The discovery of resistant starch represents one of the major developments in our understanding of the importance of carbohydrates for health in the past twenty years. There has been a steady increase in knowledge of its sources, uses and physiological effects, but more information is needed on the measurement and complex physiological functions of the various types. Resistant starch is now being incorporated into commercial foods as an ingredient to increase dietary fibre intake. Both commercial and natural sources of resistant starch have been linked to an array of health benefits, especially those related to gut health.

Resistant Starch: Sources, Applications and Health Benefits covers the intrinsic and extrinsic sources of resistant starch in foods, and compares different methods of measuring resistant starch, their strengths and limitations. Applications in different food categories are addressed by recognized academic researchers and industry experts. The book includes descriptions of how resistant starch performs in bakery, dairy, snack, breakfast cereals, pasta, noodles, confectionery, meat, processed food and beverage products. It also looks at the mechanism for improving intestinal health by resistant starch in comparison to prebiotic oligosaccharides and regular dietary fibres. Other chapters cover the impact of resistant starch on blood glucose response, safety and gut microbiota composition, as well as metabolism in animal models and individual human subjects, and the book reviews research conducted into the ways in which resistant starch can support the prevention of colon cancer. Resistant Starch: Sources, Applications and Health Benefits is unique in focusing on this versatile and important ingredient, which will be of great use to a wide range of food professionals, including food scientists, product developers and manufacturers.

About the editors
Yong-Cheng Shi is Associate Professor and Director, Carbohydrate Polymers - Technology and Product Innovation, Department of Grain Science and Industry, Kansas State University, USA.

Clodualdo C. Maningat is Vice President, Applications Technology and Technical Services, MGP Ingredients, Inc., USA, Department of Grain Science and Industry, Kansas State University, USA.

Also available from Wiley Blackwell
Oats Nutrition and Technology
Edited by YiFang Chu
ISBN 978-1-118-35411-7

Cereals and Pulses: Nutraceutical Properties and Health Benefits
Edited by Liangli L. Yu, Rong Tao and Fereidoon Shahidi
Resistant Starch
The IFT Press series reflects the mission of the Institute of Food Technologists — to advance the science of food contributing to healthier people everywhere. Developed in partnership with Wiley Blackwell, IFT Press books serve as leading-edge handbooks for industrial application and reference and as essential texts for academic programs. Crafted through rigorous peer review and meticulous research, IFT Press publications represent the latest, most significant resources available to food scientists and related agriculture professionals worldwide. Founded in 1939, the Institute of Food Technologists is a nonprofit scientific society with 18,000 individual members working in food science, food technology, and related professions in industry, academia, and government. IFT serves as a conduit for multidisciplinary science thought leadership, championing the use of sound science across the food value chain through knowledge sharing, education, and advocacy.

IFT Press Advisory Group
Nicolas Bordenave
YiFang Chu
J. Peter Clark
Christopher J. Doona
Jung Hoon Han
Florence Feeherry
Chris Findlay
David McDade
Thomas J. Montville
Karen Nachay
Martin Okos
David S. Reid
Sam Saguy
Fereidoon Shahidi
Cindy Stewart
Herbert Stone
Kenneth R. Swartzel
Bob Swientek
Hilary Thesmar
Yael Vodovotz
Ron Wrolstad

WILEY Blackwell
Resistant Starch
Sources, Applications and Health Benefits

Edited by

Yong-Cheng Shi
Department of Grain Science and Industry, Kansas State University, USA

Clodualdo C. Maningat
MGP Ingredients, Inc., USA; Department of Grain Science and Industry, Kansas State University, USA

IFT Press WILEY Blackwell
Titles in the IFT Press series

- *Accelerating New Food Product Design and Development* (Jacqueline H. Beckley, Elizabeth J. Topp, M. Michele Foley, J.C. Huang, and Witoon Prinyawiwatkul)
- *Advances in Dairy Ingredients* (Geoffrey W. Smithers and Mary Ann Augustin)
- *Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals* (Yoshinori Mine, Eunice Li - Chan, and Bo Jiang)
- *Biofilms in the Food Environment* (Hans P. Blaschek, Hua H. Wang, and Meredith E. Agle)
- *Calorimetry in Food Processing: Analysis and Design of Food Systems* (Gönül Kaletunç)
- *Coffee: Emerging Health Effects and Disease Prevention* (YiFang Chu)
- *Food Carbohydrate Chemistry* (Ronald E. Wrolstad)
- *Food Ingredients for the Global Market* (Yao-Wen Huang and Claire L. Kruger)
- *Food Irradiation Research and Technology, Second Edition* (Christoper H. Sommers and Xuetong Fan)
- *Foodborne Pathogens in the Food Processing Environment: Sources, Detection and Control* (Sadhana Ravishankar, Vijay K. Juneja, and Divya Jaroni)
- *High Pressure Processing of Foods* (Christopher J. Doona and Florence E. Feeherry)
- *Hydrocolloids in Food Processing* (Thomas R. Laaman)
- *Improving Import Food Safety* (Wayne C. Ellefson, Lorna Zach, and Darryl Sullivan)
- *Innovative Food Processing Technologies: Advances in Multiphysics Simulation* (Kai Knoerzer, Pablo Juliano, Peter Roupas, and Cornelis Versteeg)
- *Microbial Safety of Fresh Produce* (Xuetong Fan, Brendan A. Niemira, Christopher J. Doona, Florence E. Feeherry, and Robert B. Gravani)
- *Microbiology and Technology of Fermented Foods* (Robert W. Hutkins)
- *Multiphysics Simulation of Emerging Food Processing Technologies* (Kai Knoerzer, Pablo Juliano, Peter Roupas and Cornelis Versteeg)
- *Multivariate and Probabilistic Analyses of Sensory Science Problems* (Jean-François Meullenet, Rui Xiong, and Christopher J. Findlay)
- *Nanoscience and Nanotechnology in Food Systems* (Hongda Chen)
- *Natural Food Flavors and Colorants* (Mathew Attokaran)
- *Nondestructive Testing of Food Quality* (Joseph Irudayaraj and Christoph Reh)
- *Nondigestible Carbohydrates and Digestive Health* (Teresa M. Paeschke and William R. Aimutis)
- *Nonthermal Processing Technologies for Food* (Howard Q. Zhang, Gustavo V. Barbosa-Cánovas, V.M. Balasubramaniam, C. Patrick Dunne, Daniel F. Farkas, and James T.C. Yuan)
- *Nutraceuticals, Glycemic Health and Type 2 Diabetes* (Vijai K. Pasupuleti and James W. Anderson)
- *Organic Meat Production and Processing* (Steven C. Ricke, Ellen J. Van Loo, Michael G. Johnson, and Corliss A. O’Bryan)
- *Packaging for Nonthermal Processing of Food* (Jung H. Han)
- *Practical Ethics for the Food Professional: Ethics in Research, Education and the Workplace* (J. Peter Clark and Christopher Ritson)
- **Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions** (Ross C. Beier, Suresh D. Pillai, and Timothy D. Phillips, Editors; Richard L. Ziprin, Associate Editor)
- **Processing and Nutrition of Fats and Oils** (Ernesto M. Hernandez and Afaf Kamal-Eldin)
- **Processing Organic Foods for the Global Market** (Gwendolyn V. Wyard, Anne Plotto, Jessica Walden, and Kathryn Schuett)
- **Regulation of Functional Foods and Nutraceuticals: A Global Perspective** (Clare M. Hasler)
- **Resistant Starch: Sources, Applications and Health Benefits** (Yong-Cheng Shi and Clodualdo Maningat)
- **Sensory and Consumer Research in Food Product Design and Development** (Howard R. Moskowitz, Jacqueline H. Beckley, and Anna V.A. Resurreccion)
- **Sustainability in the Food Industry** (Cheryl J. Baldwin)
- **Thermal Processing of Foods: Control and Automation** (K.P. Sandeep)
- **Trait - Modified Oils in Foods** (Frank T. Orthoefer and Gary R. List)
- **Water Activity in Foods: Fundamentals and Applications** (Gustavo V. Barbosa-Cánovas, Anthony J. Fontana Jr., Shelly J. Schmidt, and Theodore P. Labuza)
- **Whey Processing, Functionality and Health Benefits** (Charles I. Onwulata and Peter J. Huth)

WILEY Blackwell
To my wife Lei and my son Gary – YCS

To my wife Josie, my daughter Barbara and my sister Susan – CCM
Contents

Preface xvii
About the Editors xix
List of Contributors xxi
Acknowledgements xxv

1 Starch Biosynthesis in Relation to Resistant Starch 1
Geetika Ahuja, Sarita Jaiswal and Ravindra N. Chibbar
1.1 Introduction 1
1.1.1 Starch components 1
1.1.2 Resistant starch 2
1.2 Factors Affecting Starch Digestibility 3
1.3 Starch Biosynthesis 4
1.4 Starch Biosynthesis in Relation to RS 6
1.4.1 ADP-glucose pyrophosphorylase (AGPase) 6
1.4.2 Starch synthases (SS) 6
1.4.3 Starch branching enzymes (SBE) 11
1.4.4 Starch debranching enzymes (DBE) 13
1.5 Concluding Remarks 13
Acknowledgements 15
References 15

2 Type 2 Resistant Starch in High-Amylose Maize Starch and its Development 23
Hongxin Jiang and Jey-lin Jane
2.1 Introduction 23
2.2 RS Formation in High-Amylose Maize Starch 28
2.3 RS Formation During Kernel Development 29
2.4 Elongated Starch Granules of High-Amylose Maize Starch 31
2.4.1 Structures of elongated starch granules 31
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.2 Formation of elongated starch granules</td>
<td>33</td>
</tr>
<tr>
<td>2.4.3 Location of RS in the starch granule</td>
<td>35</td>
</tr>
<tr>
<td>2.5 Roles of High-Amylose Modifier (HAM) Gene in Maize ae-Mutant</td>
<td>36</td>
</tr>
<tr>
<td>2.6 Conclusions</td>
<td>37</td>
</tr>
<tr>
<td>References</td>
<td>38</td>
</tr>
</tbody>
</table>

3 RS4-Type Resistant Starch: Chemistry, Functionality and Health Benefits 43
Clodualdo C. Maningat and Paul A. Seib

3.1 Introduction 43
3.2 Historical Account of Starch Indigestibility 44
3.3 Starch Modification Yielding Increased Resistance to Enzyme Digestibility 47
 3.3.1 Cross-linked RS4 starches 50
 3.3.2 Substituted RS4 starches 54
 3.3.3 Pyrodextrinized RS4 Starches 56
3.4 Physicochemical Properties Affecting Functionality 57
3.5 Physiological Responses and Health Benefits 60
3.6 Performance in Food and Beverage Products 65
3.7 Conclusions and Future Perspectives 68
References 68

4 Novel Applications of Amylose-Lipid Complex as Resistant Starch Type 5 79
Jovin Hasjim, Yongfeng Ai and Jay-lin Jane

4.1 Introduction 79
4.2 Enzyme Digestibility of Amylose-Lipid Complex 80
 4.2.1 Effects of lipid structure on the enzyme resistance of amylose-lipid complex 81
 4.2.2 Effects of the crystalline structure on the enzyme resistance of amylose-lipid complex 82
 4.2.3 Effects of amylose-lipid complex on the enzyme resistance of granular starch 82
4.3 Production of Resistant Granular Starch Through Starch-Lipid Complex Formation 83
 4.3.1 Effects of fatty-acid structure on the RS content 83
 4.3.2 Effects of debranching on the RS content 85
4.4 Applications of the RS Type 5 86
4.5 Health Benefits of RS Type 5 87
 4.5.1 Glycemic and insulinemic control 87
4.5.2 Colon cancer prevention
4.6 Conclusion
References

5 Digestion Resistant Carbohydrates
Annette Evans
5.1 Introduction
5.2 Starch Digestion
5.3 Physical Structures of Starch
5.3.1 Starch helices
5.3.2 Crystalline structures
5.3.3 Starch granule structure
5.4 Resistant Starch due to Physical Structure
5.5 Molecular Structure of Starch
5.6 Enzyme Resistance due to Molecular Structure
5.7 Conclusion
References

6 Slowly Digestible Starch and Health Benefits
Genyi Zhang and Bruce R. Hamaker
6.1 Introduction
6.2 SDS and Potential Beneficial Health Effects
6.2.1 Potential health benefit of SDS relative to RDS
6.3 The Process of Starch Digestion
6.3.1 Enzyme action
6.4 Structural and Physiological Fundamentals of SDS
6.4.1 Physical or food matrix structures related to SDS
6.4.2 Starch chemical structures leading to SDS
6.4.3 Other food factors that decrease digestion rate
6.4.4 Physiological control of food motility
6.5 Application-Oriented Strategies to Make SDS
6.5.1 Starch-based ingredients
6.5.2 SDS generation in a food matrix
6.6 Considerations
References

7 Measurement of Resistant Starch and Incorporation of Resistant Starch into Dietary Fibre Measurements
Barry V. McCleary
7.1 Introduction
7.2 Development of AOAC Official Method 2002.02
7.3 Development of an Integrated Procedure for the Measurement of Total Dietary Fibre

References

8 In Vitro Enzymatic Testing Method and Digestion Mechanism of Cross-linked Wheat Starch

Radhiah Shukri, Paul A. Seib, Clodualdo C. Maningat, and Yong-Cheng Shi

8.1 Introduction
8.2 Materials and Methods
8.2.1 Materials
8.2.2 General methods
8.2.3 Conversion of CL wheat starch to phosphodextrins and 31PNMR spectra of the phosphodextrins
8.2.4 Digestibility of CL wheat starch
8.2.5 Thermal properties
8.2.6 Microscopic observation
8.2.7 Scanning electron microscope (SEM)
8.2.8 Statistical analysis
8.3 Results and Discussion
8.3.1 Effects of α-amylase/amyloglucosidase digestion on P content and chemical forms of the phosphate esters on starch
8.3.2 Thermal properties
8.3.3 Starch granular morphology before and after enzyme digestion
8.3.4 Digestibility
8.4 Conclusions
8.5 Acknowledgements
8.6 Abbreviations Used in This Chapter
References

9 Biscuit Baking and Extruded Snack Applications of Type III Resistant Starch

Lynn Haynes, Jeanny Zimeri and Vijay Arora

9.1 Introduction
9.2 Thermal Characteristics of Heat-Shear Stable Resistant Starch Type III Ingredient
9.3 Application to Biscuit Baking: Cookies
9.4 Cracker Baking
9.5 Extruded Cereal Application
9.5.1 Preparation of extruded RTE cereal and analysis
References
10 Role of Carbohydrates in the Prevention of Type 2 Diabetes 191

Thomas M.S. Wolever

10.1 Introduction 191

10.2 Background 191

10.2.1 Definition of diabetes 191

10.2.2 Types of diabetes 192

10.2.3 Complications of diabetes 192

10.2.4 Prevalence of diabetes 192

10.2.5 Risk factors for type 2 diabetes 193

10.3 Carbohydrates and Risk of Type 2 Diabetes 193

10.3.1 Markers of carbohydrate quality 193

10.4 Pathogenesis of Type 2 Diabetes 195

10.5 Effect of Altering Source or Amount of Dietary Carbohydrate on Insulin Sensitivity, Insulin Secretion and Disposition Index 197

10.6 Mechanisms by Which Low-GI Foods Improve Beta-Cell Function 199

10.6.1 Glucose toxicity 199

10.6.2 Reduced serum free fatty acids (FFA) 200

10.6.3 Increased GLP-1 secretion 201

10.7 Conclusions 202

References 202

11 Resistant Starch on Glycemia and Satiety in Humans 207

Mark D. Haub

11.1 Introduction 207

11.2 Diet and Resistant Starch 208

11.3 Resistant Starch and Insulin Sensitivity 209

11.4 Current Theoretical Mechanism 209

11.5 Satiety 211

11.6 Fermentation and Gut Microbiota 212

11.7 Effect of RS Type 212

11.8 Summary 213

References 213

12 The Acute Effects of Resistant Starch on Appetite and Satiety 215

Caroline L. Bodinham and M. Denise Robertson

12.1 Appetite Regulation 215

12.2 Measurement of Appetite in Humans 216

12.3 Proposed Mechanisms for an Effect of Resistant Starch on Appetite 217
13 Metabolic Effects of Resistant Starch

Martine Champ

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Fermentation of RS and Its Impact on Colonic Metabolism</td>
<td>230</td>
</tr>
<tr>
<td>13.2 Resistant Starch, Glycemia, Insulinaemia and Glucose Tolerance</td>
<td>235</td>
</tr>
<tr>
<td>13.3 RS Consumption and Lipid Metabolism</td>
<td>236</td>
</tr>
<tr>
<td>13.4 RS Consumption, GIP, GLP-1 and PYY Secretion</td>
<td>238</td>
</tr>
<tr>
<td>13.5 RS Consumption, Satiety and Satiation and Fat Deposition</td>
<td>239</td>
</tr>
<tr>
<td>13.6 Conclusion</td>
<td>242</td>
</tr>
</tbody>
</table>

References

225

14 The Microbiology of Resistant Starch Fermentation in the Human Large Intestine: A Host of Unanswered Questions

Harry J. Flint

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Introduction</td>
<td>251</td>
</tr>
<tr>
<td>14.2 Identifying the Major Degraders of Resistant Starch in the Human GI Tract</td>
<td>252</td>
</tr>
<tr>
<td>14.2.1 The human colonic microbiota</td>
<td>252</td>
</tr>
<tr>
<td>14.2.2 Cultural studies</td>
<td>252</td>
</tr>
<tr>
<td>14.2.3 16S rRNA-based studies</td>
<td>253</td>
</tr>
<tr>
<td>14.3 Systems for Starch Utilization in Gut Bacteria</td>
<td>254</td>
</tr>
<tr>
<td>14.3.1 Bacteroides spp.</td>
<td>255</td>
</tr>
<tr>
<td>14.3.2 Bifidobacterium spp.</td>
<td>255</td>
</tr>
<tr>
<td>14.3.3 Lachnospiraceae - Roseburia spp., Eubacterium rectale and relatives</td>
<td>256</td>
</tr>
<tr>
<td>14.3.4 Ruminococcaceae</td>
<td>256</td>
</tr>
<tr>
<td>14.4 Metagenomics</td>
<td>256</td>
</tr>
<tr>
<td>14.5 Factors Influencing Competition for Starch as a Growth Substrate</td>
<td>257</td>
</tr>
<tr>
<td>14.6 Metabolite Cross-Feeding</td>
<td>258</td>
</tr>
<tr>
<td>14.7 Impact of Dietary Resistant Starch upon Colonic Bacteria and Bacterial Metabolites in Humans</td>
<td>259</td>
</tr>
<tr>
<td>14.8 Conclusions and Future Prospects</td>
<td>260</td>
</tr>
</tbody>
</table>

Acknowledgements

262

References

262
Since the term ‘dietary fibre’ was first coined in 1953, it has undergone several transformations with respect to its definition, composition, analytical methodology and physiological effects. Its heterogeneous composition of naturally-occurring non-starch polysaccharides, lignin and associated substances has grown to include other synthetic or novel fibres, comprising digestion-resistant dextrins and resistant starches. Because of this diverse composition, analysts are often confronted with the challenge of accurately quantifying the level of total dietary fibre of food or beverage products. Dietary fibre is now less frequently associated with bulk or regularity and is discussed much more conspicuously with its role in attenuation of glycemic/insulinemic responses, blood cholesterol lowering, satiety effects, weight management, large bowel fermentation and changes in gut microbiota composition and metabolism in regard to their impact on the general health and well-being of consumers.

Consumer demand for fibre-rich foods and beverages in the United States, Europe and Asia-Pacific is rising due primarily to the preponderance of positive epidemiological and scientific data and also an increase in consumer awareness and support from dieticians and nutritionists. Ironically, however, many Americans on average consume only about 50–60% of their recommended daily intake of 25 g of fibre.

Resistant starch (RS), in particular, has captivated leading research scientists and prominent educators, and their investigations have been featured prominently in scientific literature on fibre. Many research activities on RS highlighted its structure, composition, functionality, in vitro and in vivo studies and performance in food and beverage products. RS has five types or classes and, therefore, it provides diverse materials for research investigators. These, together with the commercial significance of RS, account for the abundance of published articles and inventions in the scientific and patent literature. Commercial sources of RS number around 30 – a substantial increase since the first RS product was introduced to the market in 1993.
The idea of writing this book was developed from the Carbohydrate Division Symposium on resistant starch and health during the 2009 IFT Annual Meeting in Anaheim, California. The symposium attracted speakers who are leading researchers and scientists from the academia and the food industry. In order to capture the important developments in RS, with emphasis on sources, applications and health benefits, the editors embarked on a project to write this book using the symposium papers plus the contribution of invited scientists and academic professionals who excel in this important area of RS.

There are 15 chapters in the book, covering various topics on RS, such as its biosynthesis, types or classes, slowly digestible starch, methodology for measurement and food applications, and also the physiological effects of RS, primarily in the area of glycemic/insulinemic control, appetite/satiety, gut microbiota metabolism and large bowel health. This book caters to a wide audience and can be a valuable resource for students, professors, research scientists, product developers and other food industry professionals, as they investigate the ever-growing area of RS and its diverse properties, numerous food and beverage applications, commercial significance and physiological effects.
Yong-Cheng Shi, Ph.D. is Professor and Director of the Carbohydrate Polymers – Technology and Product Innovation group in the Department of Grain Science and Industry at Kansas State University in Manhattan, Kansas. He has authored or co-authored more than 40 journal articles and book chapters and holds more than 15 patents. His research interests include: structure and properties of starches; physical, chemical, and enzymatic modifications of starches, biopolymers and flours; carbohydrate and health; starch digestibility, resistant starch and dietary fibre; ingredient functionality in cereal products; and developing technologies and products for food, nutrition, emulsion, encapsulation, pharmaceutical and other industrial applications.

Dr. Shi received his B.S. in Chemical Engineering from Zhejiang University (Hangzhou, China) and his M.S. and Ph.D. in Grain Science from Kansas State University (Manhattan, Kansas). He is a professional member of the American Association of Cereal Chemists International and Institute of Food Technologists. He is an associate editor for Cereal Chemistry and a member of Advisory Board for Starch and Food Digestion journals.

Clodualdo ‘Ody’ C. Maningat, Ph.D. is Vice President of Applications Technology and Technical Services at MGP Ingredients, Inc. in Atchison, Kansas and Adjunct Faculty Member in the Department of Grain Science and Industry at Kansas State University in Manhattan, Kansas. He is a member and former chair of the Advisory Board of the Food Processing Center of the University of Nebraska in Lincoln, Nebraska. He has authored or co-authored more than 25 journal articles and book chapters in grain and food science publications and holds more than 30 patents on grain-based technologies. His research and business interests include: chemistry, modification and functionality of starches and proteins; analysis and function of dietary fibres; value-addition concepts; technology of RS4-type resistant starch; physiological
benefits of grain-derived ingredients; and research alliances with scientists and product developers in the food industry, government and academia.

Dr. Maningat received his B.S. in Chemistry from Adamson University (Manila, Philippines), his M.S. in Agricultural Chemistry from the University of the Philippines at Los Banos (Laguna, Philippines) and his Ph.D. in Grain Science from Kansas State University (Manhattan, Kansas). He is a professional member of the American Association of Cereal Chemists International, Institute of Food Technologists, American Society of Baking and American Chemical Society.
List of Contributors

Geetika Ahuja
Department of Plant Sciences
College of Agriculture & Bioresources
University of Saskatchewan
Canada

Yongfeng Ai
Department of Food Science and Human Nutrition
Iowa State University
USA

Vijay Arora
Ingredient and Process Research
Mondelez International
USA

Diane F. Birt
Interdepartmental Graduate Program in Genetics
Department of Food Science and Human Nutrition
Nutrition and Wellness Research Center
Iowa State University
USA

Caroline L. Bodinham
Department of Nutritional Sciences
Faculty of Health and Medical Sciences
University of Surrey
UK

Martine Champ
INRA, UMR 1280
Physiologie des Adaptations Nutritionnelles
Universite de Nantes, CRNH, IMAD, CHU de Nantes, Nantes
France

Ravindra N. Chibbar
Department of Plant Sciences
College of Agriculture & Bioresources
University of Saskatchewan
Canada

Annette Evans
Innovation and Commercial Development
Tate & Lyle
USA
xxii List of Contributors

Harry J. Flint
Microbial Ecology Group
Rowett Institute of Nutrition and Health
University of Aberdeen
Aberdeen, UK

Bruce R. Hamaker
Whistler Center for Carbohydrate Research and Department of Food Science
Purdue University
USA

Jovin Hasjim
Queensland Alliance for Agriculture and Food Innovation
Centre for Nutrition and Food Sciences
The University of Queensland
Australia

Mark D. Haub
Department of Human Nutrition
Kansas State University
USA

Lynn Haynes
Ingredient and Process Research
Mondelez International
USA

Suzanne Hendrich
Interdepartmental Graduate Program in Genetics
Department of Food Science and Human Nutrition
Nutrition and Wellness Research Center
Iowa State University
USA

Sarita Jaiswal
Department of Plant Sciences
College of Agriculture & Bioresources
University of Saskatchewan
Canada

Jay-lin Jane
Department of Food Science and Human Nutrition
Iowa State University
USA

Hongxin Jiang
Department of Food Science and Human Nutrition
Iowa State University
USA

Li Li
Interdepartmental Graduate Program in Genetics
Department of Food Science and Human Nutrition
Nutrition and Wellness Research Center
Iowa State University
USA

Clodualdo C. Maningat
MGP Ingredients Inc., USA; Department of Grain Science and Industry
Kansas State University
USA

Barry V. McCleary
Megazyme International
Bray Business Park
Ireland
List of Contributors

M. Denise Robertson
Department of Nutritional Sciences
Faculty of Health and Medical Sciences
University of Surrey
UK

Paul A. Seib
Department of Grain Science and Industry
Kansas State University
USA

Yong-Cheng Shi
Carbohydrate Polymers – Technology and Product Innovation
Department of Grain Science and Industry
Kansas State University
USA

Radhiah Shukri
Department of Grain Science and Industry
Kansas State University
USA

Thomas M.S. Wolever
Department of Nutritional Sciences
University of Toronto
Canada; Division of Endocrinology and Metabolism
St. Michael’s Hospital
Canada

Genyi Zhang
School of Food Science and Technology
Jiangnan University
China

Yinsheng Zhao
Interdepartmental Graduate Program in Genetics
Department of Food Science and Human Nutrition
Nutrition and Wellness Research Center
Iowa State University
USA

Jeanny Zimeri
Ingredient and Process Research
Mondelez International
USA
Acknowledgements

We are profoundly grateful to the chapter authors for their expertise and their valuable contributions to make this book a reality. This is a tribute to their hard work and the countless hours devoted in writing the chapters. A number of scientists and academicians, to whom we extend sincere thanks, volunteered their time to review and provide critique to the book’s contents. They are as follows: Mike Gidley (University of Queensland), Ya-Jane Wang (University of Arkansas), David Robbins (University of Kansas Medical Center), Jens Walter (University of Nebraska, Lincoln), M. Denise Robertson (University of Surrey), Paul A. Seib (Kansas State University), Steve Pickman (Consultant) and Annette Evans (Tate & Lyle). The patience, accommodating attitude and excellent editorial assistance of Mr. David McDade, Ms. Becky Ayre, Mr. Sharib Asrar, Ms. Jasmine Chang and other Wiley staff are also gratefully acknowledged.
1 Starch Biosynthesis in Relation to Resistant Starch

Geetika Ahuja, Sarita Jaiswal and Ravindra N. Chibbar

Department of Plant Sciences, College of Agriculture & Bioresources, University of Saskatchewan, Canada

1.1 INTRODUCTION

1.1.1 Starch components

Starch is present in amyloplasts as semi-crystalline intracellular water-insoluble granules, with alternating crystalline and amorphous layers. Starch is a glucan homopolymer composed of one-quarter amylose (molecular mass 10^5–10^6 Da) and three-quarters amylopectin (molecular mass 10^7–10^9 Da), along with traces of lipids (0.1–1.0%) and proteins (0.05–0.5%). Amylose is essentially a linear glucan polymer, composed of α-1,4 linked glucose residues with a degree of polymerization (dp) ranging between 800 (in maize and wheat) to more than 4500 (in potato) with sparse branching (approximately one branch per 1000 residues) (Morrison & Karkalas, 1990; Alexander, 1995). Structural and functional aspects of these glucan polymers affect starch functionality and its end use.

Amylose chains are capable of forming single or double helices. On the basis of orientation of its fibres in X-ray diffraction studies, amylose can be divided into A- and B-type allomorphs (Galliard et al., 1987). In B-type allomorph, six double helices are packed in an anti-parallel hexagonal mode surrounding the central water channel (36 H_2O per unit cell). In A-type, the central water channel is replaced by another double helix, making the structure more compact. In this allomorph, only eight molecules of water per unit cell are inserted between the double helices (Galliard et al., 1987).

Amylopectin is a highly branched glucan polymer, in which α-1,4 linked glucose residues are interspersed with α-1,6-glucosidic linkages (4–5%).