




PROGRAMMING THE
FINITE ELEMENT
METHOD





PROGRAMMING THE
FINITE ELEMENT
METHOD
Fifth Edition

I. M. Smith
University of Manchester, UK

D. V. Griffiths
Colorado School of Mines, USA

L. Margetts
University of Manchester, UK



This edition first published 2014
© 2014 John Wiley & Sons Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to
reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective
owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this
book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on
the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the
author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the
services of a competent professional should be sought.

Library of Congress Cataloguing-in-Publication Data

Smith, I. M. (Ian Moffat), 1940- author.
Programming the finite element method. – Fifth edition/Ian M. Smith, D. Vaughan Griffiths, Lee Margetts.

pages cm
Includes bibliographical references and index.
ISBN 978-1-119-97334-8 (hardback)

1. Finite element method–Data processing. 2. Engineering–Data processing. 3. FORTRAN 2003
(Computer program language) I. Griffiths, D. V., author. II. Margetts, Lee, author. III. Title.

TA347.F5S64 2014
620.001’51825–dc23

2013019445

A catalogue record for this book is available from the British Library.

ISBN: 978-1-119-97334-8

Set in 10/12pt Times by Laserwords Private Limited, Chennai, India.

1 2014

http://www.wiley.com


Contents

Preface to Fifth Edition xv

Acknowledgements xvii

1 Preliminaries: Computer Strategies 1
1.1 Introduction 1
1.2 Hardware 2
1.3 Memory Management 2
1.4 Vector Processors 3
1.5 Multi-core Processors 3
1.6 Co-processors 4
1.7 Parallel Processors 4
1.8 Applications Software 5

1.8.1 Compilers 5
1.8.2 Arithmetic 6
1.8.3 Conditions 7
1.8.4 Loops 8

1.9 Array Features 9
1.9.1 Dynamic Arrays 9
1.9.2 Broadcasting 9
1.9.3 Constructors 9
1.9.4 Vector Subscripts 10
1.9.5 Array Sections 11
1.9.6 Whole-array Manipulations 11
1.9.7 Intrinsic Procedures for Arrays 11
1.9.8 Modules 12
1.9.9 Subprogram Libraries 13
1.9.10 Structured Programming 15

1.10 Third-party Libraries 17
1.10.1 BLAS Libraries 17
1.10.2 Maths Libraries 17
1.10.3 User Subroutines 18
1.10.4 MPI Libraries 18

1.11 Visualisation 18
1.11.1 Starting ParaView 19
1.11.2 Display Restrained Nodes 20



vi Contents

1.11.3 Display Applied Loads 21
1.11.4 Display Deformed Mesh 21

1.12 Conclusions 23
References 24

2 Spatial Discretisation by Finite Elements 25
2.1 Introduction 25
2.2 Rod Element 25

2.2.1 Rod Stiffness Matrix 25
2.2.2 Rod Mass Element 28

2.3 The Eigenvalue Equation 28
2.4 Beam Element 29

2.4.1 Beam Element Stiffness Matrix 29
2.4.2 Beam Element Mass Matrix 31

2.5 Beam with an Axial Force 31
2.6 Beam on an Elastic Foundation 32
2.7 General Remarks on the Discretisation Process 33
2.8 Alternative Derivation of Element Stiffness 33
2.9 Two-dimensional Elements: Plane Stress 35
2.10 Energy Approach and Plane Strain 38

2.10.1 Thermoelasticity 39
2.11 Plane Element Mass Matrix 40
2.12 Axisymmetric Stress and Strain 40
2.13 Three-dimensional Stress and Strain 42
2.14 Plate Bending Element 44
2.15 Summary of Element Equations for Solids 47
2.16 Flow of Fluids: Navier–Stokes Equations 47
2.17 Simplified Flow Equations 50

2.17.1 Steady State 51
2.17.2 Transient State 53
2.17.3 Convection 53

2.18 Further Coupled Equations: Biot Consolidation 54
2.19 Conclusions 56

References 56

3 Programming Finite Element Computations 59
3.1 Introduction 59
3.2 Local Coordinates for Quadrilateral Elements 59

3.2.1 Numerical Integration for Quadrilaterals 61
3.2.2 Analytical Integration for Quadrilaterals 63

3.3 Local Coordinates for Triangular Elements 64
3.3.1 Numerical Integration for Triangles 65
3.3.2 Analytical Integration for Triangles 65

3.4 Multi-Element Assemblies 66
3.5 ‘Element-by-Element’ Techniques 68

3.5.1 Conjugate Gradient Method for Linear Equation Systems 68
3.5.2 Preconditioning 69



Contents vii

3.5.3 Unsymmetric Systems 70
3.5.4 Symmetric Non-Positive Definite Equations 71
3.5.5 Eigenvalue Systems 71

3.6 Incorporation of Boundary Conditions 72
3.6.1 Convection Boundary Conditions 74

3.7 Programming using Building Blocks 75
3.7.1 Black Box Routines 76
3.7.2 Special Purpose Routines 77
3.7.3 Plane Elastic Analysis using Quadrilateral Elements 77
3.7.4 Plane Elastic Analysis using Triangular Elements 81
3.7.5 Axisymmetric Strain of Elastic Solids 82
3.7.6 Plane Steady Laminar Fluid Flow 83
3.7.7 Mass Matrix Formation 83
3.7.8 Higher-Order 2D Elements 84
3.7.9 Three-Dimensional Elements 86
3.7.10 Assembly of Elements 90

3.8 Solution of Equilibrium Equations 95
3.9 Evaluation of Eigenvalues and Eigenvectors 96

3.9.1 Jacobi Algorithm 96
3.9.2 Lanczos and Arnoldi Algorithms 98

3.10 Solution of First-Order Time-Dependent Problems 99
3.11 Solution of Coupled Navier–Stokes Problems 103
3.12 Solution of Coupled Transient Problems 104

3.12.1 Absolute Load Version 105
3.12.2 Incremental Load Version 106

3.13 Solution of Second-Order Time-Dependent Problems 106
3.13.1 Modal Superposition 107
3.13.2 Newmark or Crank–Nicolson Method 109
3.13.3 Wilson’s Method 110
3.13.4 Complex Response 111
3.13.5 Explicit Methods and Other Storage-Saving Strategies 112
References 113

4 Static Equilibrium of Structures 115
4.1 Introduction 115

Program 4.1 One-dimensional analysis of axially loaded elastic rods
using 2-node rod elements 116

Program 4.2 Analysis of elastic pin-jointed frames using 2-node rod
elements in two or three dimensions 121

Program 4.3 Analysis of elastic beams using 2-node beam elements
(elastic foundation optional) 127

Program 4.4 Analysis of elastic rigid-jointed frames using 2-node
beam/rod elements in two or three dimensions 133

Program 4.5 Analysis of elastic–plastic beams or frames using
2-node beam or beam/rod elements in one, two or three
dimensions 141

Program 4.6 Stability (buckling) analysis of elastic beams using
2-node beam elements (elastic foundation optional) 150



viii Contents

Program 4.7 Analysis of plates using 4-node rectangular plate ele-
ments. Homogeneous material with identical elements. Mesh
numbered in x - or y-direction 153

4.2 Conclusions 157
4.3 Glossary of Variable Names 157
4.4 Exercises 159

References 168

5 Static Equilibrium of Linear Elastic Solids 169
5.1 Introduction 169

Program 5.1 Plane or axisymmetric strain analysis of a rectangular
elastic solid using 3-, 6-, 10- or 15-node right-angled triangles
or 4-, 8- or 9-node rectangular quadrilaterals. Mesh numbered
in x (r)- or y(z )-direction 170

Program 5.2 Non-axisymmetric analysis of a rectangular axisymmet-
ric elastic solid using 8-node rectangular quadrilaterals. Mesh
numbered in r- or z -direction 184

Program 5.3 Three-dimensional analysis of a cuboidal elastic solid
using 8-, 14- or 20-node brick hexahedra. Mesh numbered in
xz -planes then in the y-direction 191

Program 5.4 General 2D (plane strain) or 3D analysis of elastic solids.
Gravity loading option 196

Program 5.5 Plane or axisymmetric thermoelastic analysis of an elas-
tic solid using 3-, 6-, 10- or 15-node right-angled triangles or
4-, 8- or 9-node rectangular quadrilaterals. Mesh numbered in
x (r)- or y(z )-direction 205

Program 5.6 Three-dimensional strain of a cuboidal elastic solid using
8-, 14- or 20-node brick hexahedra. Mesh numbered in xz -
planes then in the y-direction. No global stiffness matrix assem-
bly. Diagonally preconditioned conjugate gradient solver 209

Program 5.7 Three-dimensional strain of a cuboidal elastic solid using
8-, 14- or 20-node brick hexahedra. Mesh numbered in xz -
planes then in the y-direction. No global stiffness matrix. Diag-
onally preconditioned conjugate gradient solver. Optimised
maths library, ABAQUS UMAT version 213

5.2 Glossary of Variable Names 221
5.3 Exercises 224

References 232

6 Material Non-linearity 233
6.1 Introduction 233
6.2 Stress–strain Behaviour 235
6.3 Stress Invariants 236
6.4 Failure Criteria 238

6.4.1 Von Mises 238
6.4.2 Mohr–Coulomb and Tresca 239

6.5 Generation of Body Loads 240
6.6 Viscoplasticity 240



Contents ix

6.7 Initial Stress 242
6.8 Corners on the Failure and Potential Surfaces 243

Program 6.1 Plane-strain-bearing capacity analysis of an elastic–plastic
(von Mises) material using 8-node rectangular quadrilaterals.
Flexible smooth footing. Load control. Viscoplastic strain method 244

Program 6.2 Plane-strain-bearing capacity analysis of an elastic–plastic
(von Mises) material using 8-node rectangular quadrilaterals.
Flexible smooth footing. Load control. Viscoplastic strain method.
No global stiffness matrix assembly. Diagonally preconditioned
conjugate gradient solver 250

Program 6.3 Plane-strain-bearing capacity analysis of an elastic–plastic
(Mohr–Coulomb) material using 8-node rectangular quadrilat-
erals. Rigid smooth footing. Displacement control. Viscoplastic
strain method 254

Program 6.4 Plane-strain slope stability analysis of an elastic–plastic
(Mohr–Coulomb) material using 8-node rectangular quadrilat-
erals. Gravity loading. Viscoplastic strain method 260

Program 6.5 Plane-strain earth pressure analysis of an elastic–plastic
(Mohr–Coulomb) material using 8-node rectangular quadrilat-
erals. Rigid smooth wall. Initial stress method 265

6.9 Elastoplastic Rate Integration 270
6.9.1 Forward Euler Method 272
6.9.2 Backward Euler Method 274

6.10 Tangent Stiffness Approaches 275
6.10.1 Inconsistent Tangent Matrix 275
6.10.2 Consistent Tangent Matrix 275
6.10.3 Convergence Criterion 276
Program 6.6 Plane-strain-bearing capacity analysis of an elastic–plastic

(von Mises) material using 8-node rectangular quadrilaterals.
Flexible smooth footing. Load control. Consistent tangent stiff-
ness. Closest point projection method (CPPM) 277

Program 6.7 Plane-strain-bearing capacity analysis of an elastic–plastic
(von Mises) material using 8-node rectangular quadrilaterals.
Flexible smooth footing. Load control. Consistent tangent stiff-
ness. CPPM. No global stiffness matrix assembly. Diagonally
preconditioned conjugate gradient solver 282

Program 6.8 Plane-strain-bearing capacity analysis of an elastic–plastic
(von Mises) material using 8-node rectangular quadrilaterals.
Flexible smooth footing. Load control. Consistent tangent stiff-
ness. Radial return method (RR) with ‘line search’ 286

6.11 The Geotechnical Processes of Embanking and Excavation 289
6.11.1 Embanking 289
Program 6.9 Plane-strain construction of an elastic–plastic

(Mohr–Coulomb) embankment in layers on a foundation using
8-node quadrilaterals. Viscoplastic strain method 290

6.11.2 Excavation 294



x Contents

Program 6.10 Plane-strain construction of an elastic–plastic
(Mohr–Coulomb) excavation in layers using 8-node quadrilat-
erals. Viscoplastic strain method 300

6.12 Undrained Analysis 305
Program 6.11 Axisymmetric ‘undrained’ strain of an elastic–plastic

(Mohr–Coulomb) solid using 8-node rectangular quadrilater-
als. Viscoplastic strain method 308

Program 6.12 Three-dimensional strain analysis of an elastic–plastic
(Mohr–Coulomb) slope using 20-node hexahedra. Gravity load-
ing. Viscoplastic strain method 313

Program 6.13 Three-dimensional strain analysis of an elastic–plastic
(Mohr–Coulomb) slope using 20-node hexahedra. Gravity load-
ing. Viscoplastic strain method. No global stiffness matrix
assembly. Diagonally preconditioned conjugate gradient solver 319

6.13 Glossary of Variable Names 322
6.14 Exercises 327

References 331

7 Steady State Flow 333
7.1 Introduction 333

Program 7.1 One-dimensional analysis of steady seepage using
2-node line elements 334

Program 7.2 Plane or axisymmetric analysis of steady seepage using
4-node rectangular quadrilaterals. Mesh numbered in x (r)- or
y(z )-direction 337

Program 7.3 Analysis of plane free surface flow using 4-node quadri-
laterals. ‘Analytical’ form of element conductivity matrix 344

Program 7.4 General two- (plane) or three-dimensional analysis of
steady seepage 351

Program 7.5 General two- (plane) or three-dimensional analysis of
steady seepage. No global conductivity matrix assembly. Diag-
onally preconditioned conjugate gradient solver 355

7.2 Glossary of Variable Names 359
7.3 Exercises 361

References 367

8 Transient Problems: First Order (Uncoupled) 369
8.1 Introduction 369

Program 8.1 One-dimensional transient (consolidation) analysis using
2-node ‘line’ elements. Implicit time integration using the ‘theta’
method 370

Program 8.2 One-dimensional transient (consolidation) analysis (set-
tlement and excess pore pressure) using 2-node ‘line’ elements.
Implicit time integration using the ‘theta’ method 373

Program 8.3 One-dimensional consolidation analysis using 2-node ‘line’
elements. Explicit time integration. Element by element. Lumped
mass 377



Contents xi

Program 8.4 Plane or axisymmetric transient (consolidation) analy-
sis using 4-node rectangular quadrilaterals. Mesh numbered
in x (r)- or y(z )-direction. Implicit time integration using the
‘theta’ method 380

Program 8.5 Plane or axisymmetric transient (consolidation) analy-
sis using 4-node rectangular quadrilaterals. Mesh numbered
in x (r)- or y(z )-direction. Implicit time integration using the
‘theta’ method. No global stiffness matrix assembly. Diago-
nally preconditioned conjugate gradient solver 388

Program 8.6 Plane or axisymmetric transient (consolidation) analy-
sis using 4-node rectangular quadrilaterals. Mesh numbered
in x (r)- or y(z )-direction. Explicit time integration using the
‘theta = 0’ method 390

Program 8.7 Plane or axisymmetric transient (consolidation) analy-
sis using 4-node rectangular quadrilaterals. Mesh numbered in
x (r)- or y(z )-direction. ‘theta’ method using an element-by-
element product algorithm 394

8.2 Comparison of Programs 8.4, 8.5, 8.6 and 8.7 397
Program 8.8 General two- (plane) or three-dimensional transient (con-

solidation) analysis. Implicit time integration using the ‘theta’
method 397

Program 8.9 Plane analysis of the diffusion–convection equation using
4-node rectangular quadrilaterals. Implicit time integration using
the ‘theta’ method. Self-adjoint transformation 401

Program 8.10 Plane analysis of the diffusion–convection equation
using 4-node rectangular quadrilaterals. Implicit time integra-
tion using the ‘theta’ method. Untransformed solution 405

Program 8.11 Plane or axisymmetric transient thermal conduction anal-
ysis using 4-node rectangular quadrilaterals. Implicit time inte-
gration using the ‘theta’ method. Option of convection and flux
boundary conditions 410

8.3 Glossary of Variable Names 416
8.4 Exercises 419

References 422

9 Coupled Problems 423
9.1 Introduction 423

Program 9.1 Analysis of the plane steady-state Navier–Stokes equation
using 8-node rectangular quadrilaterals for velocities coupled
to 4-node rectangular quadrilaterals for pressures. Mesh num-
bered in x -direction. Freedoms numbered in the order u − p − v 424

Program 9.2 Analysis of the plane steady-state Navier–Stokes equation
using 8-node rectangular quadrilaterals for velocities coupled
to 4-node rectangular quadrilaterals for pressures. Mesh num-
bered in x -direction. Freedoms numbered in the order u − p − v.
Element-by-element solution using BiCGStab(l) with no pre-
conditioning. No global matrix assembly 429



xii Contents

Program 9.3 One-dimensional coupled consolidation analysis of a Biot
poroelastic solid using 2-node ‘line’ elements. Freedoms num-
bered in the order v − uw 433

Program 9.4 Plane strain consolidation analysis of a Biot elastic solid
using 8-node rectangular quadrilaterals for displacements cou-
pled to 4-node rectangular quadrilaterals for pressures. Free-
doms numbered in order u − v − uw. Incremental load version 438

Program 9.5 Plane strain consolidation analysis of a Biot elastic solid
using 8-node rectangular quadrilaterals for displacements cou-
pled to 4-node rectangular quadrilaterals for pressures. Free-
doms numbered in order u − v − uw. Incremental load ver-
sion. No global stiffness matrix assembly. Diagonally precon-
ditioned conjugate gradient solver 445

Program 9.6 Plane strain consolidation analysis of a Biot poroelas-
tic–plastic (Mohr–Coulomb) material using 8-node rectangu-
lar quadrilaterals for displacements coupled to 4-node rectan-
gular quadrilaterals for pressures. Freedoms numbered in the
order u − v − uw. Viscoplastic strain method 448

9.2 Glossary of Variable Names 454
9.3 Exercises 459

References 460

10 Eigenvalue Problems 461
10.1 Introduction 461

Program 10.1 Eigenvalue analysis of elastic beams using 2-node beam
elements. Lumped mass 462

Program 10.2 Eigenvalue analysis of an elastic solid in plane strain
using 4- or 8-node rectangular quadrilaterals. Lumped mass.
Mesh numbered in y-direction 465

Program 10.3 Eigenvalue analysis of an elastic solid in plane strain
using 4-node rectangular quadrilaterals. Lanczos method. Con-
sistent mass. Mesh numbered in y-direction 469

Program 10.4 Eigenvalue analysis of an elastic solid in plane strain
using 4-node rectangular quadrilaterals with ARPACK. Lumped
mass. Element-by-element formulation. Mesh numbered in
y-direction 474

10.2 Glossary of Variable Names 477
10.3 Exercises 480

References 482

11 Forced Vibrations 483
11.1 Introduction 483

Program 11.1 Forced vibration analysis of elastic beams using 2-node
beam elements. Consistent mass. Newmark time stepping 483

Program 11.2 Forced vibration analysis of an elastic solid in plane
strain using 4- or 8-node rectangular quadrilaterals. Lumped
mass. Mesh numbered in the y-direction. Modal superposition 489



Contents xiii

Program 11.3 Forced vibration analysis of an elastic solid in plane
strain using rectangular 8-node quadrilaterals. Lumped or con-
sistent mass. Mesh numbered in the y-direction. Implicit time
integration using the ‘theta’ method 493

Program 11.4 Forced vibration analysis of an elastic solid in plane
strain using rectangular 8-node quadrilaterals. Lumped or con-
sistent mass. Mesh numbered in the y-direction. Implicit time
integration using Wilson’s method 498

Program 11.5 Forced vibration of a rectangular elastic solid in plane
strain using 8-node quadrilateral elements numbered in the
y-direction. Lumped mass, complex response 501

Program 11.6 Forced vibration analysis of an elastic solid in plane
strain using uniform size rectangular 4-node quadrilaterals.
Mesh numbered in the y-direction. Lumped or consistent mass.
Mixed explicit/ implicit time integration 504

Program 11.7 Forced vibration analysis of an elastic solid in plane
strain using rectangular 8-node quadrilaterals. Lumped or con-
sistent mass. Mesh numbered in the y-direction. Implicit time
integration using the ‘theta’ method. No global matrix assem-
bly. Diagonally preconditioned conjugate gradient solver 508

Program 11.8 Forced vibration analysis of an elastic–plastic (von
Mises) solid in plane strain using rectangular 8-node quadri-
lateral elements. Lumped mass. Mesh numbered in the
y-direction. Explicit time integration 512

11.2 Glossary of Variable Names 517
11.3 Exercises 521

References 522

12 Parallel Processing of Finite Element Analyses 523
12.1 Introduction 523
12.2 Differences between Parallel and Serial Programs 525

12.2.1 Parallel Libraries 525
12.2.2 Global Variables 526
12.2.3 MPI Library Routines 526
12.2.4 The _pp Appendage 527
12.2.5 Simple Test Problems 527
12.2.6 Reading and Writing 530
12.2.7 rest Instead of nf 532
12.2.8 Gathering and Scattering 533
12.2.9 Reindexing 533
12.2.10 Domain Composition 533
12.2.11 Third-party Mesh-partitioning Tools 534
12.2.12 Load Balancing 535
Program 12.1 Three-dimensional analysis of an elastic solid.

Compare Program 5.6 536
Program 12.2 Three-dimensional analysis of an elastoplastic

(Mohr–Coulomb) solid. Compare Program 6.13 542
Program 12.3 Three-dimensional Laplacian flow. Compare Program 7.5 548



xiv Contents

Program 12.4 Three-dimensional transient heat conduction–implicit
analysis in time. Compare Program 8.5 553

Program 12.5 Three-dimensional transient flow–explicit analysis in
time. Compare Program 8.6 562

Program 12.6 Three-dimensional steady-state Navier–Stokes analy-
sis. Compare Program 9.2 565

Program 12.7 Three-dimensional analysis of Biot poro elastic solid.
Incremental version. Compare Program 9.5 572

Program 12.8 Eigenvalue analysis of three-dimensional elastic solid.
Compare Program 103 576

Program 12.9 Forced vibration analysis of a three-dimensional elastic
solid. Implicit integration in time. Compare Program 11.7 581

Program 12.10 Forced vibration analysis of three-dimensional elasto
plastic solid. Explicit integration in time. Compare Program 11.8 585

12.3 Graphics Processing Units 589
Program 12.11 Three-dimensional strain of an elastic solid using

8-, 14- or 20-node brick hexahedra. No global stiffness matrix
assembly. Diagonally preconditioned conjugate gradient solver.
GPU version. Compare Program 5.7 589

12.4 Cloud Computing 594
12.5 Conclusions 596
12.6 Glossary of Variable Names 597

References 602

Appendix A Equivalent Nodal Loads 605

Appendix B Shape Functions and Element Node Numbering 611

Appendix C Plastic Stress-Strain Matrices and Plastic Potential Derivatives 619

Appendix D main Library Subprograms 623

Appendix E geom Library Subroutines 635

Appendix F Parallel Library Subroutines 639

Appendix G External Subprograms 645

Author Index 649

Subject Index 653



Preface to Fifth Edition
This edition maintains the successful theme of previous editions, namely a modular pro-
gramming style which leads to concise, easy to read computer programs for the solution
of a wide range of problems in engineering and science governed by partial differential
equations.

The programming style has remained essentially the same despite huge advances in
computer hardware. Readers will include beginners, making acquaintance with the finite
element method for the first time, and specialists solving very large problems using the
latest generation of parallel supercomputers.

In this edition special attention is paid to interfacing with other open access software,
for example ParaView for results visualisation, ABAQUS user subroutines for a range
of material constitutive models, ARPACK for large eigenvalue analyses, and METIS for
mesh partitioning.

Chapter 1 has been extensively rewritten to take account of rapid developments in com-
puter hardware, for example the availability of GPUs and cloud computing environments.
In Chapters 2 to 11 numerous additions have been made to enhance analytical options,
for example new return algorithms for elastoplastic analyses, more general boundary
condition specification and a complex response option for dynamic analyses.

Chapter 12 has been updated to illustrate the rapidly advancing possibilities for finite
element analyses in parallel computing environments. In the fourth edition the maxi-
mum number of parallel ‘processes’ used was 64 whereas in this edition the number has
increased to 64,000. The use of GPUs to accelerate computations is illustrated.





Acknowledgements

The authors wish to acknowledge the contributions of a number of individuals and
organizations. The support of the Australian Research Council Centre of Excellence for
Geotechnical Science and Engineering (CGSE) at the University of Newcastle NSW is
recognised, and particularly Jinsong Huang, who contributed to the development and val-
idation of several of the new and modified programs in Chapters 6, 8 and 9. Louise Lever
(University of Manchester), one of the principal ParaFEM developers, provided expertise
in the use of ParaView for Chapters 1, 5, 6 and 12 and set up the community building
website http://parafem.org.uk.

There were many contributions to Chapter 12. Llion Evans, Paul Mummery, Philip
Manning, Graham Hall and Dimitris Christias (all University of Manchester) provided
scientific case studies. Florent Lebeau and Francois Bodin (CAPS Entreprise) evaluated
the use of GPUs and Philippe Young (Simpleware Ltd) provided support in image-based
modelling.

Benchmarking of the programs in Chapter 12 was carried out using supercomputers
hosted by the UK National High Performance Computing Service “HECToR” (e107,
e254) and the UK Regional Service “N8 HPC” (EP/K000225/1). The EU FP7 project
“Venus-C” and Barcelona Supercomputing Center (Spain) provided access, resources and
training to use Microsoft Azure.

The authors would also like to thank family members for their support during prepara-
tion of the book, including Valerie Griffiths, Laura Sanchez and Nathan Margetts.

http://parafem.org.uk




1
Preliminaries: Computer Strategies

1.1 Introduction

Many textbooks exist which describe the principles of the finite element method of analysis
and the wide scope of its applications to the solution of practical engineering and scientific
problems. Usually, little attention is devoted to the construction of the computer programs
by which the numerical results are actually produced. It is presumed that readers have
access to pre-written programs (perhaps to rather complicated ‘packages’) or can write
their own. However, the gulf between understanding in principle what to do, and actually
doing it, can still be large for those without years of experience in this field.

The present book bridges this gulf. Its intention is to help readers assemble their
own computer programs to solve particular engineering and scientific problems by
using a ‘building block’ strategy specifically designed for computations via the finite
element technique. At the heart of what will be described is not a ‘program’ or a set
of programs but rather a collection (library) of procedures or subroutines which perform
certain functions analogous to the standard functions (SIN, SQRT, ABS, etc.) provided
in permanent library form in all useful scientific computer languages. Because of the
matrix structure of finite element formulations, most of the building block routines are
concerned with manipulation of matrices.

The building blocks are then assembled in different patterns to make test programs for
solving a variety of problems in engineering and science. The intention is that one of
these test programs then serves as a platform from which new applications programs are
developed by interested users.

The aim of the present book is to teach the reader to write intelligible programs and to
use them. Both serial and parallel computing environments are addressed and the building
block routines (numbering over 100) and all test programs (numbering over 70) have been
verified on a wide range of computers. Efficiency is considered.

The chosen programming language is FORTRAN which remains, overwhelmingly, the
most popular language for writing large engineering and scientific programs. Later in this
chapter a brief description of the features of FORTRAN which influence the programming
of the finite element method will be given. The most recent update of the language
was in 2008 (ISO/IEC 1539-1:2010). For parallel environments, MPI has been used,
although the programming strategy has also been tested with OpenMP, or a combination of
the two.

Programming the Finite Element Method, Fifth Edition. I. M. Smith, D. V. Griffiths and L. Margetts.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.



2 Programming the Finite Element Method

1.2 Hardware

In principle, any computing machine capable of compiling and running FORTRAN
programs can execute the finite element analyses described in this book. In practice,
hardware will range from personal computers for more modest analyses and teaching
purposes to ‘super’ computers, usually with parallel processing capabilities, for very
large (especially non-linear 3D) analyses. For those who do not have access to the
latter and occasionally wish to run large analyses, it is possible to gain access to such
facilities on a pay-as-you-go basis through Cloud Computing (see Chapter 12). It is a
powerful feature of the programming strategy proposed that the same software will run
on all machine ranges. The special features of vector, multi-core, graphics and parallel
processors are described later (see Sections 1.4 to 1.7).

1.3 Memory Management

In the programs in this book it will be assumed that sufficient main random access memory
is available for the storage of data and the execution of programs. However, the arrays
processed in finite element calculations might be of size, say, 1,000,000 by 10,000. Thus
a computer would need to have a main memory of 1010 words (tens of Gigabytes) to
hold this information, and while some such computers exist, they are comparatively rare.
A more typical memory size is of the order of 109 words (a Gigabyte).

One strategy to get round this problem is for the programmer to write ‘out-of-memory’
or ‘out-of-core’ routines which arrange for the processing of chunks of arrays in memory
and the transfer of the appropriate chunks to and from back-up storage.

Alternatively, store management is removed from the user’s control and given to the
system hardware and software. The programmer sees only a single level of virtual memory
of very large capacity and information is moved from secondary memory to main memory
and out again by the supervisor or executive program which schedules the flow of work
through the machine. It is necessary for the system to be able to translate the virtual
address of variables into a real address in memory. This translation usually involves a
complicated bit-pattern matching called ‘paging’. The virtual store is split into segments
or pages of fixed or variable size referenced by page tables, and the supervisor program
tries to ‘learn’ from the way in which the user accesses data in order to manage the
store in a predictive way. However, memory management can never be totally removed
from the user’s control. It must always be assumed that the programmer is acting in a
reasonably logical manner, accessing array elements in sequence (by rows or columns as
organised by the compiler and the language). If the user accesses a virtual memory of
1010 words in a random fashion, the paging requests will ensure that very little execution
of the program can take place (see, e.g., Willé, 1995).

In the immediate future, ‘large’ finite element analyses, say involving more than
10 million unknowns, are likely to be processed by the vector and parallel processing
hardware described in the next sections. When using such hardware there is usually a
considerable time penalty if the programmer interrupts the flow of the computation to
perform out-of-memory transfers or if automatic paging occurs. Therefore, in Chapter 3
of this book, special strategies are described whereby large analyses can still be pro-
cessed ‘in-memory’. However, as problem sizes increase, there is always the risk that



Preliminaries: Computer Strategies 3

main memory, or fast subsidiary memory (‘cache’), will be exceeded with consequent
deterioration of performance on most machine architectures.

1.4 Vector Processors

Early digital computers performed calculations ‘serially’, that is, if a thousand operations
were to be carried out, the second could not be initiated until the first had been completed
and so on. When operations are being carried out on arrays of numbers, however, it is
perfectly possible to imagine that computations in which the result of an operation on
two array elements has no effect on an operation on another two array elements, can be
carried out simultaneously. The hardware feature by means of which this is realised in a
computer is called a ‘pipeline’ and in general all modern computers use this feature to a
greater or lesser degree. Computers which consist of specialised hardware for pipelining
are called ‘vector’ computers. The ‘pipelines’ are of limited length and so for operations
to be carried out simultaneously it must be arranged that the relevant operands are actually
in the pipeline at the right time. Furthermore, the condition that one operation does not
depend on another must be respected. These two requirements (amongst others) mean
that some care must be taken in writing programs so that best use is made of the vector
processing capacity of many machines. It is, moreover, an interesting side-effect that
programs well structured for vector machines will tend to run better on any machine
because information tends to be in the right place at the right time (in a special cache
memory, for example).

True vector hardware tends to be expensive and, at the time of writing, a much more
common way of increasing processing speed is to execute programs in parallel on many
processors. The motivation here is that the individual processors are then ‘standard’ and
therefore cheap. However, for really intensive computations, it is likely that an amalga-
mation of vector and parallel hardware is ideal.

1.5 Multi-core Processors

Personal computers from the 1980s onwards originally had one processor with a single
central processing unit. Every 18 months or so, manufacturers were able to double the
number of transistors on the processor and increase the number of operations that could
be performed each second (the clock speed). By the 2000s, miniaturisation of the circuits
reached a physical limit in terms of what could be reliably manufactured. Another prob-
lem was that it was becoming increasingly difficult to keep these processors cool and
energy efficient. These design issues were side-stepped with the development of multi-
core processors. Instead of increasing transistor counts and clock speeds, manufacturers
began to integrate two or more independent central processing units (cores) onto the same
single silicon die or multiple dies in a single chip package. Multi-core processors have
gradually replaced single-core processors on all computers over the past 10 years.

The performance gains of multi-core processing depend on the ability of the application
to use more than one core at the same time. The programmer needs to write software to
execute in parallel, and this is covered later. These modern so-called ‘scalar’ computers
also tend to contain some vector-type hardware. The latest Intel processor has 256-bit
vector units on each core, enough to compute four 64-bit floating point operations at



4 Programming the Finite Element Method

the same time (modest compared with true vector processors). In this book, beginning at
Chapter 5, programs which ‘vectorise’ well will be illustrated.

1.6 Co-processors

Co-processors are secondary processors, designed to work alongside the main processor,
that perform a specific task, such as manipulating graphics, much faster than the host
‘general-purpose’ processor. The principle of specialisation is similar to vector processing
described earlier. Historically, the inclusion of co-processors in computers has come and
gone in cycles.

At the time of writing, graphics processing units (GPUs) are a popular way of accel-
erating numerical computations. GPUs are essentially highly specialised processors with
hundreds of cores. They are supplied as plug-in boards that can be added to standard
computers. One of the major issues with this type of co-processor is that data needs to
be transferred back and forth between the computer’s main memory and the GPU board.
The gains in processing speed are therefore greatly reduced if the software implementa-
tion cannot minimise or hide memory transfer times. To overcome this, processors are
beginning to emerge which bring the graphics processor onto the same silicon die. With
multiple cores, a hierarchical memory and special GPU units, these processors are referred
to as a ‘system on a chip’ and are the next step in the evolution of modern computers.

There are two main approaches to writing scientific software for graphics processing
units: (1) the Open Computing Language (OpenCL) and (2) the Compute Unified
Device Architecture (CUDA). OpenCL (http://www.khronos.org/opencl)
is an open framework for writing software that gives any application access to
any vendor’s graphics processing unit, as well as other types of processor. CUDA
(http://developer.nvidia.com/category/zone/cuda-zone) is a propri-
etary architecture that gives applications access to NVIDIA hardware only. The use of
graphics processing units is covered further in Chapter 12.

1.7 Parallel Processors

In this concept (of which there are many variants) there are several physically distinct
processing elements (a few cores in a processor or a lot of multi-core processors in a com-
puter, for example). These processors may also have access to co-processors. Programs
and/or data can reside on different processing elements which have to communicate with
one another.

There are two foreseeable ways in which this communication can be organised (rather
like memory management which was described earlier). Either the programmer takes
control of the communication process, using a programming feature called ‘message
passing’, or it is done automatically, without user control. The second strategy is of
course appealing but has not so far been implemented successfully.

For some specific hardware, manufacturers provide ‘directives’ which can be inserted
by users in programs and implemented by the compiler to parallelise sections of the
code (usually associated with DO-loops). Smith (2000) shows that this approach can be
quite effective for up to a modest number of parallel processors (say 10). However, such
programs are not portable to other machines.

A further alternative is to use OpenMP, a portable set of directives limited to a class
of parallel machines with so-called ‘shared memory’. Although the codes in this book

http://www.khronos.org/opencl
http://developer.nvidia.com/category/zone/cuda-zone


Preliminaries: Computer Strategies 5

have been rather successfully adapted for parallel processing using OpenMP (Pettipher
and Smith, 1997), the most popular strategy applicable equally to ‘shared memory’ and
‘distributed memory’ systems is described in Chapter 12. The programs therein have been
run successfully on multi-core processors, clusters of PCs communicating via ethernet
and on shared and distributed memory supercomputers with their much more expensive
communication systems. This strategy of message passing under programmer control
is realised by MPI (‘message passing interface’) which is a de facto standard, thereby
ensuring portability (MPI Web reference, 2003).

The smallest example of a shared memory machine is a multi-core processor which typ-
ically has access to a single bank of main memory. In parallel computers comprising many
multi-core processors, it is sometimes advantageous to use a hybrid programming strategy
whereby OpenMP is used to facilitate communication between local cores (within a single
processor) and MPI is used to communicate with remote cores (on other processors).

1.8 Applications Software

Since all computers have different hardware (instruction formats, vector capability, etc.)
and different store management strategies, programs which would make the most effec-
tive use of these varying facilities would of course differ in structure from machine to
machine. However, for excellent reasons of program portability and programmer training,
engineering and scientific computations on all machines are usually programmed in ‘high-
level’ languages which are intended to be machine-independent. FORTRAN is by far the
most widely used language for programming engineering and scientific calculations and
in this section a brief overview of FORTRAN will be given with particular reference to
features of the language which are useful in finite element computations.

Figure 1.1 shows a typical simple program written in FORTRAN (Smith, 1995).
It concerns an opinion poll survey and serves to illustrate the basic structure of the
language for those used to other languages.

It can be seen that programs are written in ‘free source’ form. That is, statements can
be arranged on the page or screen at the user’s discretion. Other features to note are:

• Upper- and lower-case characters may be mixed at will. In the present book, upper
case is used to signify intrinsic routines and ‘key words’ of FORTRAN.

• Multiple statements can be placed on one line, separated by ;.
• Long lines can be extended by & at the end of the line, and optionally another & at the

start of the continuation line(s).
• Comments placed after ! are ignored.
• Long names (up to 31 characters, including the underscore) allow meaningful identifiers.
• The IMPLICIT NONE statement forces the declaration of all variable and constant

names. This is a great help in debugging programs.
• Declarations involve the :: double colon convention.
• There are no labelled statements.

1.8.1 Compilers

The human-readable text in Figure 1.1 is turned into computer instructions using
a program called a ‘compiler’. There are a number of free compilers available



6 Programming the Finite Element Method

Figure 1.1 A typical program written in FORTRAN

that are suitable for students, such as G95 (www.g95.org) and GFORTRAN
(http://gcc.gnu.org/fortran/). Commercial FORTRAN compilers used in
the book include those supplied by Intel, Cray, NAG and the Portland Group. When
building an application on a supercomputer, use of the compiler provided by the vendor
is highly recommended. These typically generate programs that make better use of the
target hardware than free versions.

Figure 1.1 shows a Windows-based programming environment in which FORTRAN
programs can be written, compiled and executed with the help of an intuitive graphical
user interface. FORTRAN programs can also be written using a text editor and compiled
using simple commands in a Windows or Linux terminal. An example of how to compile
at the ‘command line’ is shown below. The compiler used is G95.

g95 –c hello.f90 Creates an object file named hello.o
g95 –o hello hello.f90 Compiles and links to create the executable hello

1.8.2 Arithmetic

Finite element processing is computationally intensive (see, e.g., Chapters 6 and 10) and
a reasonably safe numerical precision to aim for is that provided by a 64-bit machine

http://www.g95.org
http://gcc.gnu.org/fortran


Preliminaries: Computer Strategies 7

word length. FORTRAN contains some useful intrinsic procedures for determining, and
changing, processor precision. For example, the statement

iwp = SELECTED_REAL_KIND(15)

would return an integer iwp which is the KIND of variable on a particular processor
which is necessary to achieve 15 decimal places of precision. If the processor cannot
achieve this order of accuracy, iwp would be returned as negative.

Having established the necessary value of iwp, FORTRAN declarations of REAL
quantities then take the form

REAL(iwp)::a,b,c

and assignments the form

a=1.0_iwp; b=2.0_iwp; c=3.0_iwp

and so on.
In most of the programs in this book, constants are assigned at the time of declaration,

for example,

REAL(iwp)::zero=0.0_iwp,d4=4.0_iwp,penalty=1.0E20_iwp

so that the rather cumbersome _iwp extension does not appear in the main program
assignment statements.

1.8.3 Conditions

There are two basic structures for conditional statements in FORTRAN which are both
shown in Figure 1.1. The first corresponds to the classical IF ... THEN ... ELSE
structure found in most high-level languages. It can take the form:

name_of_clause: IF(logical expression 1)THEN
. first block
. of statements
.

ELSE IF(logical expression 2)THEN
. second block
. of statements
.

ELSE
. third block
. of statements
.

END IF name_of_clause

For example,

change_sign: IF(a/=b)THEN
a=-a

ELSE
b=-b

END IF change_sign



8 Programming the Finite Element Method

The name of the conditional statement, name_of_clause: or change_sign:
in the above examples, is optional and can be left out.

The second conditional structure involves the SELECT CASE construct. If choices are
to be made in particularly simple circumstances, for example, an INTEGER, LOGICAL
or CHARACTER scalar has a given value then the form below can be used:

select_case_name: SELECT CASE(variable or expression)
CASE(selector)

. first block

. of statements

.
CASE(selector)

. second block

. of statements

.
CASE DEFAULT

. default block

. of statements

.
END select_case_name

1.8.4 Loops

There are two constructs in FORTRAN for repeating blocks of instructions. In the first,
the block is repeated a fixed number of times, for example

fixed_iterations: DO i=1,n
. block
. of statements
.

END DO fixed_iterations

In the second, the loop is left or continued depending on the result of some condition.
For example,

exit_type: DO
. block
. of statements
.
IF(conditional statement)EXIT
. block
. of statements
.

END DO exit_type

or

cycle_type: DO
. block
. of statements
.
IF(conditional statement)CYCLE
. block
. of statements
.

END DO cycle_type



Preliminaries: Computer Strategies 9

The first variant transfers control out of the loop to the first statement after END DO.
The second variant transfers control to the beginning of the loop, skipping the remaining
statements between CYCLE and END DO.

In the above examples, as was the case for conditions, the naming of the loops is
optional. In the programs in this book, loops and conditions of major significance tend to
be named and simpler ones not.

1.9 Array Features

1.9.1 Dynamic Arrays

Since the 1990 revision, FORTRAN has allowed ‘dynamic’ declaration of arrays. That is,
array sizes do not have to be specified at program compilation time but can be ALLO-
CATEd after some data has been read into the program, or some intermediate results
computed. A simple illustration is given below:

PROGRAM dynamic
! just to illustrate dynamic array allocation
IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
! declare variable space for two dimensional array a
REAL,ALLOCATABLE(iwp)::a(:,:)
REAL(iwp)::two=2.0_iwp,d3=3.0_iwp
INTEGER::m,n
! now read in the bounds for a
READ*,m,n
! allocate actual space for a
ALLOCATE(a(m,n))
READ*,a ! reads array a column by column
PRINT*,two*SQRT(a)+d3
DEALLOCATE(a)! a no longer needed
STOP
END PROGRAM dynamic

This simple program also illustrates some other very useful features of the language.
Whole-array operations are permissible, so that the whole of an array is read in, or the
square root of all its elements computed, by a single statement. The efficiency with which
these features are implemented by practical compilers is variable.

1.9.2 Broadcasting

A feature called ‘broadcasting’ enables operations on whole arrays by scalars such as two
or d3 in the above example. These scalars are said to be ‘broadcast’ to all the elements
of the array so that what will be printed out are the square roots of all the elements of
the array having been multiplied by 2.0 and added to 3.0.

1.9.3 Constructors

Array elements can be assigned values in the normal way but FORTRAN also permits
the ‘construction’ of one-dimensional arrays, or vectors, such as the following:

v = (/1.0,2.0,3.0,4.0,5.0/)



10 Programming the Finite Element Method

which is equivalent to

v(1)=1.0; v(2)=2.0; v(3)=3.0; v(4)=4.0; v(5)=5.0

Array constructors can themselves be arrays, for example

w = (/v, v/)

would have the obvious result for the 10 numbers in w.

1.9.4 Vector Subscripts

Integer vectors can be used to define subscripts of arrays, and this is very useful in
the ‘gather’ and ‘scatter’ operations involved in the finite element method and other
numerical methods such as the boundary element method (Beer et al., 2008). Figure 1.2
shows a portion of a finite element mesh of 8-node quadrilaterals with its nodes numbered
‘globally’ at least up to 106 in the example shown. When ‘local’ calculations have to be
done involving individual elements, for example to determine element strains or fluxes,
a local index vector could hold the node numbers of each element, that is:

82 76 71 72 73 77 84 83 for element 65
93 87 82 83 84 88 95 94 for element 73

56

62

69

70

74

75

76 77

78 81

82

84

85 86
87

89

90

91

92
93

94
95

96 97

 99

100 104

105 106

element
65

element
73

102

73
67

57 58 59 60

65

61

66

71

64

63

68

80

79

83

88

98

103101

72

Figure 1.2 Portion of a finite element mesh with node and element numbers


