Proceedings of the

Edited by

Steve Bruemmer
Peter Ford
Gary Was
Proceedings of the

Proceedings of the

Ninth International Symposium on
Environmental Degradation of Materials in
Nuclear Power Systems
—Water Reactors—

Proceedings of the Ninth International Symposium
On Environmental Degradation of Materials in
Nuclear Power Systems—Water Reactors
Sponsored by
The Minerals, Metals and Material Society
American Nuclear Society
National Association of Corrosion Engineers International

Edited by

Steve Bruemmer
Pacific Northwest National Laboratory
Richland WA

Peter Ford
General Electric Research & Development Center
Niskayuna, NY

Gary Was
Dept. of Nuclear Engineering & Radiological Sciences
University of Michigan, Ann Arbor, MI
CONFERENCE CO-SPONSORS

The Minerals, Metals and Material Society

American Nuclear Society

National Association of Corrosion Engineers International

CONFERENCE CONTRIBUTORS

Babcock and Wilcox, Canada

Battelle, USA

Dominion Engineering Inc., USA

EPRI, USA

Framatome, France

Institute for Energy Technology, Norway
1999 ORGANIZING COMMITTEE

General Chairman

Steve Bruemmer
Pacific Northwest National Laboratory

Technical Chairman

Peter Ford
General Electric R & D

Technical Vice Chairman

Gary Was
University of Michigan

Members & Session Chairmen

Ed Simonen
Pacific Northwest National Lab.

Robert Tapping
AECL Research

Gunter Bruemmer
HEW AG

Ron Horn
GE Nuclear Energy

Shunichi Suzuki
TEPCO R&D Center

Toshio Yonezawa
Mitsubishi Heavy Industries.

Friedrich Garzarolli
Siemens / KWU

John Hall
ABB Combustion Engineering

Phil Lichtenberger
Ontario Hydro Technologies

Geoff Airey
Nuclear Electric Ltd.

Chrstier Jansson
Swedpower

Francois DeKeroulas
Electricité de France

Gene Lucas
University of California

Tetsuo Shoji
Tohoku University

Charlie Thompson
Knolls Atomic Power Labs

Al McIlree
EPRI

Reviewers & Session Chairmen

Gunter Bruemmer
HEW AG

Larry Nelson
EPRI

Raj Pathania
EPRI

Roger Staehle
University of Minnesota

Shunichi Suzuki
TEPCO R&D Center

Hans-Peter Seifert
Paul Scherrer Institute

Peter Millett
EPRI

Hannu Hanninen
Technical Res. Centre of Finland

Paul Spellward
Magnox Electric

Ron Adamson
GE Nuclear Energy

Kjell Pettersson
Royal Institute of Technology

Mahvash Mirzai
Ontario Power Generation

vi
FOREWORD

The Ninth International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors was held in Newport Beach, California, August 1st-5th, 1999. As with the previous bi-annual meetings the conference provided a forum for the exchange of the results of research and plant operating experience associated with material degradation. The topics covered the degradation phenomena peculiar to the various reactor subsystems, i.e., BWRs, PWR primary, PWR secondary, as well as general materials aspects, e.g., degradation of low alloy steels and zircaloy, irradiation effects, etc. In view of the aging of the international light water reactor fleet, two new sessions were introduced; one dealing with regulation aspects associated with license renewal and life extension, and the other dealing with repair techniques.

The conference attracted 220 scientists and engineers from 18 countries representing the utilities, regulators, reactor vendors, regulators, national laboratories and universities, thereby attesting to the wide international support and interest in this conference topic. The number of papers presented (122), and the number that are published in the proceedings (128), was a marked increase over previous years.

The organizing committee dedicated a considerable amount of time establishing the conference structure and, with the session chairmen, coordinating and promoting the discussions during the presen-
TABLE OF CONTENTS

PWR Primary-1: Mechanisms

An Overview of Internal Oxidation as a Possible Explanation of Intergranular Stress Corrosion Cracking of Alloy 600 in PWRs ... 3
P.M. Scott

Methodology to Understand the Mechanisms of PWSCC .. 15
T. Yonezawa

Hydrogen Effects on PWR SCC Mechanisms in Monocrystalline and Polycrystalline Alloy 600 ... 27
T. Magnin, F. Font, and O. de Bouvier

Insights into Environmental Degradation Mechanisms from Analytical Transmission Electron Microscopy of SCC Cracks ... 41
L.E. Thomas and S.M. Bruemmer

Measurement of the Fundamental Parameters for the Film-Rupture/Oxidation Mechanism—The Effect of Chromium .. 49
S.A. Attanasio, J.S. Fish, W.W. Wilkening, P.M. Rosecrans, D.S. Morton, G.S. Was, and Y. Yi

Comparison of Hydrogen Effects on Alloy 600 and 690 ... 59
S. Smuk, H. Hänninen, Y. Jagodzinski, O. Tarasenko, and P. Aaltonen

Comments on a Proposed Mechanism of Internal Oxidation for Alloy 600 as Applied to Low Potential SCC ... 69
R.W. Staehle and Z. Fang

Internal Oxidation and Embrittlement of Alloy 600 ... 79
R.C. Newman, T.S. Gendron, and P.M. Scott

PWR Primary-2: Chemistry and Failure Analysis

The Effect of Primary Coolant Zinc Additions on the SCC Behaviour of Alloy 600 and 690 97
M.G. Angell, S.J. Allan, and G.P. Airey

PWSCC of Alloy 600: A Parametric Study of Surface Film Effects .. 105
C. Soustelle, M. Foucault, P. Combrade, K. Wolski, and T. Magnin

Modelling of Stress Corrosion Crack Initiation on Alloy 600 in Primary Water of PWRs 115
S. LeHong, C. Amzallag, and A. Gelpi
Effect of Water Chemistry on Environmentally Assisted Cracking in Alloy 600 in Simulated PWR Environments ... 125
P. Lidar, M. König, J. Engström, and K. Gott

Unique Primary Side Initiated Degradation in the Vicinity of the Upper Roll Transition in Once Through Steam Generators from Oconee Unit 1 133
J.P. Molkenthin, T.P. Magee, J.F. Hall, G.C. Fink, D. Rochester, and A. McIlree

PWR Primary-3: Hydrogen Effects & Microstructure

On the Possibility of Forming Ordered Ni$_2$Cr in Alloy 690 ... 143
T. Larsson, J.-O. Nilsson, and J. Frodigh

Hydrogen Embrittlement of PH 13-08 Mo Stainless Steel in PWR Environment
Effect of Microstructure .. 149
J.M. Cloué, M. Foucault and E. Andrieu

The Effect of Special Grain Boundaries on IGSCC of Ni-16Cr-9Fe-xC .. 157
B. Alexandreanu, B.M. Capell, and G.S. Was

Fracture Behavior of Nickel-Based Alloys in Water ... 167
W.J. Mills and C.M. Brown

Hydrogen-Assisted Failure of Alloys X-750 and 625 under Slow Strain-Rate Conditions 179

An Experimental Study of the Hydrogen Embrittlement of Alloy 718 in PWR Primary Water 189
J.G. Spilmont, J.M. Cloué, M. Foucault, B. Viguier, and E. Andrieu

A Study of Corrosion Mechanisms and Kinetics of Alloy 718 in PWR Primary Water 197
O. Brucelle, J.G. Spilmont, J.M. Cloué, M. Foucault, B. Viguier, and E. Andrieu

Stress Corrosion Crack Propagation Rate of Alloy 600 in the Primary Water of PWR: Influence of a Cold Worked Layer ... 207
O. Raquet and G. Santarini

PWR Primary-4: Crack Growth & Creep

Stress Corrosion Crack Growth Rate Measurements in Alloys 600 and 182 in Primary Water Loops Under Constant Load ... 217
T. Cassagne, D. Caron, J. Daret, and Y. Lefèvre
Initial Results on the Stress Corrosion Cracking Monitoring of Alloy 600 in High Temperature Water Using Acoustic Emission ... 225

T. Cassagne, D. Caron, J. Daret, A. Proust, H. Mazille, G. Turluer, and D. Boulanger

Stress Corrosion Crack Propagation Rates in Reactor Vessel Head Penetrations in Alloy 600 ... 235

C. Amzallag and F. Vaillant

Stress Corrosion Life Assessment of Alloy 600 PWR Components ... 243

C. Amzallag, S. LeHong, C. Pagès, and A. Gelpi

Influence of Chromium Content and Microstructure on Creep and PWSCC Resistance of Nickel Base Alloys .. 251

F. Vaillant, J.-D. Mithieux, O. de Bouvier, D. Vançon, G. Zacharie, Y. Brechet, and F. Louchet

A Simplified Model for SCC Initiation Susceptibility in Alloy 600, with the Influence of Cold Work Layer and Strength Characteristics ... 261

Y.S. Garud and R.S. Pathania

Creep of Nickel Base Alloys in High Temperature Water ... 269

Y. Yi, G.S. Was, J. Cookson, J.S. Fish, S.A. Antanasio, H.T. Krasodomski, and W.W. Wilkening

An Investigation of Alloy 182 Stress Corrosion Cracking in Simulated PWR Environment 279

W.H. Bamford, J.P. Foster, and R.S. Pathania

BWR-1: Cracking Response

Characteristics of Crack Propagation Through SCC under BWR Conditions in Stainless Steels Stabilized with Titanium or Niobium .. 299

J. Hickling, P.L. Andresen, R.M. Horn, and H. Hoffmann

Intergranular Stress Corrosion Cracking of Unsensitized Stainless Steels in BWR Environments ... 311

T.M. Angeliu, P.L. Andresen, E. Hall, J.A. Sutcliff, S. Sitzman, and R.M. Horn

Failed Components in the Ringhals 1 (BWR) Steam Separator .. 319

K. Norring, J. Lagerström, L. Storm, K. Norrgård, G. Embring, and M. Ölmeby

Stress Corrosion Cracking of Stabilized Austenitic Stainless Steels in Various Types of Nuclear Power Plants ... 325

M.O. Speidel and R. Magdowski
Initiation of Stress Corrosion Cracking in Alloys 600 and 182
A. Jenssen, M. Stigenberg, and L. Ljungberg

The Electrochemical Corrosion Potential and Stress Corrosion Cracking of
304 Stainless Steel under Low Hydrogen Peroxide Concentrations
Y. Wada, A. Watanabe, M. Tachibana, N. Uetake, and S. Uchida

Crack Growth of Stabilized Stainless Steels in O₂-Containing High Temperature
Water: Influence of Environmental and Material Conditions

BWR-2: Mechanism/Life Extension

Effect of Stress Biaxiality on SCC Growth Rate
S. Suzuki

Prediction of Environmentally Assisted Cracking and Its Relevance to Life
Management in BWRs

Stress Corrosion Cracking Initiation in Austenitic Stainless Steel in High
Temperature Water
K. Matocha and J. Wozniak

Effects of Acceleration Factors on the Probability Distribution
of Stress-Corrosion Crack Initiation Life for Alloys 600, 182, and 82 in
High-Temperature and High-Purity Water Environments
M. Akashi and G. Nakayama

Modeling the Accumulation and Mitigation of SCC Damage in BWRs
D.D. Macdonald and I. Balachov

BWR-3: SCC Data Quality & System Definition

SCC Testing and Data Quality Considerations
P.L. Andresen

Stress Corrosion Cracking of Sensitized Type 304 Stainless Steel 288C Water:
A Five Laboratory Round Robin
P.L. Andresen, K. Gott, and J.L. Nelson

First Lower Plenum ECP Measurement in an Operating BWR
S. Hettiarachchi, D.A. Hale, R. Burrill, I. Gorrochategui, R. Coello,
S. Suzuki, and M. Sambongi
The Effect of H₂O₂ on ECP Under a Variety of Flow Rate and Temperature .. 443
 M. Sambongi, S. Suzuki, N. Ichikawa, J. Takagi,
 K. Akamine, and M. Sakai

Corrosion Potential Monitoring in Swedish BWRs on Hydrogen Water Chemistry 453
 A. Molander, K. Pein, A.-L. Forsgren, and G. Karlberg

ECP Suppression Mechanism and ECP Simulation for a Small-Area Noble
Metal Deposition under Hydrogen Water Chemistry Conditions ... 461
 M. Sakai

BWR-4: Mitigation / Life Extension

Electrochemical Validity of Noble Metal Technology for BWR Application .. 469
 Y.-J. Kim

Effects of Cu and Zn on Catalytic Response of Noble Metal Doped 304 SS in 288°C Water 477
 Y.-J. Kim

Full Cycle Performance of a Noblechem™ Treated BWR ... 485
 S. Hettiarachchi, R.L. Cowan, R.J. Law, W.D. Miller, and T.P. Diaz

Effect of Corrosion Potential on the SCC Initiation Lifetime of Alloy 182 Weld Metal 493
 N. Saito, S. Tanaka, and H. Sakamoto

Effects of Mixed Metal Addition on Surface Film and Corrosion Prevention of
Stainless Steel in BWR Water .. 501
 Y. Saitoh, H. Midorikawa, T. Kikuchi, and T. Sakai

Intergranular Stress Corrosion Cracking of Platinum Coated Type 304 Stainless
Steels in High Temperature Water .. 511
 T.-K. Yeh, Y.-C. Lin, and C.-H. Tsai

Low Temperature Aging Embrittlement of CF-8 Stainless Steel .. 517
 L.M. Lietzan, M.D. Mathew, K.L. Murty and V.N. Shah

Closed-Loop Sidestreams for Investigating Corrosion Control using Regenerative
Biofilms (CCURB) in Service Water Systems ... 527
 K. Trandem, K. Ismail, P.J. Arps, and J.C. Earthman

The Predicted Effectiveness of Noble Metal Treatment at the Chinshan Boiling Water Reactor
 T.-K. Yeh, C. Chang, F. Chu and C.-S. Huang
 [Though this paper is topically relevant to BWR-4: Mitigation/Life Extension, it begins on page 1,211.]
PWR Secondary-1: System Definition

Experimental Simulation of Boiling Crevice Chemistry ... 537
 C.B. Bahn, I.S. Hwang, I.H. Rhee, U.C. Kim, and J.W. Na

Effects of the Feedwater Sodium/Chloride Ratio and Hydrazine on Crevice Corrosion 545
 J.B. Lumsden, G.A. Pollock, P.J. Millett, N. Torigoe, and H. Takamatsu

Secondary Side Corrosion of French PWR Steam Generator Tubing: Contribution
of Surface Analyses to the Understanding of the Degradation Process 555
 J.M. Boursier, M. Dupin, P. Gosset, and Y. Rouillon

Evidence for the Reduction of Sulfates Under Representative SG Secondary Side Conditions,
and for the Role of Reduced Sulfates on Alloy 600 Tubing Degradation .. 567
 J. Daret, T. Cassagne, Y. Lefèvre, T.Q. Tran, R. Benoit, and R. Erre

Study of Deposits and Corrosion Products in Secondary Side of Steam Generators
by Fourier Transform Infra Red Spectroscopy: Laboratory Study ... 577
 S. Chevalier, M. Organista, B. Sala, A. Gelpi, and R. Erre

Electrochemical Study of the Corrosion Processes of the Secondary Side of
Steam Generators ... 587
 B. Sala, S. Chevalier, A. Gelpi, H. Takenouti, and M. Keddam

PWR Secondary-2: Cracking Response

Role of Grain Boundary Characteristics in Caustic IGA/SCC Resistance of
Thermally Treated Alloy 690 and Shot-Peened Alloy 800 ... 601
 H. Kawamura, H. Hirano, S. Shirai, H. Takamatsu, T. Matsunaga,
 K. Yamaoka, K. Oshinden, and H. Takiguchi

Relationships Between Stress Corrosion Cracking Tests and Utility Operating Experience 611
 A. Baum

A Review of the Effects of Silica on Stress Corrosion Cracking of Steam Generator Tubes 619
 P.J. Prabhu

Top of Tubesheet Cracking in Bruce NGS Steam Generator Tubing:
An Assessment of Material and Environmental Factors ... 629
 M. Clark, O. Lepik, A. Brennanstuhl, M. Mirzai, and I. Thompson

Laboratory Examination Results from Oconee Nuclear Station Once Through
Steam Generator Tubes ... 639
 D.P. Rochester and R.W. Eaker
Corrosion Control and Lay-up of the Crystal River-3 Steam Generators and Secondary Plant during an Extended Outage ... 649
 R.H. Thompson and W.R. Kassen

Lead-Induced SCC Propagation Rates in Alloy 600 ... 657
 M.D. Wright and M. Mirzai

Characterization of Stabilized Stainless Steels Welds of PWR Piping Systems 667
 M. Widera, R. Kilian, R. Bartsch, H. Hoffmann, G. König, and O. Wächter

PWR Secondary-3: Mechanisms

Modeling the Secondary Side Corrosion of Tubings: A Help to the Maintenance Policy of PWR Steam Generators .. 679
 F. Vaillant, E.-M. Pavageau, M. Bouchacourt, J.-M. Boursier, and P. Lemaire

Development and Application of the SCC Parameter for Predicting SCC in the Secondary Side of Steam Generators ... 689
 Z. Fang and R.W. Staehle

Nickel Alloy Stress Corrosion Cracking in Neutral and Lightly Alkaline Sulfate Environments .. 695
 O. de Bouvier, B. Prieux, F. Vaillant, M. Bouchacourt, and P. Lemaire

Lead Assisted Stress Corrosion Cracking of Alloy 690 ... 703
 M.J. Psaila-Dombrowski, F.H. Hua, and P.E. Doherty

Regulation Aspects

EPRI R&D for Safe and Economic Long-Term Nuclear Plant Operation 713
 R.L. Jones, J. Carey, and C. Wood

The History of Cracking in the Reactor Coolant Pressure Boundary of Swedish BWR Plants 725
 K. Gott

Plant Life Management Programme Preparation for WWER-440/V-213C Units in Czech Republic .. 733
 M. Brumovsky, M. Ruscák, and J. Zdárek

Regulatory Perspective on Industry’s Response to Generic Letter 97-06, “Degradation of Steam Generator Internals” .. 741
 S. Coffin, M. Subudhi, and J. Higgins
Welding/Processing

Development of Compressive Residual Stresses in Underwater PTA Welds
Z. Feng, R. A. White, E. Willis, and H.D. Solomon

Development of Repair-Welding Technology for Irradiated Materials of LWR
K. Nakata, S. Kasahara, H. Takeda, and M. Oishi

Using an Abrasive Waterjet to Machine and Remediate Nuclear Components
J.B Hall, K.B. Stuckey, and S. Fyfitch

Surface Modification for PWSCC Prevention of Alloy 600 by a Laser Cladding Technique
S. Kasahara, M. Sato, T. Ohya, M. Kanikawa, and H. Kanasaki

Welding as a Repair Option for BWR In-Vessel Components

Low Alloy Steel—Embrittlement

Observations on Sensitivity of RPV Integrity Probabilistic Fracture Mechanics Evaluations to Input Parameters
A.L. Hiser, Jr., S.C.F. Sheng, and S.N. Malik

Irradiation Behavior of Electricité De France PWR Vessel Steel
C. Pichon, Y. Grandjean, S. Saillat, G. Bezdikian, and J.-M. Frund

Effects of Copper, Phosphorus and Nickel on Radiation Damage in ASTM A533-B Steel
M. Brumovsky

Understanding the Role of Defect Production in Radiation Embrittlement of Reactor Pressure Vessels

Effects of Neutron Irradiation on Positron Lifetime and Micro-Vicker Hardness of Fe-Cu Model Alloys and Reactor Pressure Vessel Steel

An Evaluation of Temper Embrittlement in A508 Grade 4N Steel
D.B. Knorr
Low Alloy Steel—EAC & Deformation

Stress Corrosion Cracking of Low Alloy Steels under BWR Conditions; Assessment of Crack Growth Rate Algorithms ... 855
F.P. Ford, R.M. Horn, J. Hickling, R. Pathania, and G. Bruemmer

LCF Crack Initiation in WB36 in High Temperature Water .. 865
H.D. Solomon, R.E. DeLair, and E. Tolksdorf

Stress Corrosion Cracking Tests of RPV Steels under Simultaneous BWR Coolant and Irradiation Conditions ... 875
M. Ruscák, J. Kysela, A. Brozová, O. Erben, M. Postler, G. Brümmer, H. Hoffmann, U.Ilg, and W. Rühle

Determination of EAC Threshold in Ferritic RPV Steel by Constant Load and Rising Displacement Methods ... 885
A. Brozová, M. Ruscák, and W. Dietzel

Evaluation of Crack Tip Solution Chemistry of Low Alloy Steel in Oxygenated High Temperature Water ... 893
Y. Lee, T. Shoji, and K.S. Raja

Stress Corrosion Cracking of Reactor Pressure Vessel Steels Under Boiling Water Reactor Conditions ... 901
J. Heldt and H.P. Seifert

European Round Robin on Constant Load EAC Tests of Low Alloy Steel under BWR Conditions ... 911

Radiation Effects on Stress Corrosion Cracking

Effect of Pre-Irradiation Grain Boundary Chemistry on IASCC .. 923

Irradiation-Assisted Stress Corrosion Cracking of Model Austenitic Stainless Steels 931
H.M. Chung, W.E. Ruther, R.V. Strain, W.J. Shack, and T.M. Karlsen

Intergranular Cracking of an Irradiated Ti-Stabilized Austenitic Stainless Steel Spacer Grid Sleeve from a VVER-440 Reactor .. 941
U. Ehmstén, P. Nenonen, P. Aaltonen, R. Teräsvirta, and O. Hietanen
Qualification and Application of Instrumented Specimens for In-Core Studies on Cracking Behaviour of Austenitic Stainless Steels ... 951
 T.M. Karlsen and E. Hauso

Neutron Irradiation Induced Changes in Percent Intergranular Stress Corrosion Cracking of Thermally-Sensitized Type 304 Stainless Steels ... 963
 T. Onchi, K. Hide, M. Mayuzumi, and T. Hoshiya

Cracking Mechanisms of Type 304L Stainless Steel Core Shroud Welds .. 973
 H.M. Chung, J.-H. Park, W.E. Ruther, R.V. Strain, J.E. Sanecki,
 N.J. Zaluzec, M.S. Yu, and T.T. Yang,

Development of a Comprehensive Material Performance Database (JMPD) and Analyses of Irradiation Assisted Stress Corrosion Cracking Data ... 987
 Y. Kaji, T. Tsukada, H. Tsuji, and H. Nakajima

Assessment of WWER Reactor Pressure Vessel Internals and Program of Lifetime Management ... 997
 M. Ruscák, M. Zamboch, and O. Erben

Radiation Effects on Deformation and Swelling

Radiation Hardening in Austenitic Stainless Steels Irradiated in LWRs ... 1,007
 D.J. Edwards, E.P. Simonen, and S.M. Bruemmer

Optimized Chemical Composition and Heat Treatment Conditions of 316 CW and High-Chromium Austenitic Stainless Steels for PWR Baffle Former Bolts .. 1,015
 T. Yonezawa, T. Iwamura, K. Fujimoto, and K. Ajiki

Irradiation Creep Behavior of High-Purity Stainless Steels and Ni-Base-Alloys ... 1,027
 F. Garzarolli, P. Dewes, S. Trapp-Pritsching, and J.L. Nelson

The Effect of Low Dose Rate Irradiation on the Swelling of 12% Cold-Worked 316 Stainless Steel ... 1,035

Void Swelling of Annealed 304 Stainless Steel at ~370-385°C and PWR-Relevant Displacement Rates ... 1,045
 and D.L. Porter

Void Swelling at Low Displacement Rates in Annealed X18H10T Stainless Steel at 30-56 DPA and 280-332°C ... 1,051
 F. Garner, S.I. Porollo, A.N. Vorobjev, Y.V. Konobeev, and A.M. Dvoriashin

xx
Neutron-Induced Swelling and Embrittlement Behavior of Two Russian Stainless Steels at PWR-Relevant Temperatures and 65–85 DPA ... 1,061
 S.I. Porollo, A.M. Dvorianshin, A.N. Vorobjev, V.M. Krigan,
 Y.V. Konobeev, F. Garner, N.I. Budylkin, and E. Mironova

Effects of Neutron Irradiation on Deformation Behavior of Nickel-Base Fastener Alloys 1,069
 R. Bajaj, W.J. Mills, B.F. Kammenzind, and M.G. Burke

Radiation Effects on Microstructure and Microchemistry

Microstructural, Microchemical and Hardening Evolution in LWR-Irradiated
Austenitic Stainless Steels .. 1,079
 S.M. Bruemmer, D.J. Edwards, B.W. Arey, and L.A. Charlot

Microchemistry and Microstructure Evolution in Proton-Irradiated Austenitic Stainless Steels 1,089
 J.T. Busby, J. Gan, M. Daniels, G.S. Was, S.M. Bruemmer,
 D.J. Edwards, and E.A. Kenik

Comparison of Radiation Induced Degradation in Several Austenitic Stainless Steels Used for Core Internals in LWR ... 1,099
 T. Aoki, T. Fukuda, Y. Isobe, A. Hasegawa, M. Sato, K. Abe,
 K. Matsueda, and Y. Nishida

Local Evolution of Microstructure and Microchemistry Near Grain Boundaries
in Irradiated Austenitic Stainless Steels ... 1,107
 E.P. Simonen, D.J. Edwards, and S.M. Bruemmer

Effects of Minor Elements and Thermal Treatment on EAC of Austenitic Simulating Steels in PWR Primary Water and Implication to IASCC ... 1,115
 G. Li, H. Kaneshima, and T. Shoji

Studies on Surface Oxide Films of Stainless Steels Having Simulated Post-Irradiated
Grain Boundary Chemistries .. 1,125
 K.S. Raja, T. Masuda, T. Shoji, and Y. Lee

Zircaloy

The Use of Impedance Spectroscopy to Follow the Effect of Lithium on Zirconium Oxide Behavior .. 1,137
 B. Albinet, B. Sala, M. Organista, and A. Frichet

AC Impedance Characteristics of Oxide Film on Zirconium .. 1,145
 J.Y. Lim, B.C. Han, and I. S. Hwang

Amorphization of Laves-Phase Precipitates in Zircaloy-4 by Neutron Irradiation 1,153
 D.F. Taylor, H.R. Peters, and W.J.S. Yang
A Simple Kinetic Model of Zircaloy Zr(Fe,Cr)₂ Precipitate Amorphization during Neutron Irradiation ... 1,161
 D.F. Taylor, H.R. Peters, and W.J.S. Yang

Characteristics of Axial Splits in Failed BWR Fuel Rods ... 1,169
 G. Lysell and V. Grigoriev

On the Indications of Shear Fracture at the Tip of an Axial Notch in Zircaloy Cladding 1,177
 V. Grigoriev and K. Pettersson

The Fracture of Zircaloy-2 Plate and Fuel Cladding Tubing in Hydrogen Gas 1,183

On the Mechanism of Axial Splits in Failed BWR Fuel Rods ... 1,191
 K. Edsinger, S. Vaidyanathan, and R.B. Adamson

Studies on Delayed Hydride Cracking of Zircaloy Cladding ... 1,201
 K.R. Pettersson, K. Kese, and P. Efsing

The Predicted Effectiveness of Noble Metal Treatment at the Chinshan Boiling Water Reactor 1,211
 T.-K. Yeh, C. Chang, F. Chu and C.-S. Huang

Author Index ... 1,225
PWR PRIMARY-1
MECHANISMS

SESSION CHAIRS
G. Airey, British Energy, U.K.
C. Thompson, KAPL, U.S.A.
AN OVERVIEW OF INTERNAL OXIDATION AS A POSSIBLE EXPLANATION OF INTERGRANULAR STRESS CORROSION CRACKING OF ALLOY 600 IN PWRs

P. M. Scott

Framatome
Tour Framatome
92084 Paris La Défense Cedex
France

Abstract

The main purpose of the present paper is to compare the results of recent high resolution microscopy of intergranular stress corrosion cracking of alloy 600 in various environments encountered during the operation of PWRs with the hypothesis that cracking is caused by the phenomenon of internal oxidation. Some of the points of criticism, which have arisen as to the applicability of the internal oxidation mechanism at typical PWR operating temperatures and corrosion potentials, are also addressed. These are specifically the problem of reconciling the apparent rate of intergranular diffusion of oxygen in nickel base alloys with the observed rates of cracking and the thermodynamic requirement for internal oxidation that the corrosion potential be at or below the Ni/NiO redox potential. The latter point is of particular concern if this mechanism is invoked to explain secondary side steam generator tube IGA/IGSCC.

Introduction

Internal oxidation was first proposed as a plausible mechanism of intergranular stress corrosion cracking (IGSCC) of the nickel base alloy 600 in hydrogenated primary water of Pressurized Water Reactors (PWR) by Scott and Le Calvar in 1993 (1). Internal oxidation occurs when atomic oxygen dissolves into an alloy at the external oxide-metal interface and diffuses into the metal matrix to oxidize a more reactive alloying element than the solvent metal. By necessity therefore, the oxidation potential at the reaction site in the alloy is less than the equilibrium oxygen potential of the solvent metal oxide and the concentrations of oxygen and the alloying element are sufficient to exceed those corresponding to the solubility product of the oxide in the alloy. It is a well-known and much studied phenomenon at high temperatures, usually between 500 and 1200°C in the context of nickel base alloys. At the lower end of this temperature range (500 to 800°C), intergranular internal oxidation predominates.

Since 1993, several experimental studies have been undertaken to test this hypothesis for IGSCC in alloy 600 in water or steam at temperatures between about 300 and 400 °C. These were last reviewed by the present author in 1996 (2). More recently, some detailed examinations of both primary and secondary cracks in alloy 600 using Secondary Ion Mass Spectrometry (SIMS) and Analytical Transmission Electron Microscopy (ATEM) have been carried out and some of the early results have already been published (3). These investigations are described in detail elsewhere and in other papers in this conference (4,5). The purpose here is to examine the results of these various studies with reference to the originally proposed internal oxidation mechanism and to deduce to what extent the hypothesis is supported or contradicted. In so doing, various criticisms of the mechanistic hypothesis that have been made are addressed (6).

Interest in the mechanism(s) of intergranular cracking in alloy 600 in PWRs stems from the continuing occurrences of IGSCC in highly stressed primary circuit components such as (recirculating) steam generator (SG) tubes and upper head penetrations as well as secondary side intergranular attack (IGA) and IGSCC of SG tubes. In the case of IGA, the applied stress plays a much less important even negligible role. Although such problems were first encountered in mill annealed alloy 600 tubes of recirculating SGs, intergranular cracking has gradually extended to forged as well as thermally treated (16 hours at 700°C) products. Latterly, even the low strength, thermally sensitized tubes of Once Through Steam Generators (OTSG) have been affected (7,8). Despite the obvious difficulties that have been encountered in achieving a consensus, the pursuit of a mechanistic understanding of these cracking problems is still a worthwhile objective. It is not just an intellectually challenging academic pastime but is also of great importance to the formulation of effective remedial measures and to building confidence in the longevity of replacement materials such as alloys 690 and 800. It will be seen later that optimal management of secondary water chemistry, in particular, to combat these problems in alloy 600 depends critically on the perception of the damage mechanism.

The paper is divided into three main sections devoted respectively to a description of the thermodynamic aspects of the metal - environment interactions associated with IGSCC, to the morphology of intergranular cracking in alloy 600, and to the kinetics of IGSCC. In each case comparisons are made with expectations based on the internal oxidation mechanistic hypothesis as well as with other competing mechanistic interpretations. Attention is also drawn to the practical consequences of the perceived mechanisms of IGSCC.

Thermodynamics

The starting point for a discussion of IGSCC mechanisms in alloy 600 is to characterize as clearly as possible the chemical and electrochemical parameters associated with normal operating conditions. In the case of secondary side tube cracking in recirculating SGs, it is also necessary to assess how such conditions may be modified in superheated crevices with restricted fluid circulation. These are compared with the normally observed thermodynamic requirements for internal oxidation and other mechanisms of IGSCC.

Edited by P.P. Ford, S.M. Rennerman, and G.S. Wex
The Minerals, Metals & Materials Society (TMS), 1999
Normal PWR Primary Chemistry

The important redox characteristics of PWR primary and secondary water are given in Figure 1 in the form of a Pourbaix diagram together with nickel and its oxidation products at 300 °C. Primary circuit temperatures can range typically from 286 °C in the reactor cold leg to 322 °C in the hot leg and 342 °C in the pressurizer. The use of lithium hydroxide and boric acid in the PWR primary coolant fixes the pH at operating temperature to very close to the Ni/NiO equilibrium, even apparently, when difficulties with solution resistance effects on the reliable control and measurement of potential have been resolved with modern potentiostats (10,11). There is no immediately obvious explanation known to the author of this apparent disconnect between observations with dissolved hydrogen concentration and potentiostatically controlled potentials. However, since the former corresponds to the realistic operating situation and is free of possible experimental artifacts, conditional only on the hydrogen partial pressure or dissolved hydrogen being reliably measured, it seems prudent to this author to place more credence on results obtained without externally imposed polarizing currents.

Nothing said thus far points specifically to internal oxidation as the mechanism of IGSCC in alloy 600 exposed to PWR primary water but can be rather susceptible to hydrogen induced internal oxidation since a well known pre-condition is that the solvent metal of the alloy must not participate significantly in the formation of a protective external oxide film. Thus high temperature internal oxidation studies are typically carried out in environments whose equivalent partial oxygen partial pressure is close to that of NiO at the particular temperature concerned.

Normal PWR Secondary Chemistry

On the secondary side of SG tubes an All Volatile Treatment (AVT) is most commonly used in both recirculating SGs and OTSGs. A relatively alkaline pH is maintained to minimize magnetite solubility and reduce sludge transport to a minimum. This is achieved by using a combination of ammonia, hydrazine (to scavenge oxygen in the feed water) and frequently organic amines such as morpholine or ethanolamine to reduce further general corrosion of carbon steel parts of the secondary circuit. Any hydrogen generated by general corrosion or diffusing from gases at the condenser. An estimate of the average hydrogen

![Diagram](https://example.com/diagram.png)

Figure 1: Main domains of IGA and IGSCC of alloy 600 in aqueous solutions at ~300°C.

Laboratory studies of IGSCC in PWR primary water or in superheated steam as a function of dissolved hydrogen content have generally shown consistent behavior both in time to failure tests of initially smooth specimens or in crack growth rate tests (9). Thus, maximum susceptibility to IGSCC is observed when the corrosion potential is close to the Ni/NiO equilibriuim and decreases at both higher and lower potentials within a band of about ±80 mV. This is the classical sign of an oxidation or dissolution controlled mechanism of stress corrosion cracking although not necessarily of internal oxidation. The improved resistance to IGSCC at potentials lower than the Ni/NiO equilibrium is especially difficult to reconcile with a hydrogen embrittlement mechanism. Moreover, the well known trend in austenitic materials for hydrogen induced cracking susceptibility to peak at temperatures around 100 to 150 °C, then to decrease with increasing temperature and finally become negligible at ~300 °C is inconsistent with a hydrogen embrittlement mechanism for IGSCC in high temperature aqueous environments. This is true even for relatively hard and brittle alloys. The equally well known trend of grain boundary carbides to improve IGSCC resistance in PWR primary water is also opposite to the trend observed in hydrogen embrittlement testing of alloy 600 at low temperatures. In the second case, grain boundary carbides enhance cracking susceptibility. Indeed alloy 690 with its higher chromium content (29% as against 16% in alloy 600) and heavy grain boundary carbide precipitation in the thermally treated condition shows excellent resistance to IGSCC in PWR primary water but can be rather susceptible to hydrogen induced intergranular failure at low temperatures.
concentration thereby established is 1 to 10 ppb which is three orders of magnitude less than on the primary side. As a consequence, the corrosion potential in the absence of any significant amount of oxygen is nearly 200 mV more positive than on the primary side as shown in Figure 1. From this viewpoint, no distinction is necessary between recirculating SGs and OTSGs. It should be noted, however, that even a few ppb of dissolved oxygen at the high mass transfer rates that can exist in the secondary circuit wherever flow is not impeded can give rise to significantly more positive corrosion potentials.

One controversial point of particular relevance to the IGSCC mechanism debate concerns the role of hydrazine and its influence on electrochemical corrosion potential on the secondary side. The main aim of hydrazine addition is to lower the oxygen concentration in the secondary water to less than a few ppb, the reaction products being nitrogen and water. Typically the hydrazine concentration is 5 to 10 times the feed water residual oxygen of 10 to 15 ppb achieved by mechanical de-aeration. If the objective is to reduce hematite formation to a minimum in the SG blow-down, then hydrazine has to be 30 to 40 times the oxygen concentration in the feed water. Excess hydrazine decomposes at high temperatures to ammonia, nitrogen and hydrogen. Several measurements have been made of the corrosion potential in secondary circuits that are consistent with the potential being controlled by the residual hydrogen concentration when the oxygen falls below a few ppb. There is no evidence of any strong electrochemical influence of hydrazine itself on corrosion potential as shown by the examples in Figure 2 (12).

![Figure 2: Corrosion potentials measured in PWR steam generator feed water systems (12).](image)

Superheated Crevices in Recirculating Steam Generators

Most secondary side IGA/IGSCC has so far mainly affected mill annealed alloy 600 tubing although it is generally expected that thermally treated alloy 600 tubing will be affected in due course. In the past, this tube damage has been usually attributed either to strongly caustic or strongly acidic solutions accumulated by hide-out of impurities in superheated crevices or under sludge piles of recirculating SGs. The known pH – potential zones associated with these forms of attack are also illustrated in Figure 1. Existing secondary side chemistry guidelines concerning the acceptable limits on feed water impurities and maintenance of rather strongly reducing conditions with hydrazine additions are largely based on these perceptions of the origin of tube damage. More recent evidence coming from examinations of pulled tubes suggests, however, that tube degradation occurs in neutral to slightly alkaline environments (13). This is deduced from frequent observations of chromium-rich (but poorly protective) oxide films associated with IGA/IGSCC on pulled tubes, and the presence of alumino-silicate deposits in the crevices and adjacent to the heat transfer surfaces of the tubes (14,15). Alumino-silicates are good buffering agents for caustic solutions implying a pH of less than 10, which is very close to the lower threshold for caustic attack of alloy 600. In addition, near-neutral or slightly alkaline crevice conditions are now frequently deduced from MULTeq calculations and hideout return studies (16,17).

Examinations of complete tube-support plate intersections from retired SGs have revealed widespread plugging of the crevice extremities by low porosity magnetite deposits rich in silica (15,18). In the center of the tube-support plate crevices, magnetite porosity is much higher and the silica levels are much lower with the exception of a thin film directly in contact with the tube heat transfer surface. Such physical plugging of tube-support plate crevices in recirculating SGs significantly restricts water flow. This combined with the generally low levels of adventitious soluble impurities in present-day SG feed waters suggest that such superheated crevices are most likely steam-blanketed, albeit polluted with impurities. The alternative hypothesis advanced in the past is of a liquid, necessarily extremely concentrated in soluble impurities, with a boiling point close to the primary circuit temperature in order to be physically stable relative to steam at the secondary side pressure (13).

Other authors have drawn attention to the same characteristics, emphasizing that there are insufficient soluble impurities to fill the available crevices with such concentrated solutions (15). Thus, steam blanketing appears to be inevitable although some authors hypothesize that a thin film or droplets of concentrated solution could still be present. It is, however, difficult to reconcile the presence of such a liquid phase, necessarily very concentrated in soluble impurities, with the observations of silica rich deposits, especially those in contact with the tube surface where the cracking must initiate.

The continuing progression of IGA/IGSCC in alloy 600 tubes in crevices where the likelihood of forming concentrated solutions of extreme pH seems remote, focuses attention on the possibility of a superheated steam phase attack mechanism. Clearly, the hideout process concentrates impurities in superheated crevices but it is most unlikely under present day operating conditions to lead to a liquid phase but rather to a polluted, superheated steam blanket. In addition, volatile substances such as hydrogen and hydrazine could also concentrate in such an occluded steam pocket. Significantly, recent experiments using an instrumented, simulated, superheated crevice have drawn attention to a significant lowering of the crevice potential by about 200 mV when hydrazine was present in the bulk fluid relative to an analogous experiment without hydrazine (19). It is important to note that in order to make any electrochemical measurement at all in this experiment, it was necessary to interrupt the heat flux to the secondary side crevice so that the steam bubble that was...
present then collapsed. This allowed a conducting fluid generated by hideout at the liquid–vapor interface near the crevice extremities to be drawn into the crevice thereby establishing electrochemical contact between the electrode and the tube. Although the origin of the negative shift of potential was attributed to hydrazine concentration in the crevice without further comment from the original authors, the observation is consistent with concentration of volatile hydrazine in a steam bubble and its thermal decomposition leading to an increase in local hydrogen concentration. In any event, the measured potential in the simulated crevice falls right in the range of that expected on the primary side albeit, most probably in practice, in a steam pocket. The local conditions are then similar to the so-called and well known "doped steam" test in which intergranular attack of alloy 600 occurs more extensively and at much lower stresses than in pure, hydrogenated steam. This is of very great significance for the possible mechanisms of secondary side attack.

To summarize, there is a strong a priori case that secondary side IGA/IGSCC of alloy 600 can occur in polluted steam impurities concentrated by the classical hideout mechanism. Areas in recirculating SGs whose environmental characteristics are similar to the "doped steam" test. In this case, the mechanism of attack can be very similar to the primary side but aggravated by the secondary water impurities concentrated by the classical hideout mechanism.

It should also be pointed out that evidence for a steam phase degradation process affecting SG tubes has been provided by recent observations of IGA/IGSCC on the free spans of OTSG tubes in the superheated steam zone after almost twenty years of service (7,8). The tube degradation is mainly attributable to IGA/IGSCC of alloy 600 in polluted steam impurities concentrated by the classical hideout mechanism. The alloy 600 in question had very few intergranular carbides and was known to be very sensitive to primary water induced IGSCC. The oxidation extended up to 10 μm in length from the main crack and was 10 to 20 nm wide on average. Practically all high angle grain boundaries intercepted by the main crack were oxidized in this way before narrowing to the unattacked grain boundary. Similar features were observed at the tip of the main intergranular crack although they were much more difficult to characterize in detail due to their extremely small dimensions and the high density of dislocations in this zone. The separation of metallic nickel and Cr2O3 near the penetration tip and the formation of a NiO-structure oxide behind the leading edge are the striking features in Figure 3. Porosity and tunnels of nanometer dimensions were also seen in the oxidized grain boundary tips with some tunnels apparently extending into the unoxidized metal. The NiO-structure oxide was also found on the walls of the main crack.

Primary Side IGSCC

Figure 3 shows the morphology of the tips of oxidized intergranular penetrations branching off the main intergranular crack in alloy 600 exposed to PWR primary water at 330°C (5). The alloy 600 in question had very few intergranular carbides and was known to be very sensitive to primary water induced IGSCC. The oxidation extended up to 10 μm in length from the main crack and was 10 to 20 nm wide on average. Practically all high angle grain boundaries intercepted by the main crack were oxidized in this way before narrowing to the unattacked grain boundary. Similar features were observed at the tip of the main intergranular crack although they were much more difficult to characterize in detail due to their extremely small dimensions and the high density of dislocations in this zone. The separation of metallic nickel and Cr2O3 near the penetration tip and the formation of a NiO-structure oxide behind the leading edge are the striking features in Figure 3. Porosity and tunnels of nanometer dimensions were also seen in the oxidized grain boundary tips with some tunnels apparently extending into the unoxidized metal. The NiO-structure oxide was also found on the walls of the main crack.

Morphology

Several specimens of mill annealed alloy 600 containing primary side or secondary side cracks, including pulled SG tubes, have been selected and examined with a combination of two techniques, SIMS and ATEM, the latter focussing on crack tips. The specific aim has been to determine whether any morphological details revealed by those two techniques could give clues as to the mechanism of cracking. Detailed descriptions of the results obtained to date are given elsewhere, including other papers in this conference (3,4,5,8).

The choice of these two techniques, SIMS with its relatively poor spatial resolution but excellent compositional detection, especially on the light elements, and ATEM which has excellent spatial resolution with good compositional sensitivity, has produced some remarkable new results with very good agreement between them where results are comparable. Surprisingly, very similar intergranular crack morphologies at the nanometric scale have been observed for the primary water (330°C) and secondary (OTSG dry steam zone) side cracks, which was not at all expected. (At the time of writing no results are yet available for secondary side cracks from a crevice zone of a recirculating SG tube). The main features of both are summarized below highlighting the unusual common features and the few differences. The ATEM results for crack tips are shown schematically in Figures 3 and 4. These are then compared to crack morphologies from known examples of internal oxidation of nickel base alloys at higher temperatures and of other cracking mechanisms where these are available.

Figure 3 shows the morphology of the tips of oxidized intergranular penetrations branching off the main intergranular crack in alloy 600 exposed to PWR primary water at 330°C (5).

Figure 3: Summary of crack tip morphology of an intergranular penetration due to IGSCC of alloy 600 in PWR primary water (5).