Edited by
Jacques Ganoulis, Alice Aureli,
and Jean Fried

Transboundary Water
Resources Management
Related Titles

Gupta, S. K.
Modern Hydrology and Sustainable Water Development
2011

Fung, F., Lopez, A., New, M. (eds.)
Modelling the Impact of Climate Change on Water Resources
2011
ISBN: 978-1-4051-9671-0

Sipes, J. L.
Sustainable Solutions for Water Resources
Policies, Planning, Design, and Implementation
2010
ISBN: 978-0-470-52962-1

Moksness, E., Dahl, E., Støttrup, J. G.
Integrated Coastal Zone Management
2009

Heathcote, I. W.
Integrated Coastal Zone Management
Principles and Practice
2009
ISBN: 978-0-470-37625-6

Hoekstra, A. Y., Chapagain, A. K.
Globalization of Water
Sharing the Planet's Freshwater Resources
2007
ISBN: 978-1-4051-6335-4
Edited by
Jacques Ganoulis, Alice Aureli, and Jean Fried

Transboundary Water Resources Management

A Multidisciplinary Approach
Foreword: Transboundary Water Management
A Multidisciplinary Approach

For centuries, political and strategic considerations have been the major drivers behind the delineation of boundaries across the globe. Mountains, rivers, lakes and entire ecosystems (not to mention human settlements) have been assigned to the jurisdiction of different states, provinces and other administrative entities with little regard to their environmental cycles or effective management. Yet natural resources, and freshwater in particular, know no man-made boundaries, and indeed require internationally coordinated actions to be sustainably and effectively managed. It is only in recent years that transboundary waters, both surface and groundwater, have taken centre stage in international dialogue, as issues of water and food security force policy makers to take a more holistic view. Climate and global change are rapidly placing added pressures on the world’s water reserves and the time has come to strengthen cooperation and build peace amongst states.

UNESCO’s mission to ‘contribute to the building of peace, eradication of poverty, sustainable development and intercultural dialogue through education, the sciences, culture, communication and information’ is achieved fully through its international water initiatives coordinated by the UNESCO International Hydrological Programme (IHP). UNESCO-IHP, established in 1975, is the only global scientific intergovernmental programme of the UN system devoted entirely to water resources, emphasizing the formulation of policy-relevant strategies for their sustainable management. Through its ISARM (Internationally Shared Aquifer Resources Management) and PCCP (From Potential Conflict to Cooperation Potential) programmes, UNESCO provides Member States with high level expertise and knowledge and assists them in the elaboration of policies for the sustainable management of transboundary waters.

Transboundary Water Management, edited by J. Ganoulis, A. Aureli and J. Fried, is the result of several years’ of research in the field of international water resources. The UNESCO Chair that coordinates the International Network of Water-Environment Centres for the Balkans played an important role in organizing both the compilation of existing knowledge and the elaboration of sound policy recommendations. It is with great pleasure, therefore, that I welcome the publication of this title and commend it to Member States. A multidisciplinary approach to the
management of shared natural resources is indeed paramount to finding solutions to multi-faceted challenges and I trust that future water managers, policy-makers and academics will find pleasure in reading this publication as well as benefit from its findings.

Gretchen Kalonji
UNESCO Assistant Director-General for Natural Sciences
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>V</td>
</tr>
<tr>
<td>Preface</td>
<td>XXI</td>
</tr>
<tr>
<td>List of Contributors</td>
<td>XXV</td>
</tr>
<tr>
<td>1 Introduction and Structure of the Book</td>
<td>1</td>
</tr>
<tr>
<td>Jacques Ganoulis</td>
<td></td>
</tr>
<tr>
<td>1.1 Part I – A Global View</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Part II – Physical, Environmental and Technical Approaches</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Part III – Legal, Socio-Economic and Institutional Approaches</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Part IV – Bridging the Gaps</td>
<td>4</td>
</tr>
<tr>
<td>Part One: A Global View</td>
<td>7</td>
</tr>
<tr>
<td>2 Transboundary Water Resources Management: Needs</td>
<td>9</td>
</tr>
<tr>
<td>for a Coordinated Multidisciplinary Approach</td>
<td></td>
</tr>
<tr>
<td>Jacques Ganoulis and Jean Fried</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Assessment and Management of Transboundary Waters</td>
<td>14</td>
</tr>
<tr>
<td>2.2.1 Hydrological and Hydrogeological Approaches</td>
<td>14</td>
</tr>
<tr>
<td>2.2.2 Environmental Issues</td>
<td>16</td>
</tr>
<tr>
<td>2.2.3 Legal Aspects</td>
<td>16</td>
</tr>
<tr>
<td>2.2.4 Socio-economic Issues</td>
<td>17</td>
</tr>
<tr>
<td>2.2.5 Institutional Considerations</td>
<td>18</td>
</tr>
<tr>
<td>2.3 The Integrated Water Resources Management (IWRM) Process</td>
<td>19</td>
</tr>
<tr>
<td>2.4 Capacity Building and Human Potential: The Role of Education</td>
<td>20</td>
</tr>
<tr>
<td>2.5 Conclusions</td>
<td>23</td>
</tr>
<tr>
<td>References</td>
<td>24</td>
</tr>
<tr>
<td>3 Global Challenges and the European Paradigm</td>
<td>27</td>
</tr>
<tr>
<td>Jean-François Donzier</td>
<td></td>
</tr>
<tr>
<td>3.1 Towards Integrated Management of Transboundary River Basins over the World</td>
<td>27</td>
</tr>
<tr>
<td>Introduction: Towards a Worldwide Water Crisis?</td>
<td>27</td>
</tr>
</tbody>
</table>
3.1.2 Water has no Boundary 28
3.1.3 Transboundary Cooperation should be Strengthened 29
3.1.4 Basin Management is Essential Everywhere in the World 31
3.1.5 The European Union is a Pioneer 33
3.1.6 Implementing Integrated Transboundary Water Resources Management Requires Political Will and Long-Term Commitments 33

Further Reading 34

3.2 Antarctic Subglacial Lakes and Waters: The Challenge to Protect a Hidden Resource 35
Lilian Del Castillo-Laborde
3.2.1 Introduction 35
3.2.2 Antarctic Environmental Regime 35
3.2.3 Subglacial Lakes and Waters 36
3.2.4 The Vostok Subglacial Lake 36
3.2.5 Conclusion 38
References 38
Further Reading 38

3.3 Progressive Development of International Groundwater Law: Awareness and Cooperation 39
Raya Marina Stephan
3.3.1 Introduction 39
3.3.2 Development, Evolution and Cooperation at the Global Level 40
3.3.2.1 The Process at the UN ILC 40
3.3.2.2 Cooperation of Two UN Bodies: The UN ILC and UNESCO-IHP 41
3.3.3 Cooperation and Awareness 42
3.3.3.1 Existing Legal Frameworks 42
3.3.3.2 Legal Component in Projects 44
3.3.4 Conclusion 44
References 45

Further Reading 45

3.4 The Role of Key International Water Treaties in the Implementation of the Convention on Biological Diversity 45
Sabine Brels, David Coates and Flavia Rocha Loures
3.4.1 Introduction 45
3.4.2 Water Conventions and the Protection and Sustainable Use of Aquatic Biodiversity 46
3.4.3 Conclusions 51
References 51
Further Reading 52

3.5 The European Union Water Framework Directive, a Driving Force for Shared Water Resources Management 52
Elpida Kolokytha
3.5.1 Introduction 52
3.5.2 The EU WFD 53
3.5.3 Shared Water Management According to the EU WFD 54
3.5.4 WFD: A Driving Force for Cooperation 54
3.5.5 International Cooperation – Transboundary Cooperation 56
3.5.6 Improvement of the Nestos/Mesta GR-BUL Shared Basin Agreement 58
3.5.7 Conclusions 59
References 59
Further Reading 60

3.6 Transfer of Integrated Water Resources Management Principles to Non-European Union Transboundary River Basins 61
Katharina Kober, Guido Vaes, Natacha Jacquin, Jacques Ganoulis, Francesca Antonelli, Kamal Karaa, Samir Rhaouti and Pierre Strosser
3.6.1 Litani River Basin within Lebanon 61
3.6.2 Objectives of the Working Group on IWRM Knowledge Transfer 61
3.6.3 Description of Results 62
 3.6.3.1 Review of Recent EUWI/WFD Joint Process Activities and Related Practices 62
 3.6.3.2 Detailed Description of Pilot River Basin Organizations and Identification of Weaknesses 62
 3.6.3.3 Matching WFD RTD Solutions to the River Basins’ Needs 63
 3.6.3.4 Development of Recommendations 64
3.6.4 Conclusions 66
References 66

3.7 Implementation of the Water Framework Directive Concepts at the Frontiers of Europe for Transboundary Water Resources Management 67
Didier Pennequin and Hubert Machard de Gramont
3.7.1 The EU Water Framework Directive 67
3.7.2 The EU Water Framework Directive and Transboundary Water Resources 68
3.7.3 Applying the WFD Concept at the Frontiers of Europe for a Transboundary Lake and Underlying Aquifer System 69
3.7.4 Discussion and Conclusion 73
References 74
Further Reading 75

3.8 Implementation of the European Union Water Framework Directive in Non-EU Countries: Serbia in the Danube River Basin 75
Dragana Ninković, Marina Babić Mladenović, Miodrag Milovanović, Milan Dimkić and Dragana Milovanović
3.8.1 Introduction 75
3.8.2 Territorial and Institutional Scope 76
3.8.3 Political Background and Legal Basis 77
3.8.4 The WFD as a New ‘Water Philosophy’ – Challenges and Difficulties 78
3.8.5 Steps in Implementation of the WFD – Participants, Step-by-Step Approach, Capacity Building 78
3.8.6 Serbia’s Contribution to the First Danube River Basin Management Plan 79
3.8.7 Final Considerations 79
References 80

3.9 Basic Problems and Prerequisites Regarding Transboundary Integrated Water Resources Management in South East Europe: The Case of the River Evros/Maritza/Merić 80
Stylianos Skias, Andreas Kallioras and Fotis Pliakas
3.9.1 Introduction: The Way Towards Implementing IWRM 80
3.9.2 The Transboundary Dimension of IWRM: Problems, Principles and Goals 81
3.9.3 Transboundary IWRM, EU WFD and Cooperation in SE Europe 82
3.9.4 The River Evros/Maritza/Merić Case: Problems and Recommendations 84
References 85

Part Two Physical, Environmental and Technical Approaches 87

4 Transboundary Aquifers 89
4.1 Towards a Methodology for the Assessment of Internationally Shared Aquifers 89
Neno Kukuric, Jac van der Gun and Slavek Vasak
4.1.1 Introduction 89
4.1.2 Principles and Basis Steps 89
4.1.3 Elaboration of the Basic Steps 91
4.1.3.1 Delineation 91
4.1.3.2 Description 91
4.1.3.3 Classification 92
4.1.3.4 Diagnostic Analysis 92
4.1.3.5 Zoning 92
4.1.3.6 Data Harmonization and Information Management 93
4.1.4 Final Remarks 94
References 95
Further Reading 95
4.2 Challenges in Transboundary Karst Water Resources Management – Sharing Data and Information 95
Ognjen Bonacci
4.2.1 Introduction 95
4.2.2 Specific Characteristics of Karst 96
4.2.3 Three Cases of Karst Transboundary Water Resources Management 97
4.2.4 Conclusion 100
References 101

4.3 The Importance of Modelling as a Tool for Assessing Transboundary Groundwaters 101

Irina Polshkova
4.3.1 Introduction 101
4.3.2 Methodology and Instrument 102
4.3.3 Numerical Models 104
4.3.4 Conclusions 108
References 109

4.4 Hydrogeological Characterization of the Yrenda–Toba–Tarijeño Transboundary Aquifer System, South America 109

Ofelia Tujchneider, Marcela Perez, Marta Paris and Mónica D’Elia
4.4.1 Introduction 109
4.4.2 Groundwater Model Design and Main Results 111
4.4.3 Conclusion 114
References 115

4.5 The State of Understanding on Groundwater Recharge for the Sustainable Management of Transboundary Aquifers in the Lake Chad Basin 116

Benjamin Ngounou Ngatcha and Jacques Mudry
4.5.1 Introduction 116
4.5.2 Hydrogeological Contexts 116
4.5.3 Methods for Groundwater Recharge Investigation in the Lake Chad Basin 116
4.5.4 Groundwater Recharge in the Lake Chad Basin 118
4.5.5 Conclusions and Further Research 121
References 121

4.6 Development, Management and Impact of Climate Change on Transboundary Aquifers of Indus Basin 123

Devinder Kumar Chadha
4.6.1 Introduction 123
4.6.2 Indus Basin 123
4.6.3 Groundwater Potential and Development 125
4.6.4 Aquifer System 125
4.6.5 Satluj Sub-basin 127
4.6.6 Beas Sub-basin 128
4.6.7 Groundwater Management 129
4.6.8 Impact of Climate Change 129
4.6.9 Problems Related to Transboundary Aquifers 129
4.6.10 Conclusions 130
References 130
4.7 Natural Background Levels for Groundwater in the Upper Rhine Valley 131
Frank Wendland, Georg Berthold, Adriane Blum, Hans-Gerhard Fritsche, Ralf Kunkel and Rüdiger Wolter
4.7.1 Introduction 131
4.7.2 General Applicable Approach for Deriving NBLs and TVs 131
4.7.3 Application to the Case Study Area Upper Rhine Valley 132
4.7.4 Conclusion and Discussion 134
References 135
Further Reading 136

4.8 Hydrogeological Study of Somes-Szamos Transboundary Alluvial Aquifer 136
Radu Drobot, Peter Szucs, Serge Brouyere, Marin-Nelu Minciuna, László Lenart and Alain Dassargues
4.8.1 Introduction 136
4.8.2 Transboundary Project Activities to Achieve Sustainable Groundwater Management 137
4.8.3 Conclusion 142
4.8.4 Acknowledgments 142
References 142

4.9 Towards Sustainable Management of Transboundary Hungarian–Serbian Aquifer 143
Zoran Stevanović, Péter Kozák, Milojko Lazic, János Szanyi, Dušan Polomčić, Balázs Kovács, József Török, Saša Milanović, Bojan Hajdin and Petar Papic
4.9.1 Introduction 143
4.9.2 Study Area 143
4.9.3 Groundwater Distribution and Use 145
4.9.4 Proposed Measures for Sustainable Utilization of the Aquifer Systems 146
4.9.5 Conclusion 148
References 149

4.10 Transboundary Groundwater Resources Extending over Slovenian Territory 149
Petra Meglič and Joerg Prestor
4.10.1 Introduction 149
4.10.2 Transboundary Groundwater Resources 149
4.10.3 Conclusions 152
References 153

5 Transboundary Lakes and Rivers 155
5.1 Do We Have Comparable Hydrological Data for Transboundary Cooperation? 155
Zsuzsanna Buzás
5.1.1 Introduction 155
5.1.2 Institutional Background 155
5.1.3 Survey Based on a Questionnaire 156
5.1.4 Conclusions 158
Annex 1: WMO and ISO Strengthen Partnership on International Standardization 159
References 159

5.2 Limnological and Palaeolimnological Research on Lake Maggiore as a Contribution to Transboundary Cooperation Between Italy and Switzerland 160
Rosario Mosello, Roberto Bertoni and Piero Guilizzoni
5.2.1 Introduction 160
5.2.2 Results and Discussion 162
5.2.3 Conclusion 165
References 166

5.3 Monitoring in Shared Waters: Developing a Transboundary Monitoring System for the Prespa Park 167
Miltos Gletsos and Christian Perennou
5.3.1 Introduction 167
5.3.2 A Workflow Process for Setting-Up an Environmental Monitoring System 169
5.3.3 Methods Applied During the Preparatory Stage of the Prespa TMS 169
5.3.4 Results Obtained 170
5.3.5 Preliminary Assessment of the Difficulties of Transboundary Cooperation 172
5.3.6 Next Stage Towards the Development of a Monitoring System 172
5.3.7 Conclusions 173
References 173

5.4 Integrated Remote Sensing and Geographical Information System Techniques for Improving Transboundary Water Management: The Case of Prespa Region 174
Marianthi Stefouli, Eleni Charou, Alexei Kouraev and Alkis Stamos
5.4.1 Introduction 174
5.4.2 Data and Methods 175
5.4.2.1 Catchment Characterization, Land Cover Mapping 175
5.4.2.2 Surface Water Monitoring 175
5.4.2.3 Supporting Geology and Groundwater Surveys 178
5.4.3 Conclusion 179
References 179

5.5 Transboundary Integrated Water Management of the Kobilje Stream Watershed 180
Mitja Brilly, Stanka Koren, Jožef Novak and Zsuzsanna Engi
5.5.1 Introduction 180
5.5.2 The Kobilje Stream Floods 181
5.5.3 Project Development 181
5.5.4 Conclusions 184
References 185

5.6 Climate Change Impacts on Dams Projects in Transboundary River Basins. The Case of the Mesta/Nestos River Basin, Greece 185
Charalampos Skoulikaris, Jean-Marie Monget and Jacques Ganoulis

5.6.1 Introduction 185
5.6.2 Numerical Models and Tools 186
 5.6.2.1 MODSUR-NEIGE Runoff Model 186
 5.6.2.2 Dams Simulation Model 187
 5.6.2.3 CLM Climate Model 188
5.6.3 Simulation Results 188
 5.6.3.1 Reference Climate (RF) 188
 5.6.3.2 Climate Scenario A1B 189
 5.6.3.3 Climate Scenario B1 189
5.6.4 Conclusions 189
References 190
Further Reading 191

5.7 Assessment of Climate Change Impacts on Water Resources in the Vjosa Basin 191
Miriam Ndini and Eglantina Demiraj

5.7.1 Introduction 191
5.7.2 Surface Water Assessment 192
5.7.3 Vulnerability Assessment of Surface Water 193
 5.7.3.1 Evaluation of Impact of Climate Change on the Mean Annual River Runoff 193
 5.7.3.2 Evaluation of Impact of Climate Change on the Seasonal River Runoff 196
5.7.4 Conclusions 197
References 198

5.8 Identification and Typology of River Water Bodies in the Hellenic Part of the Strymonas River Basin, as a Transboundary Case Study 199
Ioannis Chronis, Maria Lazaridou, Efthalia Lazaridou, Thomas K. Alexandridis, George Zalidis and Nikolaos Tsotsolis

5.8.1 Introduction 199
 5.8.1.1 Study Area 200
5.8.2 Methodology 201
5.8.3 Results 202
5.8.4 Conclusions and Discussion 203
References 204
Further Reading 205

5.9 Calculation of Sediment Reduction at the Outlet of the Mesta/Nestos River Basin caused by the Dams 205
Manolia Andredaki, Vlassios Hrissanthou and Nikolaos Kotsovinos

5.9.1 Introduction 205
5.9.2 Description of the Simulation Model 205
5.9.3 Application of the Simulation Model 206
5.9.4 Model Testing 208
5.9.5 Main Computations 208
5.9.6 Conclusion 213
References 213

5.10 Methodologies of Estimation of Periodicities of River Flow and its Long-Range Forecast: The Case of the Transboundary Danube River 214
Alexey V. Babkin
5.10.1 Introduction 214
5.10.2 Methodology for Presenting Periodicities in Time Series of River Runoff 215
5.10.3 Long-Range Forecast of Runoff from the Danube River 216
5.10.4 Conclusion 219
References 219

Part Three Legal, Socio-Economic and Institutional Approaches 221

6 Legal Approaches 223
6.1 The Law of Transboundary Aquifers: Scope and Rippling Effects 223
Lilian Del Castillo-Laborde
6.1.1 Introduction 223
6.1.2 Legal Principles for Transboundary Aquifers 223
6.1.3 The Scope of the Draft Adopted by the UN General Assembly 224
6.1.4 Provisions Concerning Access 225
6.1.5 Provisions Concerning Utilization 225
6.1.6 Provisions Concerning Protection, Preservation and Management
 6.1.6.1 Provisions on Duties 226
 6.1.6.2 Provisions on Implementation Mechanisms 227
6.1.7 Provisions Concerning Technical Cooperation, Emergency Situations and Armed Conflict 227
6.1.8 Other Rules Applicable to Transboundary Shared Resources 227
6.1.9 Case study: The Guarani Aquifer System 228
6.1.10 Conclusions 230
References 230
Further Reading 231

6.2 Water Management Policies to Reduce over Allocation of Water Rights in the Rio Grande/Bravo Basin 231
Samuel Sandoval-Solis, Daene C. McKinney and Rebecca L. Teasley
6.2.1 Introduction 231
6.2.2 Buying Back of Water Rights 231
6.2.3 Scenarios 232
6.2.4 Simulation Model 232
6.2.5 Performance Criteria 233
6.2.6 Results 234
6.2.7 Conclusions 236
Further Reading 237

6.3 Interstate Collaboration in the Aral Sea Basin – Successes and Problems 237
Viktor A. Dukhovny and Galina Stulina
6.3.1 Introduction 237
6.3.2 Achievement of Collaboration 238
6.3.3 Future of the Region 240

6.4 Kidron Valley/Wadi Nar International Master Plan 242
Richard Laster
6.4.1 Introduction 242
6.4.2 Development of the Master Plan 242
6.4.3 Descriptions of the Master Plan and its Effectiveness 243
6.4.4 Conclusions 245
Further Reading 246

6.5 The Development of Transboundary Cooperation in the Prespa Lakes Basin 247
Daphne Mantziou and Miltos Gletsos
6.5.1 Introduction 247
6.5.2 Prespa Park: The Early Years of Transboundary Cooperation 248
6.5.3 Advances on Integrated Water Management 249
6.5.4 The Prespa Park International Agreement 250
6.5.5 Supporting Trilateral Cooperation: Other Actors 251
6.5.6 Conclusion 252
References 252

6.6 International Relations and Environmental Security: Conflict or Cooperation? Contrasting the Cases of the Maritza-Evros-Meriç and Mekong Transboundary Rivers 253
Sotiris Petropoulos and Anastasios Valvis
6.6.1 Introduction – Conflict or Cooperation in Transboundary River Basins? 253
6.6.2 The Maritza-Evros-Meriç Case 254
6.6.2.1 The Evros River and its Importance 254
6.6.2.2 International Management of the Evros River 255
6.6.2.3 Main Issues in Managing the Evros River 255
6.6.3 The Mekong–Lancang River Case 256
6.6.3.1 The Mekong River and its Importance 256
6.6.3.2 International Management of the Mekong River 257
6.6.3.3 Main Issues on Managing the Mekong River 257
6.6.4 Comparing the two Regions 258
6.6.5 Conclusion 259
References 260
Further Reading 261
6.7 Delineation of Water Resources Regions to Promote Integrated Water Resources Management and Facilitate Transboundary Water Conflicts Resolution 261
Ana Carolina Coelho, Darrell Fontane, Evan Vlachos and Rodrigo Maia
6.7.1 Introduction 261
6.7.2 IWRM and Water Resources Regions 262
6.7.3 Comparative Analysis: Water Resources Regions in Europe and America 263
6.7.4 Recognition of More Comprehensive Aspects 263
6.7.5 Conclusion 266
References 267
6.8 Transboundary Water Resources and Determination of Hydrologic Prefectures in Greece 268
Evangelos A. Baltas
6.8.1 Introduction 268
6.8.2 Difficulties in Implementing the Directive 269
6.8.3 Determination of the Hydrologic Prefectures 271
6.8.4 Conclusions 272
References 272

7 Socio-Economic and Institutional Approaches 275
7.1 Social–Ecological Resilience of Transboundary Watershed Management: Institutional Design and Social Learning 275
Anne Browning-Aiken and Barbara J. Morehouse
7.1.1 Introduction 275
7.1.2 Issues for Transboundary Institutional Mechanisms 276
7.1.3 Social Learning 277
7.1.4 Conclusion: Potential for Transboundary Collaboration 278
References 278
Further Reading 280
7.2 How Stakeholder Participation and Partnerships Could Reduce Water Insecurities in Shared River Basins 280
Elena Nikitina, Louis Lebel, Vladimir Kotov and Bach Tan Sinh
7.2.1 Introduction 280
7.2.2 Stakeholder Engagement 280
7.2.3 Stakeholder Roles and Participation 281
7.2.4 Stakeholder Coordination and Partnerships 282
7.2.5 International–Domestic Linkages 283
7.2.6 Conclusion 285
References 285
Further Reading 286
7.3 Transboundary Stakeholder Analysis to Develop the Navigational Sector of the Parana River
 André Hernandes
7.3.1 Introduction 287
7.3.2 Objectives 287
7.3.2.1 Home Organization 288
7.3.2.2 The Transboundary Context 288
7.3.3 Key Stakeholder Analysis 289
7.3.3.1 Methodology 289
7.3.3.2 Results 290
7.3.4 The Way Forward: Suggested Actions for Improvements 291
References 292

7.4 Cooperation in the Navigable Course of the Sava River 292
Dragan Dolinaj and Milana Pantelić
7.4.1 Introduction 292
7.4.2 Navigable Course and Cooperation 293
7.4.3 Proposal for Further Actions 297
7.4.4 Conclusion 298
References 299

7.5 Transboundary Cooperation through the Management of Shared Natural Resources: The Case of the Shkoder/Skadar Lake 299
Djana Bejko and Brilanda Bushati
7.5.1 Introduction 299
7.5.1.1 Ecological Values of the Lake Shkodra/Skadar 299
7.5.2 Working Method 301
7.5.3 Conclusions 302
References 304

7.6 How Far is the Current Status of the Transboundary Shkodra Lake from Requirements for Integrated River Basin Management? 304
Spase Shumka, Udaya Sekhar Nagothu, Eva Skarbøvik, Andrej Perovic and Sotir Mali
7.6.1 Introduction 304
7.6.2 Survey Methods 306
7.6.3 Results and Discussion 306
7.6.4 Conclusions 309
References 309
Further Reading 310

7.7 Economic Governance and Common Pool Management of Transboundary Water Resources 311
Bo Appelgren
7.7.1 Introduction 311
7.7.2 Economic Governance of Transboundary Water Management Systems 312
7.7.3 Economic Governance Approaches to Transboundary Water Management 313
7.7.4 Conclusions 316
References 316
Further Reading 316

7.8 Water Resources Management in the Rio Grande/Bravo Basin Using Cooperative Game Theory 317
Rebecca L. Teasley and Daene C. McKinney
7.8.1 Introduction 317
7.8.2 The Water Demand Reduction Cooperative Game 318
7.8.3 Results 320
7.8.4 Conclusions 321
References 322

7.9 Conflict Resolution in Transboundary Waters: Incorporating Water Quality in Negotiations 323
Eleni Eleftheriadou and Yannis Mylopoulos
7.9.1 Introduction 323
7.9.2 Game Theory in Water Resources 323
7.9.3 Methodology 324
7.9.4 Results 325
7.9.5 Conclusions 327
References 328

7.10 The Johnston Plan in a Negotiated Solution for the Jordan Basin 329
Majed Atwi Saab and Julio Sánchez Chóliz
7.10.1 Introduction 329
7.10.2 Key Elements of the Negotiation Game and Fairness Criteria 330
7.10.2.1 Utility or Payment Functions for Arabs and Israelis 330
7.10.2.2 Negotiation Set 332
7.10.2.3 Fairness Criteria 333
7.10.2.4 Johnston Plan (1953–1955) 333
7.10.3 Three Significant Game Solutions between Israel and the Arabs 334
7.10.3.1 Regular Nash Solution without Lateral Payments and Break-off at (0;0) 334
7.10.3.2 Nash Solution with Lateral Payments and Break-off at (0;0) 336
7.10.3.3 Raiffa–Kalai–Smorodinsky Solution with Break-off at (0;0) 336
7.10.3.4 Other Solutions 337
7.10.4 Conclusions 337
References 338
Further Reading 339
8 Capacity Building and Sharing the Risks/Benefits for Conflict Resolution 343

8.1 Capacity Building and Training for Transboundary Groundwater Management: The Contribution of UNESCO 343

Jean Fried

8.1.1 Field Experience or Specific Training? 343

8.1.1.1 Training Objectives 344

8.1.2 Training Target Groups 345

8.1.3 Communication as a Basis of a Transboundary Groundwater Curriculum 346

8.1.4 Experimenting Transboundary Groundwater Curricula and Pedagogy: Two Pilot Courses 347

8.1.5 An Instrument for Training: a Manual Gathering the Contributions to the Pilot Courses 348

8.2 A Risk-Based Integrated Framework for Conflict Resolution in Transboundary Water Resources Management 352

Jacques Ganoulis and Lena Salame

8.2.1 Managing Transboundary Water Resources: Quantity and Quality 352

8.2.2 The Risk Analysis Framework in TWRM 355

8.2.2.1 Aleatory Uncertainties or Randomness 355

8.2.2.2 Epistemic or Man-Induced Uncertainties 355

8.2.2.3 Risk Assessment and Management 356

8.2.2.4 Institutional and Social Issues 359

8.2.3 Towards an Integrated Risk-Based Sustainable TWRM Approach 360

8.2.4 Modelling Transboundary Water-Related Conflicts 361

8.2.5 Hydro-Politics for Conflict Resolution: The UNESCO PC-CP Initiative 363

8.2.5.1 Examples of Track II Initiatives 365

8.2.6 Conclusions 366

References 367

9 The Thessaloniki Statement 369

Index 371
Preface

This book uses the term ‘transboundary waters’, as in Transboundary Waters Resources Management (TWRM), to mean waters crossing the borders of different riparian countries, which therefore are by definition countries sharing common surface and/or groundwater resources. The term is synonymous with ‘internationally shared waters’ and is in accordance with the terminology used by UNESCO in its international hydrological initiatives, such as the UNESCO/ISARM (Internationally Shared-Transboundary-Aquifer Resources Management) and the UNESCO/PC-CP (Potential Conflict-Cooperation Potential) programmes. It is considered to be a better choice than other similar expressions such as ‘international waters’, ‘multinational waters’ or ‘regional waters’, and avoids misunderstandings due to political sensitivities over national sovereignty in regions located near the borders.

‘Boundaries’ may also exist with different connotations between administrative regions or between cultural or ethnic entities located within the same country. In these cases both surface waters (rivers and lakes) and groundwaters (aquifers) may involve different administrations or various communities and their shared management should aim to resolve issues of potential regional or local conflicts in terms of water needs, water quality, environmental preservation or differences in legislation and economic issues. When the boundary is international and waters cross the borders of different riparian countries, then TWRM faces the major challenge of potential political conflicts and even war. The main issue in this case is how to convert these potential conflicts into collaborative actions. Such global TWRM challenges and general tools with which they may be addressed are explained in Part I: A Global View.

The book aims to serve as a practical guide for enhancing models of collaborative activities between riparian countries. In this context ‘collaboration’ means the active involvement of partners and institutions from both sides of the border, which includes exchange of information, interaction and dialogue between partners, in order to reach common decisions and find unified solutions to TWRM problems. In this sense, ‘collaboration’ is considered to be a more advanced stage of ‘cooperation’ or ‘coordination’. The first step in cooperation can be achieved by a simple exchange of information with no further interaction between partners; this may be called ‘passive cooperation’. A more advanced second step is engaging in dialogue and
developing a consultation process; this may be called ‘coordinated cooperation’ and is a prerequisite condition for the third step, which is ‘active collaboration’. Only with active and effective collaboration can sustainable governance of transboundary water resources be achieved.

Since there is no single universal model for a collaborative approach to TWRM, this book presents an analysis of various effective models illustrated by case studies from around the world. Even though case studies are particular and not easily transferred to different situations, they are very helpful in showing relationships between different more or less independent variables, such as physical, hydrologic, hydrogeological, ecological, socio-economic conditions, institutional structures, stakeholders participation, legal agreements and political willingness. The main dependent variable that emerges from this process is the need for active collaboration and effective governance in TWRM.

Models of collaborative actions in TWRM depend on the approach used, for example, whether the model is developed by a particular scientific discipline, by a professional community or by different kinds of scientists.

For engineers, hydrologists, hydrogeologists or environmental professionals emphasis is placed on modelling the physical and ecological transboundary hydro-systems in terms of (i) delineating their natural borders (hydrologic basins for transboundary rivers and lakes or hydrogeological boundaries for groundwater aquifers), (ii) analysing relationships between physical and ecological variables such as precipitation, river flow, pollutant inputs, lake water quality, biodiversity or groundwater recharge and (iii) suggesting structural or non-structural measures in order to obtain solutions and improve TWRM. These models, conceptual or mathematical, are more or less accurate subject to data availability and precision and various assumptions and simplifications in modelling. They are useful for understanding how the physical and ecological transboundary systems behave under natural and anthropogenic inputs in terms of water quantity and environmental impacts. These kinds of models for transboundary aquifers, lakes and rivers are presented in Part II: Physical, Environmental and Technical Approaches.

For lawyers and social scientists (geographers, economists, sociologists) emphasis is placed on human factors, which can be very complex and difficult to analyse or predict, such as institutional cooperation, stakeholder participation and negotiation strategies. For lawyers the emphasis is on regulating provisions and duties of riparian countries in terms of access, utilization, protection, preservation and management of transboundary waters. The codification of such legal rules is very useful to the international community, even though this process may be somewhat general and unable to cover all specific cases. The main challenge is whether different national administrations will agree to implement international rules at the national level and at the same time coordinate their activities with riparian countries through bilateral or regional collaborative agreements. This challenge may be faced by raising public and stakeholders’ awareness in participatory processes involving national institutions, academic partners and international organizations. All these approaches are presented in Part III: Legal, Socio-Economic and Institutional Approaches.
In the real world all the above issues and approaches coexist and are interrelated. To achieve effective TWRM these models, whether descriptive or prescriptive, should merge. In Chapter 8 of Part IV: Bridging the Gaps, two main strategies for achieving such integration are presented: (i) through effective capacity building and training in TWRM and (ii) by analysing a general framework of conflict resolution, based on how riparian countries may share benefits and risks. Both these strategies are supported by UNESCO’s ISARM and PC-CP programmes.

The main contents of the book are based on updated papers first presented at the ‘IV International Symposium on Transboundary Water Management’, Thessaloniki, Greece, October 2008. Recommendations of this Conference on how to bridge the gaps are summarized in the ‘Thessaloniki Statement’, which is reported in Chapter 9 of Part IV.

I am very grateful to all authors and contributors to this book for their excellent collaboration during and after the conference. Personally and on behalf of my co-editors, Alice Aureli and Jean Fried, I would like to thank Dr. Frank Weinreich, manager of Wiley-VCH Water & Environmental books programme, for giving us the opportunity to publish this book, and to Lesley Belfit, Project Editor at Wiley-VCH, for her help with the publication process. My appreciation and special thanks go to Katie Quartano at the UNESCO Chair, Aristotle University of Thessaloniki, for her professional contribution to the reviewing and proofreading processes.

Thessaloniki, Greece

Jacques Ganoulis

January 2011
List of Contributors

Thomas K. Alexandridis
Aristotle University of Thessaloniki
School of Agriculture
Laboratory of Applied Soil Science
Thessaloniki
Greece

Manolia Andredaki
Democritus University of Thrace
Department of Civil Engineering
Vas. Sofias 12
67100 Xanthi
Greece

Francesca Antonelli
World Wildlife Fund
European Policy Office
Via PO, 25/C
00198 Rome
Italy

Bo Appelgren
UNESCO International Hydrological Programme
N. Colesanti 13
01023 Bolsena
Italy

and

UNESCO International Hydrological Programme
1 rue Miollis
75732 Paris
France

Majed Atwi Saab
University of Zaragoza
Faculty of Economics and Business Administration
Department of Economic Analysis
Gran Vía 2
50005 Zaragoza
Spain

Marina Babić Mladenović
‘Jaroslav Cerní’ Institute for the Development of Water Resources
Jaroslava Cernog 80
11226 Belgrade
Serbia

Alexey V. Babkin
State Hydrological Institute Laboratory of Water Resources and Water Balance
Second Line, 23 V.O.
199053 St. Petersburg
Russia

Evangelos A. Baltas
Aristotle University of Thessaloniki
School of Agriculture
Department of Hydraulics, Soil Science and Agricultural Engineering
Laboratory of General and Agricultural Hydraulics and Land Reclamation
54124 Thessaloniki
Greece
Djana Bejko
University ‘Luigj Gurakuqi’
Faculty of Natural Sciences
Sheshi ‘2 Prilli’
L. Qemal Stafa, Rr. Vasil Shanto, Nr 21
4001 Shkoder
Albania

Georg Berthold
Hessian Agency for Environment and Geology (HLUG)
Rheingaustraße 186
65203 Wiesbaden
Germany

Roberto Bertoni
C.N.R. Institute of Ecosystem Study
Largo Tononli 50
28922 Verbania Pallanza
Italy

Adriane Blum
Bureau de Recherches Géologiques et Minières (BRGM)
3 avenue Claude-Guillemin
45060 Orléans
France

Ognjen Bonacci
University of Split
Faculty of Civil Engineering and Architecture
Matice hrvatske 15
21000 Split
Croatia

Sabine Brels
University of Laval
Faculty of Law
2325 rue de l’Université Québec
Québec City, Québec
Canada G1V 0A6

Mitja Brilly
University of Ljubljana
Faculty of Civil and Geodetic Engineering
Jamova 2
1000 Ljubljana
Slovenia

Serge Brouyere
University of Liège
HG-GeomaC
4000 Sart Tilman, Liège
Belgium

Anne Browning-Aiken
University of Arizona
Udall Centre for Studies in Public Policy
Tucson, AZ
USA

Brilanda Bushati
University ‘Luigj Gurakuqi’
Faculty of Economic Sciences
Sheshi ‘2 Prilli’
L. Qemal Stafa, Rr. Zog i Pare, Nr. 37
4001 Shkoder
Albania

Zsuzsanna Buzás
Ministry for Environment and Water
Főútca 44-50
1011 Budapest
Hungary

Devinder Kumar Chadha
Global Hydrogeological Solutions
G-66 (Ground Floor)
Vikaspuri
New Delhi - 110 018
India
Eleni Charou
National Centre for Scientific Research
“Demokritos”
Institute of Informatics &
Telecommunications
153 10 Aghia Paraskevi
Greece

Ioannis Chronis
Aristotle University of Thessaloniki
School of Agriculture
Laboratory of Applied Soil Science
Thessaloniki
Greece

David Coates
Secretariat of the Convention
on Biological Diversity
413 Saint Jacques Street
Montreal, Québec
Canada QC H2Y 1N9

Ana Carolina Coelho
Colorado State University
Department of Civil Engineering
Engineering Building - Campus
Delivery 1372
Fort Collins, CO 80523-1372
USA

Alain Dassargues
University of Liège
DepartmentArGEnCo
4000 Sart Tilman, Liège
Belgium

Hubert Machard de Gramont
BRGM
Water Division
3 avenue Claude Guillemin
BP 36009-45060 Orléans
France

Lilian Del Castillo-Laborde
University of Buenos Aires
School of Law
Av. Figueroa Alcorta 2263
1425 Buenos Aires
Argentina

Mónica D’Elia
National University of El Litoral
Faculty of Engineering and Water
Sciences
Ciudad Universitaria
Ruta Nacional 168-Km 472
S3000 Santa Fe
Argentina

Eglantina Demiraj
Polytechnic University of Tirana
Institute of Energy, Water and
Environment
Durresi Street 219
Tirana
Albania

Milan Dimkić
‘Jaroslav Cerní’ Institute for the
Development of Water Resources
Jaroslava Cernog 80
11226 Belgrade
Serbia

Dragan Dolinaj
University of Novi Sad
Faculty of Natural Sciences and
Mathematics
Climatology and Hydrology Research
Centre
Trg Dositeja Obradovica 3
21000 Novi Sad
Serbia
Jean-François Donzier
International Network of Basin Organizations
c/o International Office for Water
21 rue de Madrid
75008 Paris
France

Radu Drobot
Technical University of Civil Engineering
Bd. Lacul Tei 124, Sector 2
020396 Bucharest
Romania

Viktor A. Dukhovny
Scientific Information Centre of Interstate Coordination Water Commission of Aral Sea Basin (SIC ICWC)
Massiv Karasu 4, Building 11
100187 Tashkent
Uzbekistan

Eleni Eleftheriadou
Aristotle University of Thessaloniki Civil Engineering Department
Hydraulics Laboratory
54124 Thessaloniki
Greece

Zsuzsanna Engi
West-Transdanubian Environmental and Water Directorate
Department for Prevention and Protection from Water Damages
Gyor
Hungary

Darrell Fontane
Colorado State University Department of Civil Engineering
Fort Collins, CO 80523
USA

Jean Fried
University of California School of Social Ecology
Department of Planning, Policy and Design
Irvine, CA 92697
USA

and
UNESCO Paris France

Hans-Gerhard Fritsche
Hessian Agency for Environment and Geology (HLUG)
Rheingaustraße 186
65203 Wiesbaden
Germany

Jacques Ganoulis
UNESCO Chair and Network INWEB
Aristotle University of Thessaloniki Department of Civil Engineering Division of Hydraulics and Environmental Engineering
54124 Thessaloniki
Greece

Miltos Gletsos
Society for the Protection of Prespa
530 77 Aghios Germanos
Greece

Piero Guilizzoni
C.N.R. Institute of Ecosystem Study
Largo Tonolli 50
28922 Verbania Pallanza
Italy

Bojan Hajdin
University of Belgrade Faculty of Mining & Geology
Department of Hydrogeology
Djusina 7
11000 Belgrade
Serbia