Display Pattern field slightly, so it reads ’ Hello, %{value1}@! ’
This will cause the field to display “Hello, user !” for a given value of user.
Your input should leave the inspector looking similar to Figure 1-10 .

 Figure 1-10 . Formatting the output field

CHAPTER 1: Getting Started with Objective-C

15

 5. Lastly, switch to the Attributes inspector (the fourth tab on the sidebar)
and change the field’s alignment to centered, as in Figure 1-11 .

 Running the App
 It might come as a pleasant surprise to note that the application is now all but finished. You can
compile and launch it right now by clicking the Run button in Xcode’s toolbar. As you type in the
text field, the output field below it updates dynamically.

 However, it looks a bit strange at first launch. The text field doesn’t contain anything, so the
output field reads “Hello, !” and that doesn’t really seem very impressive. It might be better to
provide a default value when the application launches. In fact, it might be useful to preset the
content with the current user’s full name. Let’s do that.

 Open HelloAppDelegate.m once more. You’re going to fill in the empty method here, which is
part of NSApplication ’s delegation protocol. It currently looks like the code in Listing 1-5.

 Listing 1-5. Delegating the App Launch

 @synthesize userName;

 - (void)applicationDidFinishLaunching:(NSNotification *)aNotification
 {
 // Insert code here to initialize your application
 }

 @end

 This method is called by NSApplication on its delegate once the application has finished
launching and is ready to begin showing windows and processing user input. This is where you’ll
likely set up the initial state for any applications you write. In this instance, you’ll fetch the user’s
name using the handy C function NSFullUserName() and assign it to the userName property.
Assigning and referencing properties uses a structure-like syntax to differentiate it from regular
method calls; the compiler swaps in the real Objective-C method calls when compiling the
project. Enter the highlighted code from Listing 1-6.

 Figure 1-11 . Centering the output field

