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Preface

This monograph is devoted to the study of nonconvex optimal control and vari-
ational problems. It contains a number of recent results obtained by the author
in the last 15 years. The Tonelli classical existence theorem in the calculus of
variations [81] is based on two fundamental hypotheses concerning the behavior
of the integrand as a function of the last argument (derivative): one that the
integrand should grow superlinearly at infinity and the other that it should be
convex (or exhibit a more special convexity property in case of a multiple integral
with vector-valued functions) with respect to the last variable. Moreover, certain
convexity assumptions are also necessary for properties of lower semicontinuity
of integral functionals which are crucial in most of the existence proofs, although
there are some interesting theorems without convexity (see Chap. 16 of [21] and
[19, 20, 28, 61, 63]). Since in this book we do not use convexity assumptions on
integrands the situation becomes more difficult. We overcome this difficulty using
the so-called generic approach which is applied fruitfully in many areas of analysis
(see, for example, [6, 67, 69, 71, 72, 99, 106] and the references mentioned there).

According to the generic approach we say that a property holds for a generic
(typical) element of a complete metric space (or the property holds generically) if
the set of all elements of the metric space possessing this property contains a Gı
everywhere dense subset of the metric space which is a countable intersection of
open everywhere dense sets.

In [86, 88] it was shown that the convexity condition is not needed generically
and not only for the existence but also for the uniqueness of a solution and
even for well-posedness of the problem (with respect to some natural topology
in the space of integrands). More precisely, in [86, 88] we considered a class of
optimal control problems (with the same system of differential equations, the same
functional constraints, and the same boundary conditions) which is identified with
the corresponding complete metric space of cost functions (integrands), say F . We
did not impose any convexity assumptions. These integrands are only assumed to
satisfy the Cesari growth condition. The main result in [86, 88] establishes the
existence of an everywhere dense Gı-set F 0 � F such that for each integrand in
F 0 the corresponding optimal control problem has a unique solution. It should be
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vi Preface

mentioned that the author obtained this generic existence result in [86] for general
Bolza and Lagrange optimal control problems. This result was published in [88].

The next step was done in a joint paper by Alexander Ioffe and the author (see
[42]). There we introduced a general variational principle having its prototype in
the variational principle of Deville, Godefroy, and Zizler [30]. A generic existence
result in the calculus of variations without convexity assumptions was then obtained
as a realization of this variational principle. It was also shown in [42] that some
other generic well-posedness results in optimization theory known in the literature
and their modifications are obtained as a realization of this variational principle.

The work [86, 88] became a starting point of the author’s research on optimal
control and variational problems without convexity assumptions which have been
continued in the last 15 years. Many results obtained during this period of time are
presented in the book. Among them generic existence results for different classes
of optimal control problems are collected in Chaps. 2–5. Any of these classes of
problems is identified with a functional space equipped with a natural complete
metric and it is shown that there exists a Gı everywhere dense subset of the
functional space such that for any element of this subset the corresponding optimal
control problem possesses a unique solution and that any minimizing sequence
converges to this unique solution. These results are obtained as realizations of
variational principles which are generalizations or concretization of the variational
principle established in [42].

In Chaps. 6–9 we show nonoccurrence of the Lavrentiev phenomenon for many
optimal control and variational problems without convexity assumptions.

We say that the Lavrentiev phenomenon occurs for an optimal control problem
if its infimum on the full admissible class of trajectory-control pairs is less than its
infimum on a subclass of trajectory-control pairs with bounded controls.

The Lavrentiev phenomenon in the calculus of variations was discovered in
1926 by M. Lavrentiev in [45]. There it was shown that it is possible for the
variational integral of a two-point Lagrange problem, which is sequentially weakly
lower semicontinuous on the admissible class of absolutely continuous functions, to
possess an infimum on the dense subclass of C1 admissible functions that is strictly
greater than its minimum value on the admissible class. Since this seminal work, the
Lavrentiev phenomenon is of great interest in the calculus of variations and optimal
control [1, 8, 9, 21, 25, 26, 35, 49, 53, 60, 78–80]. Nonoccurrence of the Lavrentiev
phenomenon was studied in [1, 25, 26, 35, 49, 79, 80]. It should be mentioned that
Clarke and Vinter [25] showed that the Lavrentiev phenomenon cannot occur when
a variational integrand f .t; x; u/ is independent of t .

In Chaps. 6–9 we consider large classes of optimal control problems identified
with the corresponding complete metric spaces of integrands f .t; x; u/ depending
on t . We establish that for most integrands (in the sense of Baire category) the
infimum on the full admissible class of trajectory-control pairs is equal to the
infimum on a subclass of trajectory-control pairs whose controls are bounded by
a certain constant.

In Chaps. 10–12 we study turnpike properties of approximate solutions of
variational and optimal control problems. To have this property means, roughly
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speaking, that the approximate solutions are determined mainly by the integrand
(objective function) and are essentially independent of the choice of interval and
end point conditions, except in regions close to the end points.

Turnpike properties are well known in mathematical economics. The term was
first coined by Samuelson in 1948 (see [77]) where he showed that an efficient
expanding economy would spend most of the time in the vicinity of a balanced
equilibrium path (also called a von Neumann path).

We study the turnpike property of approximate solutions of the variational
problems with integrands f which belong to a complete metric space of functions
M. We do not impose any convexity assumption on f . This class of variational
problems was studied in Chap. 2 of [99] for integrands f 2 Mco, where the space
Mco consists of all integrands f 2 M which are convex with respect to the last
variable (derivative). In Chap. 2 of [99] we showed that the turnpike property holds
for a typical integrand f 2 Mco. In this book we extend the turnpike result of [99]
established for the space Mco to the space of integrands M. We also study turnpike
properties for a class of discrete-time optimal control problems.

Haifa, Israel Alexander J. Zaslavski
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Chapter 1
Introduction

1.1 Generic Existence of Solutions of Optimal
Control Problems

Let �1 < T1 < T2 < 1, A � ŒT1; T2� � Rn be a closed subset of the tx-space
RnC1 and let A.t/ denote its sections, that is

A.t/ D fx 2 Rn W .t; x/ 2 Ag; t 2 ŒT1; T2�:
For every .t; x/ 2 A let U.t; x/ be a given subset of the u-space Rm, x D
.x1; : : : xn/, u D .u1; : : : um/.

Let M denote the set of all .t; x; u/ with .t; x/ 2 A, u 2 U.t; x/ and let
B1;B2 � Rn be closed. We assume that the setM is closed and A.t/ 6D ; for every
t 2 ŒT1; T2�. Let H.t; x; u/ D .H1.t; x; u/; : : : Hn.t; x; u// be a given continuous
function defined on M .

We say that a pair x W ŒT1; T2� ! Rn; u W ŒT1; T2� ! Rm is admissible if
x D .x1 : : : ; xn/ is an absolutely continuous (a.c.) function, u D .u1; : : : ; um/ is
a measurable function and the following relations hold:

x.t/ 2 A.t/; t 2 ŒT1; T2�; x.Ti / 2 Bi ; i D 1; 2;

u.t/ 2 U.t; x.t//; x0.t/ D H.t; x.t/; u.t//; t 2 ŒT1; T2� (a.e.).

Denote by ˝ the set of all admissible pairs .x; u/. We suppose that ˝ 6D ;.
We are concerned with the existence of the minimum in ˝ of the functional

Z T2

T1

f .t; x.t/; u.t//dt C h.x.T1/; x.T2//;

where h W B1 �B2 ! R1 is a lower semicontinuous bounded below function and f
belongs to a space of functions described below.

A.J. Zaslavski, Nonconvex Optimal Control and Variational Problems,
Springer Optimization and Its Applications 82, DOI 10.1007/978-1-4614-7378-7 1,
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2 1 Introduction

The existence of solutions of optimal control problems arising in various areas of
research and the related lower semicontinuity of integral functionals were studied
in [2,12,13,21,24,39,40,74,75] and others. Since the seminal work of Tonelli [81],
it is well known that certain convexity assumptions are crucial to the existence
of optimal solutions in problems of the calculus of variations and optimal control
[21, 23, 59, 65, 74].

In this section we present the generic existence result obtained in [86, 88].
In [86, 88] we studied the existence of optimal solutions for a general class of

optimal control problems. We considered optimal control problems with integrands
f .t; x; u/ from a complete metric space of functions, which only satisfy a growth
condition common in the literature, and established for a generic integrand f the
existence result. More precisely, we showed that in the complete metric space of
functions there exists a subset which is a countable intersection of open everywhere
dense sets such that for each integrand belonging to this subset the corresponding
optimal control problem has a unique solution, and moreover, this solution is stable
under small perturbations of the integrand f .

Thus, instead of considering the existence problem for a single integrand, we
investigate it for the space of all such integrands equipped with some natural metric
and show that the existence result is valid for most of these integrands. This allows
us to establish the existence result without convexity conditions and other restrictive
assumptions.

Denote by Cl.B1 � B2/ the set of all lower semicontinuous bounded below
functions h W B1 � B2 ! R1 and denote by C.B1 � B2/ the set of all continuous
functions h 2 Cl.B1 � B2/. For the set Cl.B1 � B2/ we consider the uniformity
which is determined by the base

E0.�/ D f.h1; h2/ 2 Cl.B1 � B2/ � Cl.B1 �B2/ W
jh1.z/ � h2.z/j � �; z 2 B1 �B2g;

where � > 0. It is easy to verify that the uniform space Cl.B1 � B2/ is metrizable
and complete [44], and C.B1 �B2/ is a closed subset of Cl.B1 �B2/. We consider
the topological space C.B1 � B2/ � Cl.B1 � B2/ which has the relative topology.

Denote by Ml the set of all lower semicontinuous functions f W M ! R1 which
satisfy the following growth condition.

(A) For each � > 0 there exists an integrable scalar function �.t/ � 0; t 2 ŒT1; T2�
such that jH.t; x; u/j �  �.t/C �f .t; x; u/ for each .t; x; u/ 2 M .

Growth condition (A) proposed by Cesari (see [21]) and its equivalents and
modifications are rather common in the literature.

Denote by Mc the set of all continuous functions f 2 Ml . For N; � > 0 we set

E.N; �/ D f.f; g/ 2 Ml � Ml W jf .t; x; u/ � g.t; x; u/j � �

..t; x; u/ 2 M; jxj; juj � N/; jf .t; x; u/� g.t; x; u/j
� � C � supfjf .t; x; u/j; jg.t; x; u/jg .t; x; u/ 2 M g:
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We can show in a straightforward manner that for the set Ml there exists the
uniformity which is determined by the base E.N; �/;N; � > 0 [86, 88]. It is easy to
verify that the uniform space Ml is metrizable and complete. Clearly Mc is a closed
subset of Ml . We consider the topological space Mc � Ml which has the relative
topology and the spaces

Al D Ml � Cl.B1 � B2/; Ac D Mc � C.B1 � B2/;
which have the product topology.

We consider the functionals of the form

I .f;h/.x; u/ D
Z T2

T1

f .t; x.t/; u.t//dt C h.x.T1/; x.T2//;

where .x; u/ 2 ˝;f 2 Ml , and h 2 Cl.B1 �B2/.
For each f 2 Ml and each h 2 Cl.B1 � B2/ we consider the problem of the

absolute minimum

I .f;h/.x; u/ ! min; .x; u/ 2 ˝;
and set

�.f; h/ D inffI .f;h/.x; u/ W .x; u/ 2 ˝g:
It is easy to see that

�.f; h/ > �1 for each f 2 Ml and each h 2 Cl.B1 � B2/:
Denote by mes.E/ the Lebesgue measure of a measurable set E � Rk and

denote by j � j the Euclidean norm in Rk. Define

Al;reg D f.f; h/ 2 Al W �.f; h/ < 1g; Ac;reg D Al;reg \ Ac:

Denote by NAl;reg the closure of Al;reg in Al and by NAc;reg the closure of Ac;reg in Ac .
For each h 2 Cl.B1 � B2/ we define

Mh
l;reg D ff 2 Ml W �.f; h/ < 1g; Mh

c;reg D ff 2 Mc W �.f; h/ < 1g:

Denote by NMh
l;reg the closure of Mh

l;reg in Ml and by NMh
c;reg the closure of Mh

c;reg
in Mc .

We showed in [86,88] that Al;reg is an open subset of Al , Ac;reg is an open subset
of Ac , and for each h 2 Cl.B1�B2/, Mh

l;reg is an open subset of Ml , and Mh
c;reg is an

open subset of Mc . We consider the topological subspaces NAc;reg � Ac , NAl;reg � Al ,NMh
l;reg � Ml , NMh

c;reg � Mc .h 2 Cl.B1 � B2// with the relative topology.
In [86, 88] we established the following results which show that generically the

optimal control problem considered in this section has a unique solution.

Theorem 1.1. There exist a set Fl � NAl;reg which is a countable intersection of
open everywhere dense subsets of NAl;reg and a set Fc � NAc;reg \ Fl which is a
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countable intersection of open everywhere dense subsets of NAc;reg, such that for each
.f; h/ 2 Fl the following assertions hold:

1. �.f; h/ < 1, and there exists a unique .x.f;h/; u.f;h// 2 ˝ for which

I .f;h/.x.f;h/; u.f;h// D �.f; h/:

2. For each � > 0 there exist a neighborhoodU of .f; h/ in Al and a number ı > 0
such that for each .g; �/ 2 U and each .x; u/ 2 ˝ satisfying I .g;�/.x; u/ �
�.g; �/C ı, the following relation holds:

mesft 2 ŒT1; T2� W jx.t/ � x.f;h/.t/j C ju.t/ � u.f;h/.t/j � �g � �:

Note that by the Baire category theorem the set Fl is nonempty and in fact
everywhere dense in NAl;reg.

Theorem 1.2. Let � 2 Cl.B1 � B2/ be fixed and let Fl ;Fc be as guaranteed in
Theorem 1.1. Then there exist a set F�l � NM�

l;reg which is a countable intersection

of open everywhere dense subsets of NM�

l;reg and a set F�c � NM�
c;reg \ F

�

l which is a

countable intersection of open everywhere dense subsets of NM�
c;reg, such that

F
�

l � f�g � Fl :

It thus follows from Theorem 1.2 that for a fixed � 2 Cl.B1 � B2/ we have the
properties of existence, uniqueness, and stability for all pairs .f; �/ with f in F

�

l .
It should be mentioned that in [86,88] we established extensions of Theorems 1.1

and 1.2 for a class of optimal control problems with the Cinquini growth condition
[22] and for a class of optimal control problems with multiple integrals.

In this book we present several generalizations and extensions of Theorems 1.1
and 1.2.

In Chap. 2 we prove generic existence results for classes of optimal control
problems in which constraint maps are also subject to variations as well as
the cost functions. These results were obtained in [87, 90]. More precisely, we
establish generic existence results for classes of optimal control problems (with the
same system of differential equations, the same boundary conditions, and without
convexity assumptions) which are identified with the corresponding complete metric
spaces of pairs .f; U / (where f is an integrand satisfying a certain growth condition
and U is a constraint map) endowed with some natural topology. We will show that
for a generic pair .f; U / the corresponding optimal control problem has a unique
solution. In Sects. 2.1–2.9 we prove generic existence results for classes of optimal
control problems with integrands satisfying the Cesari growth condition obtained
in [87] while in Sects. 2.10–2.13 we prove generic existence results for classes of
optimal control problems with integrands satisfying the Cinquini growth condition
obtained in [90].

In [86, 88] we considered a class of optimal control problems which is identified
with the corresponding complete metric space of integrands, say F . We did not
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impose any convexity assumptions. The main result in [86,88] establishes that for a
generic integrand f 2 F the corresponding optimal control problem is well posed.
In Chap. 3 we study the set of all integrands f 2 F for which the corresponding
optimal control problem is well posed. We show that the complement of this set is
not only of the first category but also of a �-porous set. This result was obtained
in [89].

In Chap. 4 we study variational problems in which the values at the end points
are also subject to variations. Using the Baire category approach and the porosity
notion we show that most variational problems are well posed. In Sects. 4.1–4.5 we
prove generic results obtained in [92] while in Sects. 4.6–4.11 we prove porosity
results obtained in [93].

In Chap. 5 we prove a generic existence and uniqueness result for a class of
optimal control problems in which the right-hand side of differential equations is
also subject to variations as well as the integrands. The results of Chap. 5 were
obtained in [94].

In this book we usually consider topological spaces with two topologies where
one is weaker than the other. (Note that they can coincide.) We refer to them as
the weak and the strong topologies, respectively. If .X; d/ is a metric space with a
metric d and Y � X , then usually Y is also endowed with the metric d (unless
another metric is introduced in Y ). Assume that X1 and X2 are topological spaces
and that each of them is endowed with a weak and a strong topology. Then for the
product X1 � X2 we also introduce a pair of topologies: a weak topology which is
the product of the weak topologies of X1 and X2 and a strong topology which is the
product of the strong topologies of X1 and X2. If Y � X1, then we consider the
topological subspace Y with the relative weak and strong topologies (unless other
topologies are introduced). If .Xi ; di /, i D 1; 2 are metric spaces with the metrics d1
and d2, respectively, then the spaceX1�X2 is endowed with the metric d defined by

d..x1; x2/; .y1; y2// D d1.x1; y1/C d2.x2; y2/; .x1; x2/; .y1; y2/ 2 X1 �X2:

1.2 Lavrentiev Phenomenon

In Chaps. 6–9 we study nonoccurrence of the Lavrentiev phenomenon in optimal
control and in the calculus of variations.

The Lavrentiev phenomenon in the calculus of variations was discovered in 1926
by M. Lavrentiev in [45]. There it was shown that it is possible for the variational
integral of a two-point Lagrange problem, which is sequentially weakly lower semi-
continuous on the admissible class of absolutely continuous functions, to possess an
infimum on the dense subclass ofC1 admissible functions that is strictly greater than
its minimum value on the admissible class. Since this seminal work the Lavrentiev
phenomenon is of great interest. See, for instance, [1, 2, 8, 9, 21, 25, 26, 35, 49, 53,
60, 78–80] and the references mentioned there. Mania [53] simplified the original
example of Lavrentiev. Ball and Mizel [8, 9] demonstrated that the Lavrentiev
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phenomenon can occur with fully regular integrands. Sarychev [78] constructed a
broad class of integrands that exhibit the Lavrentiev phenomenon. Nonoccurrence
of the Lavrentiev phenomenon was studied in [1, 2, 25, 26, 35, 49, 79, 80].

Clarke and Vinter [25] showed that the Lavrentiev phenomenon cannot occur
when a variational integrand f .t; x; u/ is independent of t . Sychev and Mizel [80]
considered a class of integrands f .t; x; u/ which are convex with respect to the
last variable. For this class of integrands they established that the Lavrentiev
phenomenon does not occur.

Sarychev and Torres [79] studied a class of optimal control problems with
control-affine dynamics and with continuously differentiable integrands f .t; x; u/.
For this class of problems they established Lipschitzian regularity of minimizers
which implies nonoccurrence of the Lavrentiev phenomenon.

In [97] we studied nonoccurrence of Lavrentiev phenomenon for two classes of
nonconvex nonautonomous variational problems with integrands f .t; x; u/. For the
first class of integrands we proved the existence of a minimizing sequence of
Lipschitzian functions while for the second class we showed that an infimum on
the full admissible class is equal to the infimum on a set of Lipschitzian functions
with the same Lipschitzian constant. Here we present these results.

Assume that .X; jj � jj/ is a Banach space. Let �1 < �1 < �2 < 1. Denote
by W 1;1.�1; �2IX/ the set of all functions x W Œ�1; �2� ! X for which there exists a
Bochner integrable function u W Œ�1; �2� ! X such that

x.t/ D x.�1/C
Z t

�1

u.s/ds; t 2 .�1; �2�

(see, e.g., [16]). It is known that if x 2 W 1;1.�1; �2IX/, then this equation defines
a unique Bochner integrable function u which is called the derivative of x and is
denoted by x0.

We denote by mes.˝/ the Lebesgue measure of a Lebesgue measurable set˝ �
R1.

Let a; b 2 R1 satisfy a < b. Suppose that f W Œa; b� � X � X ! R1 is a
continuous function such that the following assumptions hold:

(A1) f .t; x; u/ � 	.jjujj/ for all .t; x; u/ 2 Œa; b� � X � X; where 	 W Œ0;1/ !
Œ0;1/ is an increasing function such that

lim
t!1	.t/=t D 1:

(A2) For each M; � > 0 there exist 
; ı > 0 such that

jf .t; x1; u/� f .t; x2; u/j � �maxff .t; x1; u/; f .t; x2; u/g
for each t 2 Œa; b�, each u 2 X satisfying jjujj � 
 and each x1; x2 2 X

satisfying

jjx1 � x2jj � ı; jjx1jj; jjx2jj � M:
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(A3) For each M; � > 0 there exists ı > 0 such that

jf .t; x1; y1/ � f .t; x2; y2/j � �

for each t 2 Œa; b� and each x1; x2; y1; y2 2 X satisfying

jjxi jj; jjyi jj � M; i D 1; 2

and
jjx1 � x2jj; jjy1 � y2jj � ı:

Let z1; z2 2 X . Denote by B the set of all functions v 2 W 1;1.a; bIX/ such that
v.a/ D z1, v.b/ D z2. Denote by BL the set of all v 2 B for which there is Mv > 0

such that

jjv0.t/jj � Mv for almost every t 2 Œa; b�:
Clearly for each v 2 B the function f .t; v.t/; v0.t//, t 2 Œa; b� is measurable. In [97]
we considered the variational problem

I.v/ WD
Z b

a

f .t; v.t/; v0.t//dt ! min; v 2 B

and established the following result.

Theorem 1.3. inffI.v/ W v 2 Bg D inffI.v/ W v 2 BLg:
It is not difficult to see that the following propositions hold.

Proposition 1.4. Let 	 W Œ0;1/ ! Œ0;1/ be an increasing function such that
limt!1 	.t/=t D 1, g W Œa; b� �X ! R1 be a continuous function such that

g.t; u/ � 	.kuk/ for all .t; u/ 2 Œa; b� �X;
and let h W Œa; b� �X ! Œ0;1/ be a continuous function. Assume that for � D g; h

the following property holds:

(A4) For eachM; � > 0 there exists ı > 0 such that

j�.t; x1/� �.t; x2/j � �

for each t 2 Œa; b� and each x1; x2 2 X satisfying

jjxi jj � M; i D 1; 2; jjx1 � x2jj � ı:

Then (A1)–(A3) hold with the function

f .t; x; u/ D h.t; x/C g.t; u/; .t; x; u/ 2 Œa; b� �X �X:
Proposition 1.5. Let 	 W Œ0;1/ ! Œ0;1/ be an increasing function such that
limt!1 	.t/=t D 1, g W Œa; b� �X ! R1 be a continuous function such that
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g.t; u/ � 	.kuk/ for all .t; u/ 2 Œa; b� �X;

and let h W Œa; b� �X ! Œ0;1/ be a continuous function such that

inffh.t; x/ W .t; x/ 2 Œa; b� �Xg > 0:

Assume that (A4) holds with � D g; h. Then the function f .t; x; u/ D g.t; u/h.t; x/,
.t; x; u/ 2 Œa; b� �X �X satisfies (A1)–(A3).

Corollary 1.6. Let X D Rn, 	 W Œ0;1/ ! Œ0;1/ be an increasing function
such that

lim
t!1	.t/=t D 1;

g W Œa; b� �X ! R1 be a continuous function such that

g.t; u/ � 	.kuk/ for all .t; u/ 2 Œa; b� �X; (1.1)

let h W Œa; b� �X ! Œ0;1/ be a continuous function such that

inffh.t; x/ W .t; x/ 2 Œa; b� �Xg > 0; (1.2)

and let

f .t; x; u/ D g.t; u/h.t; x/; .t; x; u/ 2 Œa; b� �X �X: (1.3)

Then

inffI.v/ W v 2 Bg D inffI.v/ W v 2 BLg:
It should be mentioned that there are many examples of integrands of the

form (1.3) for which the Lavrentiev phenomenon occurs. Corollary 1.6 shows that if
such integrands satisfy inequalities (1.1) and (1.2), then the Lavrentiev phenomenon
does not occur.

Now we present the second main result of [97].
Let a; b 2 R1, a < b. Suppose that f W Œa; b� � X � X ! R1 is a continuous

function which satisfies the following assumptions:

(B1) There is an increasing function 	 W Œ0;1/ ! Œ0;1/ such that

f .t; x; u/ � 	.jjujj/ for all .t; x; u/ 2 Œa; b� �X �X;
lim
t!1	.t/=t D 1:

(B2) For each M > 0 there exist positive numbers ı; L and an integrable
nonnegative scalar function  M.t/, t 2 Œa; b� such that for each t 2 Œa; b�,
each u 2 X , and each x1; x2 2 X satisfying

jjx1jj; jjx2jj � M; jjx1 � x2jj � ı
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the following inequality holds:

jf .t; x1; u/� f .t; x2; u/j � jjx1 � x2jjL.f .t; x1; u/C  M.t//:

(B3) For each M > 0 there is L > 0 such that for each t 2 Œa; b� and each
x1; x2; u1; u2 2 X satisfying jjxi jj; jjui jj � M , i D 1; 2 the following
inequality holds:

jf .t; x1; u1/� f .t; x2; u2/j � L.jjx1 � x2jj C jju1 � u2jj/:
Remark 1.7. It is not difficult to see that if (B2) holds with each  M bounded, then
f satisfies (A1)–(A3).

For each z1; z2 2 X denote by A.z1; z2/ the set of all x 2 W 1;1.a; bIX/ such that
x.a/ D z1, x.b/ D z2.

For each x 2 A set

I.x/ D
Z b

a

f .t; x.t/; x0.t//dt:

The next theorem is the second main result of [97].

Theorem 1.8. Let M > 0. Then there exists K > 0 such that for each z1; z2 2 X

satisfying jjz1jj; jjz2jj � M and each x.�/ 2 A.z1; z2/ the following assertion holds:
If mesft 2 Œa; b� W jjx0.t/jj > Kg > 0, then there exists y 2 A.z1; z2/ such that

I.y/ < I.x/ and jjy0.t/jj � K for almost every t 2 Œa; b�.
Remark 1.9. (B3) implies that f is bounded on any bounded subset of Œa; b� �
X � X .

It is not difficult to see that the following proposition holds.

Proposition 1.10. Let 	 W Œ0;1/ ! Œ0;1/ be an increasing function such that
limt!1 	.t/=t D 1, g W Œa; b� �X ! R1 be a continuous function such that

g.t; u/ � 	.kuk/ for all .t; u/ 2 Œa; b� �X;
and let h W Œa; b� �X ! Œ0;1/ be a continuous function such that

inffh.t; x/ W .t; x/ 2 Œa; b� �Xg > 0:
Assume that for � D g; h the following property holds:
For each M > 0 there is L > 0 such that for each t 2 Œa; b� and each

x1; x2; u1; u2 2 X satisfying jjxi jj; jjui jj � M , i D 1; 2 the following inequality
holds:

j�.t; x1/� �.t; x2/j � Ljjx1 � x2jj:
Then (B1)–(B3) hold with the function

f .t; x; u/ D h.t; x/g.t; u/; .t; x; u/ 2 Œa; b� �X �X:
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The work [97] became a starting point of the author’s research on nonoccurrence
of Lavrentiev phenomenon for nonconvex nonautonomous variational and optimal
control problems. The most important results which were obtained are presented in
Chaps. 6–9 of this book.

In Chap. 6 we study nonoccurrence of the Lavrentiev phenomenon for a
large class of nonconvex nonautonomous constrained variational problems. A state
variable belongs to a convex subsetH of a Banach space X with nonempty interior.
Integrands belong to a complete metric space of functions MB which satisfy a
growth condition common in the literature and are Lipschitzian on bounded sets.
We show nonoccurrence of the Lavrentiev phenomenon for most elements of MB

in the sense of Baire category. The results of Chap. 6 were obtained in [101].
In Chap. 7 we study nonoccurrence of the Lavrentiev phenomenon for a large

class of nonconvex optimal control problems which is identified with the corre-
sponding complete metric space of integrands M which satisfy a growth condition
common in the literature and are Lipschitzian on bounded sets. We establish that
for most elements of M (in the sense of Baire category) the infimum on the full
admissible class of trajectory-control pairs is equal to the infimum on a subclass
of trajectory-control pairs whose controls are bounded by a certain constant.
The results of Chap. 7 were obtained in [100].

In Chap. 8 we show nonoccurrence of the Lavrentiev phenomenon for a class of
nonconvex optimal control problems. We show that for most problems (in the sense
of Baire category) the infimum on the full admissible class of trajectory-control
pairs is equal to the infimum on a subclass of trajectory-control pairs with bounded
controls. This result was obtained in [103].

In Chap. 9 we show nonoccurrence of gap for two large classes of infinite-
dimensional linear control systems in a Hilbert space with nonconvex integrands.
These classes are identified with the corresponding complete metric spaces of
integrands which satisfy a growth condition common in the literature. For most
elements of the first space of integrands (in the sense of Baire category) we establish
the existence of a minimizing sequence of trajectory-control pairs with bounded
controls. We also establish that for most elements of the second space (in the sense
of Baire category) the infimum on the full admissible class of trajectory-control pairs
is equal to the infimum on a subclass of trajectory-control pairs whose controls are
bounded by a certain constant. The results of Chap. 9 were obtained in [104].

1.3 Turnpike Properties

Chapters 10–12 are devoted to turnpike theory and infinite horizon optimal control.
The study of the existence and the structure of (approximate) solutions of variational
and optimal control problems defined on infinite intervals and on sufficiently large
intervals has recently been a rapidly growing area of research [3–5,10,14,15,17,18,
34, 36, 38, 43, 46, 50, 52, 62, 64, 68].
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In this book we analyze the structure of solutions of the variational problems

Z T2

T1

f .t; z.t/; z0.t//dt ! min; z.T1/ D x; z.T2/ D y; (P )

z W ŒT1; T2� ! Rn is an absolutely continuous function;

where T1 � 0, T2 > T1, x; y 2 Rn, and f W Œ0;1/ � Rn � Rn ! R1 belong to a
space of integrands described in Chap. 11.

It is well known that the solutions of the problems (P ) exist for integrands f
which satisfy two fundamental hypotheses concerning the behavior of the integrand
as a function of the last argument (derivative): one that the integrand should grow
superlinearly at infinity and the other that it should be convex. For integrands f
which do not satisfy the convexity assumption the existence of solutions of the
problems (P ) is not guaranteed and in this situation we consider ı-approximate
solutions.

Let T1 � 0, T2 > T1, x; y 2 Rn, f W Œ0;1/ � Rn � Rn ! R1 be an integrand
and let ı be a positive number. We say that an absolutely continuous (a.c.) function
u W ŒT1; T2� ! Rn satisfying u.T1/ D x, u.T2/ D y is a ı-approximate solution of
the problem (P ) if

Z T2

T1

f .t; u.t/; u0.t//dt �
Z T2

T1

f .t; z.t/; z0.t//dt C ı

for each a.c. function z W ŒT1; T2� ! Rn satisfying z.T1/ D x; z.T2/ D y.
In Chaps. 10 and 11 we deal with the so-called turnpike property of the

variational problems (P ). To have this property means, roughly speaking, that the
approximate solutions of the problems (P ) are determined mainly by the integrand
(cost function) and are essentially independent of the choice of interval and end
point conditions, except in regions close to the end points.

Let us now give the precise definition of this notion.
We say that an integrand f D f .t; x; u/ 2 C.Œ0;1/ � Rn � Rn/ has the

turnpike property if there exists a continuous function Xf W Œ0;1/ ! Rn (called
the “turnpike”) which satisfies the following condition:

For each bounded set K � Rn and each � > 0 there exist constants T > 0 and
ı > 0 such that for each T1 � 0, each T2 � T1 C 2T , each x; y 2 K , and each ı-
approximate solution v W ŒT1; T2� ! Rn of the variational problem (P ) the relation
jv.t/ � Xf .t/j � � holds for all t 2 ŒT1 C T; T2 � T �.

Turnpike properties are well known in mathematical economics. The term was
first coined by Samuelson in 1948 (see [77]) where he showed that an efficient
expanding economy would spend most of the time in the vicinity of a balanced
equilibrium path (also called a von Neumann path). Many turnpike results are
collected in [99].

In this book we study the turnpike property of approximate solutions of the
problems (P ) with integrands f which belong to a complete metric space of
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functions M to be described in Chap. 11. We do not impose any convexity
assumption on f . This class of variational problems was studied in Chap. 2 of [99]
for integrands f which belong to a subset Mco of M. The subset Mco � M consists
of integrands f 2 M such that the function f .t; x; �/ W Rn ! R1 is convex for any
.t; x/ 2 Œ0;1/�Rn. In Chap. 2 of [99] we showed that the turnpike property holds
for a generic integrand f 2 Mco. Namely we established the existence of a set
Fco � Mco which is a countable intersection of open everywhere dense sets in Mco

such that each f 2 Fco has the turnpike property.
In this book we extend this turnpike result of [99] established for the space Mco

to the space of integrands M. We show the existence of a set F � M which is a
countable intersection of open everywhere dense sets in M such that each f 2 F
has the turnpike property. We show that an integrand f 2 F has a turnpike Xf
which is a bounded continuous function. This result was obtained in [96].

In Chap. 10, given an x0 2 Rn we study the infinite horizon problem of
minimizing the expression

R T
0
f .t; x.t/; x0.t//dt as T grows to infinity where

x W Œ0;1/ ! Rn satisfies the initial condition x.0/ D x0. We analyze the existence
and properties of approximate solutions for every prescribed initial value x0. We also
show that for every bounded set E � Rn the C.Œ0; T �/ norms of approximate
solutions x W Œ0; T � ! Rn for the variational problem on an interval Œ0; T �
with x.0/; x.T / 2 E are bounded by some constant which does not depend on
T . The results of the chapter were obtained in [95].

In Chap. 11 we study the turnpike property of approximate solutions of
variational problems with continuous integrands f W Œ0;1/ � Rn � Rn which
belong to a complete metric space of functions M.

In Chap. 12 we establish a turnpike property of approximate solutions for
a general class of discrete-time control systems without discounting and with a
compact metric space of states. This class of control systems is identified with
a complete metric space of objective functions. We show that for a generic objective
function approximate solutions of the corresponding control system possess the
turnpike property. This result was obtained in [107].

1.4 Examples

In this section we present examples of variational problems.

Example 1.11. Consider the variational problem

Z 1

0

Œ.x.t//2 C .x0.t//2�dt ! min

x W Œ0; 1� ! R1 is an a.c. function such that

x.0/ D 0; x.1/ D 0
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with the integrand f .t; x; u/ D x2 C u2, .t; x; u/ 2 R3. Clearly, the integrand f
satisfies the growth condition (A) of Sect. 1.1, f 2 Mc , and the function x�.t/ D 0,
t 2 Œ0; 1� is the unique solution of the variational problem.

Assume that � 2 .0; 1/ and an a.c. function x W Œ0; 1� ! R1 satisfies

x.0/ D 0; x.1/ D 0

and Z 1

0

Œ.x.t//2 C .x0.t//2�dt � �:

Then it is not difficult to see that

mesft 2 Œ0; 1� W jx.t/j C jx0.t/j � 2�1=4g � �1=2:

Example 1.12. Consider the variational problem

Z 1

0

Œ.x.t//2 C ..x0.t//2 � 1/2�dt ! min

x W Œ0; 1� ! R1 is an a.c. function such that

x.0/ D 0; x.1/ D 0

with the integrand f .t; x; u/ D x2 C .u2�1/2, .t; x; u/ 2 R3. Clearly, the integrand
f satisfies the growth condition (A) of Sect. 1.1 and f 2 Mc .

Let n be a natural number. There exists an a.c. function xn W Œ0; 1� ! R1 such
that for each integer i 2 Œ0; n�1�, xn is affine on the intervals Œin�1; .2iC1/.2n/�1�
and Œ.2i C 1/.2n/�1; .i C 1/n�1�, and

xn.in
�1/ D 0; xn..i C 1/n�1/ D 0; xn..2i C 1/.2n/�1/ D .2n/�1:

It is not difficult to see that
Z 1

0

Œ.xn.t//
2 C ..x0

n.t//
2 � 1/2�dt D

Z 1

0

.xn.t//
2dt � .2n/�1:

This implies that the infimum of our integral functional over the set of admissible
functions is zero. On the other hand, our variational problem does not have a
solution.

Since the Lipschitz constant of xn is 1 for any natural number n, the Lavrentiev
phenomenon does not hold for our variational problem.

Example 1.13. Let

f .t; x; u/ D .x � cos.t//2 C .u C sin.t//2; .t; x; u/ 2 R1 � R1 � R1
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and consider the family of the variational problems

Z T2

T1

Œ.v.t/ � cos.t//2 C .v0.t/C sin.t//2�dt ! min; (P )

v W ŒT1; T2� ! R1 is an absolutely continuous function

such that v.T1/ D y; v.T2/ D z;

where y; z; T1; T2 2 R1 and T2 > T1. The integrand f depends on t , for each t 2 R1
the function f .t; �; �/ W R2 ! R1 is convex, and for each x; u 2 R1nf0g the function
f .�; x; u/ W R1 ! R1 is nonconvex. Thus the function f W R1 � R1 � R1 ! R1 is
also nonconvex and depends on t .

Assume that y; z; T1; T2 2 R1, T2 > T1 C 2 and Ov W ŒT1; T2� ! R1 is an optimal
solution of the problem .P /. Note that the problem .P / has a solution since f is
continuous and f .t; x; �/ W R1 ! R1 is convex and grows superlinearly at infinity
for each .t; x/ 2 Œ0;1/ � R1.

Define v W ŒT1; T2� ! R1 by

v.t/ D y C .cos.1/� y/.t � T1/; t 2 ŒT1; T1 C 1�;

v.t/ D cos.t/; t 2 ŒT1 C 1; T2 � 1�;

v.t/ D cos.T2 � 1/C .t � T2 C 1/.z � cos.T2//; t 2 ŒT2 � 1; T2�:
It is easy to see that

Z T2�1

T1C1
f .t; v.t/; v0.t//dt D 0

and
Z T2

T1

f .t; Ov.t/; Ov0.t//dt �
Z T2

T1

f .t; v.t/; v0.t//dt

D
Z T1C1

T1

f .t; v.t/; v0.t//dt C
Z T2

T2�1
f .t; v.t/; v0.t//dt

� 2 supfjf .t; x; u/j W t; x; u 2 R1; jxj; juj � jyj C jzj C 1g:
Thus Z T2

T1

f .t; Ov.t/; Ov0.t//dt � c1.jyj; jzj/;

where

c1.jyj; jzj/ D 2 supfjf .t; x; u/j W t; x; u 2 R1; jxj; juj � jyj C jzj C 1g:
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For any � 2 .0; 1/ we have

mesft 2 ŒT1; T2� W jOv.t/ � cos.t/j > �g

� ��2
Z T2

T1

f .t; Ov.t/; Ov0.t//dt � ��2c1.jyj; jzj/:

Since the constant c1.jyj; jzj/ does not depend on T2 and T1 we conclude that if
T2 � T1 is sufficiently large, then the optimal solution Ov.t/ is equal to cos.t/ up to �
for most t 2 ŒT1; T2�. Moreover, we can show that

ft 2 ŒT1; T2� W jx.t/ � cos.t/j > �g � ŒT1; T1 C �� [ ŒT2 � �; T2�;

where � > 0 is a constant which depends only on �, jyj, and jzj.
Thus the integrandf has the turnpike property.



Chapter 2
Well-posedness of Optimal Control Problems
Without Convexity Assumptions

In this chapter we prove generic existence results for classes of optimal control
problems in which constraint maps are also subject to variations as well as
the cost functions. These results were obtained in [87, 90]. More precisely, we
establish generic existence results for classes of optimal control problems (with
the same system of differential equations, the same boundary conditions and without
convexity assumptions) which are identified with the corresponding complete metric
spaces of pairs .f; U / (where f is an integrand satisfying a certain growth condition
and U is a constraint map) endowed with some natural topology. We will show that
for a generic pair .f; U / the corresponding optimal control problem has a unique
solution.

In the theory developed here topologies on spaces of integrands and on spaces of
integrand–map pairs are of great importance. Actually one space of integrand–map
pairs, say A, considered here is a topological product of a space of integrands and a
space of multivalued maps. The values of these maps are elements of the space of all
nonempty convex closed subsets of a finite-dimensional Euclidean space endowed
with the Hausdorff distance. In the space of multivalued maps we consider the
topology of uniform convergence. For the space of integrands we consider weak and
strong topologies which induce weak and strong topologies on the space A. We will
prove the existence of a set A0 � A which is a countable intersection of open (in the
weak topology) everywhere dense (in the strong topology) sets such that for each
.f; U / 2 A0 the corresponding optimal control problem has a unique solution. In
fact we will establish our result for various spaces of integrands: the space of the so-
called LNB-measurable integrands, the space of lower semicontinuous integrands
and the space of continuous integrands, as well as their subspaces consisting of
integrands f .t; x; u/ differentiable in u and subspaces consisting of integrands
f .t; x; u/ differentiable in x and u. All these spaces are endowed with same weak
topology. Their strong topology is always stronger then the topology of uniform
convergence.

If we say that a function (set) is measurable we mean that it is Lebesgue
measurable.

A.J. Zaslavski, Nonconvex Optimal Control and Variational Problems,
Springer Optimization and Its Applications 82, DOI 10.1007/978-1-4614-7378-7 2,
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2.1 Optimal Control Problems with Cesari Growth
Condition

We use the following notations and definitions. Let k � 1 be an integer. We denote
by mes.E/ the Lebesgue measure of a measurable set E � Rk, by j � j the Euclidean
norm in Rk , and by < �; � > the scalar product in Rk. We use the convention that
1 � 1 D 0. For any f 2 Cq.Rk/ we set

jjf jjCq D jjf jjCq.Rk/ D sup
z2Rk

fj@j˛jf .z/=@x˛11 : : : @x
˛k
k j W (2.1)

˛i � 0 is an integer; i D 1; : : : ; k; j˛j � qg;

where j˛j D Pk
iD1 ˛i .

For each function f W X ! Œ�1;1� where X is nonempty, we set inf.f / D
infff .x/ W x 2 Xg. For each set-valued mapping U W X ! 2Y n f;g where X and
Y are nonempty, we set

graph.U / D f.x; y/ 2 X � Y W y 2 U.x/g: (2.2)

Let m; n;N � 1 be integers. We assume that ˝ is a fixed bounded domain in
Rm, H.t; x; u/ is a fixed continuous function defined on˝ � Rn �RN with values
in Rmn such that H.t; x; u/ D .Hi /

n
iD1 and Hi D .Hij /

m
jD1, i D 1; : : : n, B1 and

B2 are fixed nonempty closed subsets of Rn and �� D .��
i /
n
iD1 2 .W 1;1.˝//n is

also fixed. Here

W 1;1.˝/ D fu 2 L1.˝/ W @u=@xj 2 L1.˝/; j D 1; : : : mg

and W 1;1
0 .˝/ is the closure of C1

0 .˝/ in W 1;1.˝/, where C1
0 .˝/ is the space of

smooth functions u W ˝ ! R1 with compact support in ˝ [108].
If m D 1, then we assume that ˝ D .T1; T2/, where T1 and T2 are fixed real

numbers for which T1 < T2.
For a function u D .u1; : : : un/, where ui 2 W 1;1.˝/, i D 1; : : : n, we set

rui D .@ui =@xj /
m
jD1; i D 1; : : : n; ru D .rui /

n
iD1:

Define set-valued mappings QA W ˝ ! 2R
n n f;g and QU W ˝ � Rn ! 2R

N n f;g by

QA.t/ D Rn; t 2 ˝; QU .t; x/ D RN ; .t; x/ 2 ˝ �Rn: (2.3)

For each A W ˝ ! 2R
n n f;g and each U W graph.A/ ! 2R

N n f;g for
which graph.U / is a closed subset of the space ˝ � Rn � RN with the product
topology, we denote by X.A;U / the set of all pairs of functions .x; u/, where
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x D .x1; : : : ; xn/ 2 .W 1;1.˝//n, u D .u1; : : : uN / W ˝ ! RN is Lebesgue
measurable and the following relations hold:

x.t/ 2 A.t/; t 2 ˝ (a.e.); u.t/ 2 U.t; x.t//; t 2 ˝ (a.e.); (2.4a)

rx.t/ D H.t; x.t/; u.t//; t 2 ˝ (a.e.); (2.4b)

if m D 1; then x.Ti / 2 Bi ; i D 1; 2; (2.4c)

if m > 1 then x � �� 2 .W 1;1
0 .˝//n: (2.4d)

Note that in the definition of the space X.A;U / we use the boundary condi-
tion (2.4c) in the case m D 1 while in the case m > 1 we use the boundary
condition (2.4d). Both of them are common in the literature [12, 13, 17, 21].

We do this to provide a unified treatment for both cases. Note that we prove
our generic result in the case m D 1 for a class of Bolza problems (with the same
boundary condition (2.4c)) while in the case m > 1 it will be established for a class
of Lagrange problems (with the same boundary condition (2.4d)).

To be more precise, we have to define elements of X.A;U / as classes of pairs
equivalent in the sense that .x1; u1/ and .x2; u2/ are equivalent if and only if x2.t/ D
x1.t/; u2.t/ D u1.t/, t 2 ˝ (a.e.) If m D 1, then by an appropriate choice of
representatives,W 1;1.T1; T2/ can be identified with the set of absolutely continuous
functions x W ŒT1; T2� ! R1, and we will henceforth assume that this has been done.

Let A W ˝ ! 2R
n nf;g, U W graph.A/ ! 2R

N nf;g and let graph.U / be a closed
subset of the space ˝ � Rn � RN with the product topology.

For the set X.A;U / defined above we consider the uniformity which is deter-
mined by the following base:

EX.�/ D f..x1; u1/; .x2; u2// 2 X.A;U /�X.A;U / W (2.5)

mesft 2 ˝ W jx1.t/ � x2.t/j C ju1.t/ � u2.t/j � �g � �g;

where � > 0. It is easy to see that the uniform space X.A;U / is metrizable (by a
metric �) (see [44]). In the space X.A;U / we consider the topology induced by the
metric �.

Next we define spaces of integrands associated with the maps A and U . By
M.A;U / we denote the set of all functions f W graph.U / ! R1 [ f1g with
the following properties:

(i) f is measurable with respect to the �-algebra generated by products of
Lebesgue measurable subsets of ˝ and Borel subsets of Rn �RN .

(ii) f .t; �; �/ is lower semicontinuous for almost every t 2 ˝ .
(iii) For each � > 0 there exists an integrable scalar function  �.t/ � 0; t 2 ˝ ,

such that jH.t; x; u/j �  �.t/C �f .t; x; u/ for all .t; x; u/ 2 graph .U /.


