You have in your hands the third edition of the hugely popular Essential Guide to Blood Groups – the pocket-sized guide providing all the fundamental knowledge of blood groups needed by those working in transfusion medicine and science.

Attractively presented, this unique and practical manual:

• is written by leaders in the field, including the author of the bestselling Human Blood Groups
• helps in resolving commonly encountered problems
• covers serology, inheritance, biochemistry, and molecular genetics of the most important blood group systems, and up-to-date laboratory techniques used in blood grouping, troubleshooting and quality assurance

Essential Guide to Blood Groups
Abbreviations, x

1 An introduction to blood groups, 1
   What is a blood group?, 1
   Blood group antibodies, 3
   Clinical importance of blood groups, 3
   Biological importance of blood groups, 3
   Blood group systems, 4
   Blood group terminology and classification, 4

2 Techniques used in blood grouping, 8
   Factors affecting antigen–antibody reactions, 8
     Temperature, 8
     Time and ionic strength, 9
     pH, 9
     Antigen density, 9
   Stages of haemagglutination reactions, 10
   Direct agglutination, 11
   Indirect agglutination, 12
     Enzyme techniques, 12
     Antiglobulin tests, 14
   Elution techniques, 18
   Automation of test procedures, 19
   Flow cytometry, 19
   Molecular blood group genotyping, 21

3 The ABO blood groups, 22
   Introduction, 22
   ABO antigens, antibodies, and inheritance, 22
A₁ and A₂, 23
Antigen, phenotype, and gene frequencies, 24
ABO antibodies, 25
Importance of the ABO system to transfusion and transplantation medicine, 26
Biochemical nature of the ABO antigens, 27
Biosynthesis of the ABO antigens and ABO molecular genetics, 28
H, the precursor of A and B, 30
ABH secretion, 31
H-deficient red cells, 32
Further complexities, 32
Acquired changes, 33
Associations with disease and functional aspects, 34

4 The Rh blood group system, 35
Introduction – Rh, not rhesus, 35
Haplotypes, genotypes, and phenotypes, 36
Biochemistry and molecular genetics, 37
D antigen (RH1), 40
  Molecular basis of the D polymorphism, 40
  D variants, 41
  Clinical significance of anti-D, 42
  D testing, 44
C, c, E, and e antigens (RH2, RH4, RH3, RH5), 44
  Clinical significance of CcEe antibodies, 45
  Molecular basis of the C/c and E/e polymorphisms, 45
Other Rh antigens, 45
  Compound antigens: ce, Ce, CE, cE (RH6, RH7, RH22, RH27),
  and G (RH12), 46
  C⁺⁺, C⁺, and MAR (RH8, RH9, RH51), 46
  VS and V (RH20, RH10), 46
Rh-deficient phenotypes – Rh_null and Rh_mod, 47
Putative function of the Rh proteins and RhAG, 47

5 Other blood groups, 49
The Kell system, 49
  The Kell glycoprotein and the KEL gene, 49
  Kell system antigens, 50
  Kell system antibodies, 51
  K_, phenotype, 51
  McLeod syndrome, McLeod phenotype, and Kx (XK1) antigen, 52
The Duffy system, 52
   Fy^a (FY1) and Fy^b (FY2), 52
   Anti-Fy^a and -Fy^b, 53
   Fy3 and Fy5, 53
   The Duffy-glycoprotein, a receptor for chemokines, 53
   Duffy and malaria, 54

The Kidd system, 54
   Jk^a (JK1) and Jk^b (JK2); anti-Jka and -Jkb, 54
   Jk(a−b−) and Jk3, 55
   The Kidd-glycoprotein is a urea transporter, 55

The MNS system, 56
   M (MNS1) and N (MNS2); anti-M and -N, 56
   S (MNS3) and s (MNS4); anti-S and -s, 56
   S− s− U− phenotype and anti-U, 57
   Other MNS antigens and antibodies, 57

The Diego system, 57
   Band 3, the red cell anion exchanger, 57
   Di^a (DI1) and Di^b (DI2); anti-Dia and -Dib, 58
   Wr^a (DI3) and Wr^b (DI4); anti-Wra and -Wrb, 58
   Other Diego-system antigens, 59

The Lewis System, 59

Some other blood group systems, 61
   P1PK, 61
   Lutheran, 61
   Yt, 61
   Xg, 61
   Scianna, 61
   Dombrock, 62
   Colton, 62
   Landsteiner–Wiener (LW), 62
   Chido/Rodgers, 62
   Gerbich, 62
   Cromer, 63
   Knops, 63
   Indian, 63
   I, 63
   JR and Lan, 64
   Vel, 64

Antigens that do not belong to a blood group system, 64

6 Clinical significance of blood group antibodies, 65

   Antibody production and structure, 66
   Factors affecting the clinical significance of antibodies, 69
      Antibody specificity, 69
Haemolytic transfusion reactions (HTR), 71
   Intravascular red cell destruction, 72
   Extravascular red cell destruction, 72
Haemolytic disease of the fetus and newborn (HDFN), 73
   Crossmatching for infants under 4 months old, 75
Autoantibodies, 77
Tests to assess the potential significance of an antibody, 77
Decision-making for transfusion, 78

7 Blood grouping from DNA, 81
   Fetal blood grouping, 81
   Blood group typing of patients and donors, 82
   Next generation sequencing, 84
   The future of blood group serology, 84

8 Quality assurance in immunohaematology, 85
   Achieving total quality, 85
   Frequency and specificity of control material, 86
   Quality requirements for safe transfusion practice, 88
   Checklist of critical control points, 89
   Laboratory errors, root cause analysis (RCA), and corrective and preventive action (CAPA), 89

9 Trouble-shooting and problem-solving in the reference laboratory, 92
   ABO grouping, 92
   Rh grouping, 94
   Problems in antibody screening, identification, and crossmatching, 95

10 Frequently asked questions, 102
   What is the difference between sensitivity and specificity and how can these be determined?, 102
   Why is anti-A,B no longer obligatory in ABO typing?, 102
   Why are two anti-D reagents often recommended for RhD typing?, 103
   What is the importance of detecting D variant (weak D and partial D) phenotypes?, 103
   How do I control the results for antiglobulin testing?, 103
Why should RhD positive women be tested more than once during pregnancy?, 104
How often should transfusion recipients be tested for the presence of antibodies?, 104
How can passive anti-D be differentiated from anti-D due to alloimmunisation?, 104
Why do we need to perform antibody screening?
Isn’t a crossmatch by IAT at 37°C enough to detect incompatible blood?, 105
What is the incidence of alloimmunisation post-transfusion?, 105
How do I determine and identify antibodies present in a sample?, 105
What is a compound antibody?, 105
How can the incidence of compatible donors for a recipient with multiple antibodies be calculated?, 106
Why can’t the droppers in bottles of reagents be used instead of a volumetric pipette?, 106
What cells should be used when performing an antibody titration?, 107
How are the results of titrations reported?, 107
What is a Major Obstetric Haemorrhage?, 107
What is ‘Massive Transfusion’?, 107
When group-specific blood is in short supply, how do I select the ‘next best’ for transfusion?, 108
How are high-titre haemagglutinins classified?, 108
What is an ‘immediate spin’ crossmatch?, 108
What is an ‘electronic crossmatch’?, 108
Which patients are not eligible for electronic issue of blood?, 108
What is ‘bed-side’ testing?, 109
What are signs and symptoms of a suspected transfusion reaction?, 109
What action should be taken in the event of a suspected transfusion reaction?, 109
In haemovigilance, how should ‘near-miss’ events be characterised?, 109

Recommended reading and web sites, 111
Index, 113
Abbreviations

2ME 2-mercaptoethanol
ADCC antibody dependent cell-mediated cytotoxicity
AET 2-aminoethylisothiouronium bromide
AHG anti-human globulin
AIHA autoimmune haemolytic anaemia
AML acute myeloid leukaemia
CAPA corrective and preventive action
CGD chronic granulomatous disease
CHAD cold haemagglutinin disease
CLT chemiluminescence test
CMV cytomegalovirus
cv co-efficient of variation
DAF decay accelerating factor
DARC Duffy antigen receptor for chemokines
DAT direct antiglobulin test
DTT dithiothreitol
EDTA ethylenediaminetetraacetic acid
ETC enzyme treated cells
FMH feto-maternal haemorrhage
GP glycophorin
GPI glycosylphosphatidylinositol
HA haemolytic anaemia
Hb haemoglobin
HCT haematocrit
HDFN haemolytic disease of the fetus and newborn
HFA high frequency antigen
HLA human leucocyte antigen
HTR haemolytic transfusion reaction
IAT indirect antiglobulin test
ICAM intercellular adhesion molecule
Ig immunoglobulin
Abbreviations

IL interleukin
IS immediate spin
ISBT International Society of Blood Transfusion
IUT intrauterine transfusion
LFA low frequency antigen
LISS low ionic strength saline
MAC membrane attack complex
MCA middle cerebral artery
MGSA melanoma growth stimulatory activity
MMA monocyte monolayer assay
NANA N-acetylneuraminic acid
NISS normal ionic strength saline
PBS phosphate buffered saline
PCH paroxysmal cold haemoglobinuria
PCR polymerase chain reaction
PEG polyethylene glycol
PNH paroxysmal nocturnal haemoglobinuria
QA quality assurance
QC quality control
RBC red blood cell
RCA root cause analysis
SNP single nucleotide polymorphism
SOP standard operating procedure
TQM total quality management
WAIHA warm auto-immune haemolytic anaemia