Cosmetic Dermatology

second edition

Products and Procedures

edited by Zoe Draelos

WILEY Blackwell
Cosmetic Dermatology
Products and Procedures
Cosmetic Dermatology
Products and Procedures

Edited by

Zoe Diana Draelos MD
Consulting Professor
Department of Dermatology
Duke University School of Medicine
Durham, North Carolina
USA

Second Edition
Contributors, viii
Foreword, xii
Preface, xiii

Part I: Basic Concepts, 1

Section 1: Skin Physiology Pertinent to Cosmetic Dermatology, 3

1 Epidermal Barrier, 3
 Sreekumar Pillai, Megan Manco, and Christian Oresajo

2 Photoaging, 13
 Kira Minkis, Jillian Havey Swary, and Murad Alam

3 Pigmentation and Skin of Color, 23
 Jasmine C. Hollinger, Chesaarna Kindred, and Rebat M. Halder

4 Sensitive Skin and the Somatosensory System, 33
 Francis McGlone and David Reilly

5 Novel, Compelling, Non-invasive Techniques for Evaluating Cosmetic Products, 42
 Thomas J. Stephens, Christian Oresajo, Lily I. Jiang, and Robert Goodman

6 Contact Dermatitis and Topical Agents, 52
 David E. Cohen, Alexandra Price, and Sarika Ramachandran

Section 2: Delivery of Cosmetic Skin Actives, 65

7 Percutaneous Delivery of Cosmetic Actives to the Skin, 65
 Sreekumar Pillai, Surabhi Singh, and Christian Oresajo

8 Creams and Ointments, 75
 Irwin Palefsky

Part II: Hygiene Products, 81

Section 1: Cleansers, 83

9 Bar Cleansers, 83
 Anthony W. Johnson, K.P. Ananthapadmanabhan, Stacy Hawkins, and Greg Nole

10 Personal Cleansers: Body Washes, 96
 Keith Ertel and Heather Focht

11 Facial Cleansers and Cleansing Cloths, 103
 Thomas Barlage, Susan Griffiths-Brophy, and Erik J. Hasenoehrl

12 Hand Cleansers and Sanitizers, 110
 Duane Charbonneau

13 Shampoos for Normal Scalp Hygiene and Dandruff, 124

Section 2: Moisturizers, 132

14 Facial Moisturizers, 132
 Yohini Appa

15 Hand and Foot Moisturizers, 139
 Teresa M. Weber, Andrea M. Schoelermann, Ute Breitenbach, Ulrich Scherdin, and Alexandra Kowcz

16 Sunless Tanning Products, 148
 Angelike Galdi, Peter Foltis, and Christian Oresajo

17 Sunscreens, 153
 Dominique Moyal, Angelike Galdi, and Christian Oresajo

Section 3: Personal Care Products, 160

18 Antiperspirants and Deodorants, 160
 Eric S. Abrutyn

19 Blade Shaving, 166
 Kevin Cowley, Kristina Vanoosthuyze, Gillian McFeat, and Keith Ertel

Part III: Adornment, 175

Section 1: Colored Facial Cosmetics, 175

20 Facial Foundation, 177
 Sylvie Guichard and Véronique Roulier

21 Camouflage Techniques, 186
 Anne Boulouc

22 Lips and Lipsticks, 193
 Catherine Huiselé, Hervé Cantin, and Frédéric Bonté
23 Eye Cosmetics, 199
 Sarah A. Vickery, Robyn Kolas, and Fatima Dicko

Section 2: Nail Cosmetics, 207
24 Nail Physiology and Grooming, 207
 Anna Hare and Phoebe Rich
25 Colored Nail Cosmetics and Hardeners, 217
 Paul H. Bryson and Sunil J. Sirdesai
26 Cosmetic Prostheses as Artificial Nail Enhancements, 226
 Douglas Schoon

Section 3: Hair Cosmetics, 234
27 Hair Physiology and Grooming, 234
 Maria Hordinsky, Ana Paula Avancini Caramori, and Jeff C. Donovan
28 Hair Dyes, 239
 Rene C. Rust and Harald Schlatter
29 Permanent Hair Waving, 251
 Annette Schwan-Jonczyk, Gerhard Sendelbach, Andreas Plohr, and Rene C. Rust
30 Hair Straightening, 262
 Harold Bryant, Felicia Dixon, Angela Ellington, and Crystal Porter
31 Hair Styling: Technology and Formulations, 270
 Thomas Krause and Rene C. Rust

Part IV: Anti-aging, 281

Section 1: Cosmeceuticals, 283
32 Botanicals, 283
 Carl R. Thornfeldt
33 Antioxidants and Anti-inflammatories, 295
 Bryan B. Fuller
34 Peptides and Proteins, 308
 Karl Lintner
35 Cellular Growth Factors, 318
 Rahul C. Mehta and Richard E. Fitzpatrick
36 Topical Cosmeceutical Retinoids, 325
 Olivier Sorg, Gürkan Kaya, and Jean H. Saurat
37 Topical Vitamins, 336
 Donald L. Bissett, John E. Oblong, and Laura J. Goodman
38 Clinical Uses of Hydroxyacids, 346
 Barbara A. Green, Eugene J. Van Scott, and Ruey J. Yu
39 The Contribution of Dietary Nutrients and Supplements to Skin Health, 357
 Helen Knaggs, Steve Wood, Doug Burke, Jan Lephart, and Jin Namkoong

Section 2: Injectable Anti-aging Techniques, 364
40 Botulinum Toxins, 364
 J. Daniel Jensen, Scott R. Freeman, and Joel L. Cohen
41 Hyaluronic Acid Fillers, 375
 Mark S. Nestor, Emily L. Kollmann, and Nicole Swenson
42 Calcium Hydroxylapatite for Soft Tissue Augmentation, 380
 Stephen Mandy
43 Autologous Skin Fillers, 385
 Amer H. Nassar, Andrew S. Dorizas, and Neil S. Sadick
44 Polylactic Acid Fillers, 390
 Kenneth R. Beer and Jacob Beer

Section 3: Resurfacing Techniques, 395
45 Superficial Chemical Peels, 395
 M. Amanda Jacobs and Randall Roenigk
46 Medium Depth Chemical Peels, 402
 Gary D. Monheit and Virginia A. Koubek
47 CO₂ Laser Resurfacing: Confluent and Fractionated, 412
 Mitchel P. Goldman and Ana Marie Liolios
48 Nonablative Lasers, 429
 Adam S. Nabatian and David J. Goldberg
49 Dermabrasion, 437
 Christopher B. Harmon and Daniel P. Skinner

Section 4: Skin Modulation Techniques, 445
50 Laser-assisted Hair Removal, 445
 Keyvan Nouri, Voraphol Vejjabhinanta, Nidhi Avashia, and Jinda Rojanamatin
51 Radiofrequency Devices, 451
 Vic Narurkar
52 LED Photomodulation for Reversal of Photoaging and Reduction of Inflammation, 456
 David McDaniel, Robert Weiss, Roy Geronemus, Corinne Granger, and Leila Kanoun-Copy

Section 5: Skin Contouring Techniques, 463
53 Liposuction: Manual, Mechanical, and Laser Assisted, 463
 Anne Goldsberry, Emily Tierney, and C. William Hanke
54 Liposuction of the Neck, 476
 Kimberly J. Butterwick

55 Hand Recontouring with Calcium Hydroxylapatite, 485
 Kenneth L. Edelson

Section 6: Implementation of Cosmetic Dermatology into Therapeutics, 492

56 Anti-aging Regimens, 492
 Karen E. Burke

57 Over-the-counter Acne Treatments, 501
 Emmy M. Graber and Diane Thiboutot

58 Rosacea Regimens, 509
 Joseph Bikowski

59 Eczema Regimens, 517
 Zoe D. Draelos

60 Psoriasis Regimens, 522
 Laura F. Sandoval, Karen E. Huang, and Steven R. Feldman

Index, 529
Contributors

Eric S. Abrutyn
TPC2 Advisors Inc., Boquete, Chiriqui, Republic of Panama

Murad Alam
Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

K.P. Ananthapadmanabhan
Unilever HPC R&D, Trumbull, CT, USA

Yohini Appa
Johnson & Johnson, New Brunswick, NJ, USA

Nidhi Avashia
Boston University School of Medicine, Boston, MA, USA

Thomas Barlage
Procter & Gamble Company, Sharon Woods Technical Center, Cincinnati, OH, USA

Jacob Beer
Department of Dermatology, University of Pennsylvania, PA, USA

Kenneth R. Beer
General, Surgical and Esthetic Dermatology, West Palm Beach, FL, USA

Joseph Bikowski
Bikowski Skin Care Center, Sewickley, PA, USA

Donald L. Bissett
Procter & Gamble Beauty Science, The Procter & Gamble Co., Sharon Woods Innovation Center, Cincinnati, OH, USA

Frédéric Bonté
LVMH Recherche, Saint Jean de Bray, France

Anne Bouloc
Vichy Laboratoires, Cosmétique Active International, Asnières, France

Ute Breitenbach
Beiersdorf AG, Hamburg, Germany

Harold Bryant
L’Oreal Institute for Ethnic Hair and Skin Research, Chicago, IL, USA

Paul H. Bryson
OPI Products Inc., Los Angeles, CA, USA

Doug Burke
Nu Skin and Pharmanex Global Research and Development, Provo, UT, USA

Karen E. Burke
The Mount Sinai Medical Center, New York, NY, USA

Kimberly J. Butterwick
Cosmetic Laser Dermatology, San Diego, CA, USA

Hervé Cantin
LVMH Recherche, Saint Jean de Bray, France

Ana Paula Avancini Caramori
Department of Dermatology, Complexo Hospitalar Santa Casa de Porto Alegre, Porto Alegre, Brazil

Duane Charbonneau
Procter and Gamble Company, Health Sciences Institute, Mason, OH, USA

David E. Cohen
The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA

Joel L. Cohen
AboutSkin Dermatology and DermSurgery, Englewood, and Department of Dermatology, University of Colorado at Denver, Aurora, CO, USA

Kevin Cowley
Gillette Innovation Centre, Reading, UK

Thomas L. Dawson, Jr.
Agency for Science, Technology and Research (A*STAR), Institute for Medical Biology, Singapore

Fatima Dicko
Procter & Gamble Cosmetics, Hunt Valley, MD, USA

Felicia Dixon
L’Oréal Institute for Ethnic Hair and Skin Research, Chicago, IL, USA

Jeff C. Donovan
Division of Dermatology, University of Toronto, Toronto, Canada

Andrew S. Dorizas
Sadick Dermatology, New York, NY, USA

Kenneth L. Edelson
Icahn School of Medicine at Mount Sinai and Private Practice, New York, NY, USA

Angela Ellington
L’Oreal Institute for Ethnic Hair and Skin Research, Chicago, IL, USA

Keith Ertel
Procter & Gamble Co., Cincinnati, OH, USA

Steven R. Feldman
Center for Dermatology Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
Contributors

Richard E. Fitzpatrick (deceased)
Department of Dermatology, UCSD School of Medicine, San Diego, CA, USA

Andreas Flohr
Wella/Procter & Gamble Service GmbH, Darmstadt, Germany

Heather Focht
Procter & Gamble Co, Cincinnati, OH, USA

Peter Foltis
L’Oréal Research, Clark, NJ, USA

Scott R. Freeman
Sunrise Dermatology, Mobile, AL, USA

Bryan B. Fuller
DermaMedics LLC, Oklahoma City, OK, USA

Angélique Galdi
L’Oréal Research and Innovation, Clark, NJ, USA

Roy Geronemus
Maryland Laser Skin and Vein Institute, Hunt Valley, MD, and Johns Hopkins University School of Medicine, Baltimore, MD, USA

David J. Goldberg
Mount Sinai School of Medicine, New York, NY, and Skin Laser and Surgery Specialists of New York and New Jersey, USA

Mitchel P. Goldman
Cosmetic Laser Dermatology and Volunteer Clinical Professor of Dermatology at the University of California, San Diego, CA, USA

Anne Goldsberry
Laser and Skin Surgery Center of Indiana, Carmel, IN, USA

Laura J. Goodman
Procter & Gamble Beauty Science, The Procter & Gamble Co., Sharon Woods Innovation Center, Cincinnati, OH, USA

Robert Goodman
Thomas J. Stephens & Associates Inc., Texas Research Center, Carrollton, TX, USA

Emmy M. Graber
Boston University School of Medicine, Boston, MA, USA

Corinne Granger
Director of Instrumental Cosmetics, L’Oréal Research, Asnieres, France

Barbara A. Green
NeoStrata Company, Inc., Princeton, NJ, USA

Susan Griffiths-Brophy
Procter & Gamble Company, Sharon Woods Technical Center, Cincinnati, OH, USA

Sylvie Guichard
L’Oréal Research, Chevilly-Larue, France

Rebat M. Halder
Howard University College of Medicine, Washington, DC, USA

C. William Hanke
Laser and Skin Surgery Center of Indiana, Carmel, IN, USA

Anna Hare
Emory School of Medicine, Atlanta, GA, USA

Christopher B. Harmon
Surgical Dermatology Group, Birmingham, AL, USA

Erik J. Hasenoehrl
Procter & Gamble Company, Ivorydale Technical Center, Cincinnati, OH, USA

Jillian Havey Swary
Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

Stacy Hawkins
Unilever HPC R&D, Trumbull, CT, USA

Catherine Heusèle
LVMH Recherche, Saint Jean de Braye, France

Jasmine C. Hollinger
Howard University College of Medicine, Washington, DC, USA

Maria Hordinsky
Department of Dermatology, University of Minnesota, Minneapolis, MN, USA

Karen E. Huang
Center for Dermatology Research, Wake Forest University School of Medicine; Winston-Salem, NC, USA

M. Amanda Jacobs
Division of Dermatology, Geisinger Health Systems, Danville, PA, USA

J. Daniel Jensen
Scripps Clinic, Bighorn Mohs Surgery and Dermatology Center, La Jolla, CA, USA

Lily I. Jiang
Thomas J. Stephens & Associates Inc., Texas Research Center, Richardson, TX, USA

Anthony W. Johnson
Unilever HPC R&D, Trumbull, CT, USA

Eric S. Johnson
Procter & Gamble Beauty Science, Cincinnati, OH, USA

Leila Kanoun-Copy
L’Oréal Research, Chevilly-Larue, France

Gürkan Kaya
Department of Dermatology, Geneva University Hospital, Geneva, Switzerland

Chesahna Kindred
Howard University College of Medicine, Washington, DC, USA

Helen Knaggs
Nu Skin and Pharmanex Global Research and Development, Provo, UT, USA

Robyn Kolas
Procter & Gamble Cosmetics, Hunt Valley, MD, USA
Contributors

Emily L. Kollmann
Center for Clinical and Cosmetic Research, Aventura, FL, USA

Virginia A. Koubek
Total Skin and Beauty Dermatology Center, PC, and Departments of Dermatology and Ophthalmology, University of Alabama, Birmingham, AL, USA

Amer H. Nassar
Sadick Dermatology, New York, NY, USA

Alexandra Kowcz
Beiersdorf Inc, Wilton, CT, USA

Mark S. Nestor
Center for Clinical and Cosmetic Research, Aventura, FL, USA

Thomas Krause
Wella/Procter & Gamble Service GmbH, Darmstadt, Germany

Greg Nole
Unilever HPC R&D, Trumbull, CT, USA

Jan Lephart
Nu Skin and Pharmanex Global Research and Development, Provo, UT, USA

Keyvan Nouri
University of Miami Miller School of Medicine, Miami, FL, USA

Karl Lintner
KALIDEES SAS, Paris, France

John E. Oblong
Procter & Gamble Beauty Science, The Procter & Gamble Co., Sharon Woods Innovation Center, Cincinnati, OH, USA

Ana Marie Liolios
Private Practice, Fairway, Kansas, MO, USA

Christian Oresajo
L'Oréal Research, Clark, NJ, USA

Megan Manco
L’Oréal Recherche, Clark, NJ, USA

Irwin Palefsky
Cosmetech Laboratories, Inc., Fairfield, NJ, USA

Stephen Mandy
Volunteer Professor of Dermatology, University of Miami, Miami, FL, and Private Practice, Miami Beach, FL, USA

Sreekumar Pillai
L’Oréal Research, Clark, NJ, USA

David McDaniel
McDaniel Institute of Anti Aging Research, Virginia Beach, VA, Eastern Virginia Medical School, Norfolk VA and Old Dominion University Norfolk VA, USA

Crystal Porter
L’Oréal Institute for Ethnic Hair and Skin Research, Chicago, IL, USA

David Reilly
Unilever Research, Colworth Science Park, Sharnbrook, Bedford, UK

Alexandra Price
The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA

Sarika Ramachandran
The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA

Rahul C. Mehta
SkinMedica, Inc, An Allergan Company, Carlsbad, CA, USA

Gary D. Monheit
Total Skin and Beauty Dermatology Center, PC, and Departments of Dermatology and Ophthalmology, University of Alabama, Birmingham, AL, USA

Dominique Moyal
La Roche-Posay Laboratoire Dermatologique, Asnières sur Seine, France

Jin Namkoong
Nu Skin and Pharmanex Global Research and Development, Provo, UT, USA

Dominique Moyal
La Roche-Posay Laboratoire Dermatologique, Asnières sur Seine, France

Vic Narurkar
Bay Area Laser Institute, San Francisco, CA, and University of California Davis Medical School, Sacramento, CA, USA

Véronique Roulier
L’Oréal Research, Chevilly-Larue, France

Rene C. Rust
GSK/Stiefel, Brentford, Middlesex, UK

Neil S. Sadick
Sadick Dermatology, New York, NY and Department of Dermatology, Weill Medical College of Cornell University, New York, NY, USA

Laura F. Sandoval
Center for Dermatology Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
Foreword

Dermatology began as a medical specialty but over the last half century it has evolved to combine medical and surgical aspects of skin care. Mohs skin cancer surgery was the catalyst that propelled dermatology to become a more procedurally based specialty. The combination of an aging population, economic prosperity, and technological breakthroughs has revolutionized cosmetic aspects of dermatology in the past few years. Recent minimally invasive approaches have enhanced our ability to prevent and reverse the signs of photoaging in our patients. Dermatologists have pioneered medications, technologies, and devices in the burgeoning field of cosmetic surgery. Cutaneous lasers, light, and energy sources, the use of botulinum exotoxin, soft tissue augmentation, minimally invasive leg vein treatments, chemical peels, hair transplants, and dilute anesthesia liposuction have all been either developed or improved by dermatologists. Many scientific papers, reviews and textbooks have been published to help disseminate this new knowledge.

Recently it has become abundantly clear that unless photoaging is treated with effective skin care and photoprotection, cosmetic surgical procedures will not have their optimal outcome. Cosmeceuticals are integral to this process but, while some rigorous studies exist, much of the knowledge surrounding cosmeceuticals is hearsay and non-data based marketing information. Given increasing requests by our patients for guidance on the use of cosmeceuticals, understanding this body of information is essential to the practicing dermatologist.

In Cosmetic Dermatology: Products and Procedures, Zoe Draelos has compiled a truly comprehensive book that addresses the broad nature of the subspecialty. Unlike prior texts on the subject she has included all the essential topics of skin health. The concept is one that has been long awaited and will be embraced by our dermatologic colleagues and other health care professionals who participate in the diagnosis, and treatment of the skin.

No one is better suited to edit a textbook of this scope than Dr. Zoe Draelos. She is an international authority on Cosmetic Dermatology and she has been instrumental in advancing the field of cosmeceuticals by her extensive research, writing, and teachings. This text brings together experts from industry, manufacturing, research, and dermatology and highlights the best from each of these fields.

Dr. Draelos has divided the book into four different segments. The book opens with Basic Concepts, which includes physiology pertinent to cosmetic dermatology, and delivery of cosmetic skin actives. This section is followed by Hygiene Products, which include cleansers, moisturizers, and personal care products. The section on Adornment includes colored facial products, nail cosmetics, and hair cosmetics. The book concludes with a section on Anti-aging, which includes cosmeceuticals, injectable anti-aging techniques, resurfacing techniques, and skin modulation techniques.

Enjoy.

Jeffrey S. Dover
August 2009

Addendum

Who better to author and edit a textbook on cosmeceuticals than Zoe Draelos. She is the recognized leader in the field, having done most of the premier studies and written many of the definitive articles on the topic over the last decades.

In her first edition, Dr. Draelos set the standard for comprehensive texts on the subject of cosmeceuticals. With this second edition, she has raised the bar even further, producing a near encyclopedic, comprehensive tome on the subject. It is a treasure trove of information on the subject, without which anyone interested in the topic would be sorely lacking.

Use it as a reference text, dip into chapters or sections from time to time, or if you really want to know this subject, read it from cover to cover.

Enjoy and treasure this work.

Jeffrey S. Dover
Boston, April 2015
This text is intended to function as a compendium on the field of cosmetic dermatology. Cosmetic dermatology knowledge draws on the insight of the bench researcher, the innovation of the manufacturer, the formulation expertise of the cosmetic chemist, the art of the dermatologic surgeon, and the experience of the clinical dermatologist. These knowledge bases heretofore have been presented in separate textbooks written for specific audiences. This approach to information archival does not provide for the synthesis of knowledge required to advance the science of cosmetic dermatology.

The book begins with a discussion of basic concepts relating to skin physiology. The areas of skin physiology that are relevant to cosmetic dermatology include skin barrier, photoaging, sensitive skin, pigmentation issues, and sensory perceptions. All cosmetic products impact the skin barrier, it is to be hoped in a positive manner, to improve skin health. Failure of the skin to function optimally results in photoaging, sensitive skin, and pigmentation abnormalities. Damage to the skin is ultimately perceived as sensory anomalies. Skin damage can be accelerated by products that induce contact dermatitis. While the dermatologist can assess skin health visually, non-invasive methods are valuable to confirm observations or to detect slight changes in skin health that are imperceptible to the human eye.

An important part of cosmetic dermatology products is the manner in which they are presented to the skin surface. Delivery systems are key to product efficacy and include creams, ointments, aerosols, powders, and nanoparticles. Once delivered to the skin surface, those substances designed to modify the skin must penetrate with aid of penetration enhancers to ensure percutaneous delivery.

The most useful manner to evaluate products used in cosmetic dermatology is by category. The book is organized by product, based on the order in which they are used as part of a daily routine. The first daily activity is cleansing to ensure proper hygiene. A variety of cleansers are available to maintain the biofilm to include bars, liquids, non-foaming, and antibacterial varieties. They can be applied with the hands or with the aid of an implement. Specialized products to cleanse the hair are shampoos, which may be useful in prevention of scalp disease.

Following cleansing, the next step is typically moisturization. There are unique moisturizers for the face, hands, and feet. Extensions of moisturizers that contain other active ingredients include sunscreens. Other products with a unique hygiene purpose include antiperspirants and shaving products. This completes the list of major products used to hygiene and skincare purposes.

The book then turns to colored products for adorning the body. These include colored facial cosmetics, namely facial foundations, lipsticks, and eye cosmetics. It is the artistic use of these cosmetics that can provide camouflaging for skin abnormalities of contour and color. Adornment can also be applied to the nails, in the forms of nail cosmetics and prostheses, and to the hair, in the form of hair dyes, permanent waves, and hair straightening.

From adornment, the book addresses the burgeoning category of cosmeceuticals. Cosmeceuticals can be divided into the broad categories of botanicals, antioxidants, anti-inflammatory, peptides and proteins, cellular growth factors, retinoids, exfoliants, and nutraceuticals. These agents aim to improve the appearance of aging skin through topical applications, but injectable products for rejuvenation are an equally important category in cosmetic dermatology. Injectables can be categorized as neurotoxins and fillers (hyaluronic acid, hydroxyapatite, collagen, and polyactic acid).

Finally, the surgical area of cosmetic dermatology must be addressed in terms of resurfacing techniques, skin modulation techniques, and skin contouring techniques. Resurfacing can be accomplished chemically with superficial and medium depth chemical peels or physically with microdermabrasion and dermabrasion. The newest area of resurfacing involves the use of lasers, both ablative and nonablative. Other rejuvenative devices affecting collagen and pigmentation include intense pulsed light, radiofrequency, and diodes. These techniques can be combined with liposuction of the body and face to recontour the adipose tissue underlying the skin.

The book closes with a discussion of how cosmetic dermatology can be implemented as part of a treatment regimen for aging skin, acne, rosacea, psoriasis, and eczema. In order to allow effective synthesis of the wide range of information included in this text, each chapter has been organized with a template to create a standardized presentation. The chapters open with basic concepts pertinent to each area. From these key points, the authors have developed their information to define
the topic, discuss unique attributes, advantages and disadvantages, and indications.

It is my hope that this book will provide a standard textbook for the broad field of cosmetic dermatology. In the past, cosmetic dermatology has been considered a medical and surgical afterthought in dermatology residency programs and continuing medical education sessions. Perhaps this was in part because of the lack of a textbook defining the knowledge base. This is no longer the case. Cosmetic dermatology has become a field unto itself.

Zoe D. Draelos
Durham, NC
PART I

Basic Concepts
Introduction

Skin is the interface between the body and the environment. There are three major compartments of the skin, the epidermis, dermis and the hypodermis. Epidermis is the outermost structure and it is a multi-layered epithelial tissue divided into several layers. The outermost structure of the epidermis is the stratum corneum (SC) and it forms the epidermal permeability barrier which prevents the loss of water and electrolytes. Other protective/barrier roles for the epidermis include: immune defense, UV protection, and protection from oxidative damage. Changes in the epidermal barrier caused by environmental factors, age or other conditions can alter the appearance as well as the functions of the skin. Understanding the structure and function of the stratum corneum and the epidermal barrier is vital because it is the key to healthy skin and its associated social ramifications.

Structural components of the epidermal barrier

The outer surface of the skin, the epidermis, mostly consists of epidermal cells, known as keratinocytes, that are arranged in several stratified layers – the basal cell layer, the spinous cell layer and the granular cell layer whose differentiation eventually produces the stratum corneum (SC). Unlike other layers, SC is made of anucleated cells called corneocytes that are derived from keratinocytes. SC forms the major protective barrier of the skin, the epidermal permeability barrier. Figure 1.1 shows the different layers of the epidermis and the components that form the epidermal barrier. SC is a structurally heterogeneous tissue composed of non-nucleated, flat, protein-enriched corneocytes and lipid-enriched intercellular domains [1]. The lipids for barrier function are synthesized in the keratinocytes of the nucleated epidermal layers, stored in the lamellar bodies, and extruded into the intercellular spaces during the transition from the stratum granulosum to the stratum corneum forming a system of continuous membrane bilayers [1,2]. In addition to the lipids, other components such as melanins, proteins of the SC and epidermis, free amino acids and other small molecules also play important roles in the protective barrier of the skin. A list of the different structural as well as functional components of the stratum corneum is shown in Table 1.1.

Corneocytes

Corneocytes are formed by the terminal differentiation of the keratinocytes from the granular layer of the epidermis. The epidermis contains 70% water as do most tissues, yet the SC contains only 15% water. Alongside this change in water content the keratinocyte nuclei and virtually all the subcellular organelles begin to disappear in the granular cell layer.
leaving a proteinaceous core containing keratins, other structural proteins, free amino acids and amino acid derivatives, and melanin particles that persist throughout the SC. From an oval or polyhedral shape of the viable cells in the spinous layers the keratinocyte starts to flatten off in the granular cell layer and then assumes a spindle shape and finally becomes a flat corneocyte. The corneocyte itself develops a tough chemically resistant protein band at the periphery of the cell, called cornified cell envelope, formed from cross-linked cytoskeletal proteins [3].

Proteins of the cornified envelope

Cornified envelope (CE) contains highly cross-linked proteins formed from special precursor proteins synthesized in the granular cell layer, particularly involucrin, loricrin, and cornifin. In addition to these major protein components, several other minor unique proteins are also cross-linked to the cornified envelope. These include proteins with specific functions such as calcium binding proteins, antimicrobial and immune functional proteins, proteins that provide structural integrity to SC by binding to lipids and desmosomes, and

<table>
<thead>
<tr>
<th>Components</th>
<th>Function</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratum corneum (SC)</td>
<td>Protection</td>
<td>Topmost layer of epidermis</td>
</tr>
<tr>
<td>Cornified envelope (CE)</td>
<td>Resiliency of SC</td>
<td>Outer surface of the SC</td>
</tr>
<tr>
<td>Cornified envelope Precursor proteins</td>
<td>Structural proteins that are cross-linked to form CE</td>
<td>Outer surface of the SC</td>
</tr>
<tr>
<td>Lamellar granules (LG)</td>
<td>Permeability barrier of skin</td>
<td>Granular cells of epidermis</td>
</tr>
<tr>
<td>SC interfacial lipids</td>
<td>Permeability barrier of skin</td>
<td>Lipid bilayers between SC</td>
</tr>
<tr>
<td>Lipid-protein cross-links</td>
<td>Scaffold for corneocytes</td>
<td>Between SC and lipid bilayers</td>
</tr>
<tr>
<td>Desmosomes and corneodesmosomes</td>
<td>Intercellular adhesion and provide shear resistance</td>
<td>Between keratinocytes and corneocytes</td>
</tr>
<tr>
<td>Keratohyalin granules</td>
<td>Formation of keratin “bundles” and NMF precursor proteins</td>
<td>Stratum granulosum</td>
</tr>
<tr>
<td>Natural Moisturizing Factor (NMF)</td>
<td>Water holding capacity of SC</td>
<td>Within SC</td>
</tr>
<tr>
<td>pH and calcium gradients</td>
<td>Provides differentiation signals and LG secretion signals</td>
<td>All through epidermis</td>
</tr>
<tr>
<td>Specialized enzymes (lipases, glycosidases, proteases)</td>
<td>Processing and maturation of SC lipids, desquamation</td>
<td>Within LG and all through epidermis</td>
</tr>
<tr>
<td>Melanin granules and “dust”</td>
<td>UV protection of skin</td>
<td>Produced by melanocytes of basal layer, melanin “dust” in SC</td>
</tr>
</tbody>
</table>
protease inhibitors. The cross-linking is promoted by the enzyme transglutaminase that is detectable histochemically in the granular cell layer and lower segments of the stratum corneum. The γ-glutamyl link that results from transglutaminase activity is extremely chemically resistant and this provides the cohesivity and resiliency to the SC.

Lamellar granules and inter-corneocyte lipids

Lamellar granules or bodies (LG or LB) are specialized lipid carrying vesicles formed in suprabasal keratinocytes, destined for delivery of the lipids in the interface between the corneocytes. These lipids form the essential component of the epidermal permeability barrier and provide the “mortar” into which the corneocyte “bricks” are laid for the permeability barrier formation. When the granular keratinocytes mature to the stratum corneum, specific enzymes within the LB process the lipids, releasing the non-polar epidermal permeability barrier lipids, namely, cholesterol, free fatty acids and ceramides, from their polar precursors- phospholipids, glucosyl ceramides, and cholesteryl sulphate, respectively. These enzymes include: lipases, phospholipases, sphinomyelinases, glucosyl ceramidases, and sterol sulphatases [8,9]. The lipids fuse together in the stratum corneum to form a continuous bilayer. It is these lipids along with the corneocytes that constitute the bulk of the water barrier property of the SC [4,21].

Lipid-protein cross-links at the cornified envelope

LG are enriched in a specific lipid unique to the keratinizing epithelia such as the human epidermis. This lipid (a ceramide) has a very long chain omega-hydroxy fatty acid moiety with linoleic acid linked to the omega hydroxyl group in ester form. This lipid is processed within SC to release the omega hydroxyl ceramide that gets cross-linked to the amino groups of the cornified envelope proteins. The molecular structure of these components suggests that the glutamine and serine residues of CE envelope proteins such as loricrin and involucrin are covalently linked to the omega hydroxyl ceramides [5,21]. In addition, other free fatty acids (FFA) and ceramides (Cer), may also form protein cross-links on the extracellular side of the CE, providing the scaffold for the corneocytes to the lipid membrane of the SC.

Desmosomes and corneodesmosomes

Desmosomes are specialized cell structures that provide cell-to-cell adhesion (Figure 1.1). They help to resist shearing forces and are present in simple and stratified squamous epithelia as in human epidermis. Desmosomes are molecular complexes of cell adhesion proteins and linking proteins that attach the cell surface adhesion proteins to intracellular keratin cytoskeletal filaments proteins. Some of the specialized proteins present in desmosomes are cadherins, calcium binding proteins, desmogleins, and desmocollins. Cross-linking of other additional proteins such as envoplakins and periplakins further stabilizes desmosomes. Corneodesmosomes are remnants of the desmosomal structures that provide the attachment sites between corneocytes and cohesiveness for the corneocytes in the stratum corneum. Corneodesmosomes have to be degraded by specialized proteases and glycosidases, mainly serine proteases, for the skin to shed in a process called desquamation [6].

Keratohyalin granules

Keratohyalin granules are irregularly shaped granules present in the granular cells of the epidermis, thus providing these cells the granular appearance (Figure 1.1). These organelles contains abundant amount of keratins “bundled” together by a variety of other proteins, most important of which is filaggrin (filament aggregating protein). An important role of this protein, in addition to bundling of the major structural protein, keratin of the epidermis, is to provide the Natural Moisturizing Factor (NMF) for the stratum corneum. Filaggrin contains all the amino acids that are present in the NMF. Filaggrin, under appropriate conditions is dephosphorylated and proteolytically digested during the process when granular cells mature into corneocytes. The amino acids from filaggrin are further converted to the NMF components by enzymatic processing and are retained inside the corneocytes as components of NMF [7,8].

Functions of epidermal barrier

Water evaporation barrier (epidermal permeability barrier)

Perhaps the most studied and the most important function of SC is the formation of the epidermal permeability barrier [1,7,8]. SC limits the transcutaneous movement of water and electrolytes, a function that is essential for terrestrial survival. Lipids, particularly ceramides, cholesterol, and free fatty acids, together form lamellar membranes in the extracellular spaces of the SC that limit the loss of water and electrolytes. Corneocytes are embedded in this lipid-enriched matrix, and the cornified envelope, which surrounds corneocytes, provides a scaffold necessary for the organization of the lamellar membranes. Extensive research, mainly by Peter Elias’ group has elucidated the structure, properties and the regulation of the skin barrier by integrated mechanisms [9,11,12]. Barrier disruption triggers a cascade of biochemical processes leading to rapid repair of the epidermal barrier. These steps include increased keratinocyte proliferation and differentiation, increased production of corneocytes and production, processing and secretion of barrier lipids, ultimately leading to the repair of the epidermal permeability barrier. These events are described in more detail in the barrier homeostasis section below. A list of the different functions of human epidermis is shown in Table 1.2.
Mechanical barrier
Cornified envelope provides mechanical strength and rigidity to the epidermis, thereby protecting the host from injury. Specialized protein precursors and their modified amino acid cross-links provide the mechanical strength to the stratum corneum. One such protein, trichohyalin is a multi-functional cross-bridge protein that forms intra and inter protein cross-links between cell envelope structure and cytoplasmic keratin filament network [13]. Special enzymes called transglutaminases, some present exclusively in the epidermis (transglutaminase 3), catalyzes this cross-linking reaction. In addition, adjacent corneocytes are linked by cornodesmosomes, and many of the lipids of the stratum corneum barrier are also chemically cross-linked to the cornified envelope. All these chemical links provide the mechanical strength and rigidity to the SC.

Antimicrobial barrier and immune protection
The epidermal barrier acts as a physical barrier to pathogenic organisms that attempt to penetrate the skin from the outside environment. Secretions such as sebum and sweat and their acid pH provide antimicrobial properties to skin. Microflora that normally inhabit human skin can contribute to the barrier defenses by competing for nutrients and niches that more pathogenic organisms require, by expressing antimicrobial molecules that kill or inhibit the growth of pathogenic microbes and by modulating the inflammatory response [32]. Desquamation that causes the outward movement of corneocytes and their sloughing off at the surface also serves as a built-in mechanism inhibiting pathogens from colonizing the skin. Innate immune function of keratinocytes and other immune cells of the epidermis such as Langerhans cells and phagocytes provide additional immune protection in skin. Epidermis also generates a spectrum of antimicrobial lipids, peptides, nucleic acids, proteases and chemical signals that together forms the antimicrobial barrier (Table 1.3). The antimicrobial peptides are comprised of highly conserved small cysteine rich cationic proteins that are expressed in large amounts in skin. They contain common secondary structures that vary from a helical to β sheets, and their unifying characteristic is the ability to kill microbes or inhibit them from growing. Pathways that generate and regulate the antimicrobial barrier of the skin are closely tied to pathways that modulate the permeability barrier function. Expression of endogenous AMPs coincides with the presence of a number of epidermal structural components that may become part of the permeability barrier. For instance, murine cathelin-related antimicrobial peptide CRAMP and mBD-3 are essential for permeability barrier homeostasis. In addition, acute and chronic skin barrier disruption lead to increased expression of murin β-defensins (mBDs)-1, -3, and -14 and this increase in expression is diminished when the barrier is artificially restored [32].

NMF and skin hydration/moisturization
Natural moisturizing factor (NMF) is a collection of water-soluble compounds that are found in the stratum corneum (Table 1.4). These compounds compose approximately 20–30% of the dry weight of the corneocyte. Many of the components of the NMF are derived from the hydrolysis of filaggrin, a histidine- and glutamine-rich basic protein of the keratohyalin granule. SC hydration level controls the protease that hydrolyze filaggrin and histidase that converts histidine to urocanic acid. As NMF is water soluble and can easily be washed away from SC, the lipid layer surrounding the corneocyte helps seal the corneocyte to prevent loss of NMF.

In addition to preventing water loss from the organism, SC also acts to provide hydration and moisturization to skin. NMF components absorb and hold water allowing the outer-most layers of the stratum corneum to stay hydrated despite exposure to the harsh external environment. Glycerol, a major component of the NMF, is an important humectant present in skin that contributes skin hydration. Glycerol is produced

<table>
<thead>
<tr>
<th>Function</th>
<th>Localization/components involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water and electrolyte permeability barrier</td>
<td>SC/corneocyte proteins and extracellular lipids</td>
</tr>
<tr>
<td>Mechanical barrier</td>
<td>SC/corneocytes, cornified envelope</td>
</tr>
<tr>
<td>Microbial barrier/immune function</td>
<td>SC/lipid components/viable epidermis</td>
</tr>
<tr>
<td>Hydration/moisturization</td>
<td>SC/NMF</td>
</tr>
<tr>
<td>Protection from environmental toxins/drugs</td>
<td>SC/corneocytes, cornified envelope</td>
</tr>
<tr>
<td>Desquamation</td>
<td>SC/epidermis/proteases and glycosidases</td>
</tr>
<tr>
<td>UV barrier</td>
<td>SC/melanins of SC/epidermis</td>
</tr>
<tr>
<td>Oxidative stress barrier</td>
<td>SC, epidermis/antioxidants</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Class of compound</th>
<th>Localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water and electrolyte permeability barrier</td>
<td>Lipid</td>
<td>Stratum corneum</td>
</tr>
<tr>
<td>Mechanical barrier</td>
<td>Lipid</td>
<td>Stratum corneum</td>
</tr>
<tr>
<td>Microbial barrier/immune function</td>
<td>Lipid</td>
<td>Stratum corneum</td>
</tr>
<tr>
<td>Hydration/moisturization</td>
<td>Lipid</td>
<td>Stratum corneum</td>
</tr>
<tr>
<td>Protection from environmental toxins/drugs</td>
<td>Lipid</td>
<td>Stratum corneum</td>
</tr>
<tr>
<td>Desquamation</td>
<td>Lipid</td>
<td>Stratum corneum</td>
</tr>
<tr>
<td>Oxidative stress barrier</td>
<td>Lipid</td>
<td>Stratum corneum</td>
</tr>
</tbody>
</table>

Table 1.2 Barrier functions of the epidermis

Table 1.3 Antimicrobial components of epidermis and stratum corneum
locally within SC by the hydrolysis of triglycerides by lipases, but also taken up into the epidermis from the circulation by specific receptors present in the epidermis called Aquaporins [14]. Other humectants in the NMF include urea, sodium and potassium lactates and PCA [7].

Protection from environmental toxins and topical drugs penetration

The SC also has the important task of preventing toxic substances and topically applied drugs from penetrating the skin. SC acts as a protective wrap due to the highly resilient and cross-linked protein coat of the corneocytes and the lipid enriched intercellular domains. Pharmacologists and topical or “transdermal” drug developers are interested in increasing SC permeation of drugs into the skin. The multiple route(s) of penetration of drugs into the skin can be via hair follicles, interfollicular sites or by penetration through corneocytes and lipid bilayer membranes of the SC. The molecular weight, solubility, and molecular configuration of the toxins and drugs greatly influence the rate of penetration. Different chemical compounds adopt different pathways for skin penetration.

Desquamation and the role of proteolytic enzymes

The process by which individual corneocytes are sloughed off from the top of the SC is called desquamation. Normal desquamation is required to maintain the homeostasis of the epidermis. Corneocyte to corneocyte cohesion is controlled by the intercellular lipids as well as the corneodesmosomes that bind the corneocytes together. The presence of specialized proteolytic enzymes and glycosidases in the SC help in cleavage of desmosomal bonds resulting in release of corneocytes [6]. In addition, SC also contains protease inhibitors that keep these proteases in check and the balance of protease – protease inhibitors play a regulatory role in the control of the desquamatory process. The desquamatory process is also highly regulated by the epidermal barrier function.

The SC contains three families of proteases (serine, cysteine, and aspartate proteases), including the epidermal-specific serine proteases (SP), kallikrein-5 (SC trypsin enzyme, SCTE), and kallikrein-7 (SC chymotryptic enzyme), as well as at least two cysteine proteases, including the SC thiol protease (SCTP), and at least one aspartate protease, cathepsin D. All these proteases play specific roles in the desquamatory process at different layers of the epidermis.

Melanin and UV barrier

Although melanin is not typically considered a functional component of epidermal barrier, its role in the protection of the skin from UV radiation is indisputable. Melanins are formed in specialized dendritic cells called melanocytes in the basal layers of the epidermis. The melanin produced is transferred into keratinocytes in the basal and spinous layers. There are two types of melanin, depending on the composition and the color. The darker eumelanin is most protective to UV than the lighter, high sulphur containing pheomelanin. The keratinocytes carry the melanins through the granular layer and into the SC layer of the epidermis. The melanin “dust” present in the SC is structurally different from the organized melanin granules found in the viable deeper layers of the epidermis. The content and composition of melanins also change in SC depending on sun exposure and skin type of the individual.

Solar ultraviolet radiation is very damaging to proteins, lipids and nucleic acids and cause oxidative damage to these macromolecules. The SC absorbs some ultraviolet energy but it is the melanin particles inside the corneocytes that provide the most protection. Darker skin (higher eumelanin content) is significantly more resistant to the damaging effects of UV on DNA than lighter skin. In addition, UV-induced apoptosis (cell death that results in removal of damaged cells) is significantly greater in darker skin. This combination of decreased DNA damage and more efficient removal of UV-damaged cells play a critical role in the decreased photocarcinogenesis seen in individuals with darker skin [15]. In addition to melanin, trans-urocanic acid (tUCA), a product of histidine deamination produced in the stratum corneum, also acts as an endogenous sunscreen and protects skin from UV damage.

Oxidative stress barrier

The stratum corneum has been recognized as the main cutaneous oxidation target of UV and other atmospheric oxidants such as pollutants and cigarette smoke. Depletion of atmospheric “ozone layer” allows most energetic UV wavelength of sun radiation, i.e. UVC and short UVB to reach earth level. This high energy UV radiation penetrates deep into papillary dermis. UVA radiation in addition to damaging DNA of fibroblasts, also indirectly causes oxidative stress damage of epidermal keratinocytes. The oxidation of lipids and carbonylation of proteins of the SC lead to disruption of epidermal barrier and poor skin condition [16]. In addition to its effects on SC, UV also initiates and activates a complex cascade of biochemical reactions...
within the epidermis, causing depletion of cellular antioxidants and antioxidant enzymes such as superoxide dismutase (SOD) and catalase. Acute and chronic exposure to UV has been associated with depletion of SOD and catalase in the skin of hairless mice [17]. This lack of antioxidant protection further causes DNA damage, formation of thymine dimers, activation of proinflammatory cytokines and neuroendocrine mediators, leading to inflammation and free radical generation [18]. Skin naturally uses antioxidants to protect itself from photodamage. UV depletes antioxidants from outer stratum corneum. A gradient in the antioxidant levels (alpha-tocopherol, Vitamin C, glutathione and urate) with the lowest concentrations in the outer layers and a steep increase in the deeper layers of the stratum corneum protects the SC from the oxidative stress [19]. Depletion of antioxidant protection leads to UV induced barrier abnormalities. Topical application of antioxidants would support these physiological mechanisms and restore a healthy skin barrier [20,21].

Regulation of barrier homeostasis

Epidermal barrier is constantly challenged by environmental and physiological factors. Since a fully functional epidermal barrier is required for terrestrial life to exist, barrier homeostasis is tightly regulated by a variety of mechanisms.

Desquamation

Integral components of the barrier, corneocytes and the intercellular lipid bilayers are constantly synthesized and secreted by the keratinocytes during the process of terminal differentiation. Continuous renewal process is balanced by desquamation that removes individual corneocytes in a controlled manner by degradation of desmosomal constituent proteins by the stratum corneum proteases. The protease activities are under the control of protease inhibitors that are co-localized with the proteases within the SC. In addition, the activation cascade of the SC proteases is also controlled by the barrier requirement. Lipids and lipid precursors such as cholesterol sulphate also regulate desquamation by controlling the activities of the SC proteases [22].

Corneocyte maturation

Terminal differentiation of keratinocytes to mature corneocytes is controlled by calcium, hormonal factors and by desquamation. High calcium levels in the outer nucleated layers of epidermis stimulate specific protein synthesis and activate the enzymes that induce the formation of corneocytes. Variety of hormones and cytokines control keratinocyte terminal differentiation, thereby regulating barrier formation. Many of the regulators of these hormones are lipids or lipid intermediates that are synthesized by the epidermal keratinocytes for the barrier function, thereby exerting control of barrier homeostasis by affecting the corneocyte maturation. For example, the activators / ligands for the nuclear hormone receptors (example: PPAR – peroxisome proliferation activator receptor and vitamin D receptor) that influence keratinocyte terminal differentiation are endogenous lipids synthesized by the keratinocytes.

Lipid synthesis

Epidermal lipids, the integral components of the permeability barrier, are synthesized and secreted by the keratinocytes in the stratum granulosum after processing and packaging into the LB. Epidermis is a very active site of lipid synthesis under basal conditions and especially under conditions when the barrier is disrupted. Epidermis synthesizes ceramides, cholesterol and free fatty acids (major component of phospholipids and ceramides). These three lipid classes are required in equimolar distribution for proper barrier function. The synthesis, processing and secretion of these lipid classes are under strict control by the permeability barrier requirements. For example, under conditions of barrier disruption, rapid and immediate secretion by already packaged LB occurs as well as transcriptional and translational increases in key enzymes required for new synthesis of these lipids to take place. In addition, as explained in the previous section, many of the hormonal regulators of corneocyte maturation are lipids or lipid intermediates synthesized by the epidermis. Stratum corneum lipid synthesis and lipid content are also altered with various skin conditions such as inflammation and winter xerosis [23,24].

Environmental and physiological factors

Barrier homeostasis is under control of environmental factors such as humidity variations. High humidity (increased SC hydration) downregulates barrier competence (as assessed by barrier recovery after disruption) whereas low humidity enhances barrier homeostasis. Physiological factors can also have influence on barrier function. High stress (chronic as well as acute) increases corticosteroid levels and causes disruption of barrier homeostasis. During periods of psychological stress the cutaneous homeostatic permeability barrier is disturbed, as is the integrity and protective function of the stratum corneum. Many skin diseases, including atop dermatitis and psoriasis are precipitated or exacerbated by psychological stress [34]. Circadian rhythmicity also applies to skin variables related to skin barrier function. Significant circadian rhythmicity has been observed in transepidermal water loss, skin surface pH, and skin temperature. These observations suggest skin permeability is higher in the evening than in the morning [35]. Conditions that cause skin inflammation can stimulate the secretion of inflammatory cytokines such as interleukins, induce epidermal hyperplasia, cause impaired differentiation and disrupt epidermal barrier functions.

Hormones

Barrier homeostasis/SC integrity, lipid synthesis is all under the control of different hormones, cytokines and calcium. Nuclear Hormone Receptors for both well-known ligands, such as thyroid hormones, retinoic acid, and vitamin D, and “liporeceptors” whose
pigments are endogenous lipids control barrier homeostasis. These liporeceptors include peroxisome proliferator activator receptor (PPAR alpha, beta and gamma) and Liver X receptor (LXR). The activators for these receptors are endogenous lipids and lipid intermediates or metabolites such as certain free fatty acids, leukotrienes, prostanooids and oxygenated sterols. These hormones mediated by their receptors control barrier at the level of epidermal cell maturation (cornocyte formation), transcriptional regulation of terminal differentiation proteins and enzymes required for lipid processing, lipid transport and secretion into LB.

pH and calcium

Outermost stratum corneum pH is maintained in the acidic range, typically in the range of 4.5–5.0 by a variety of different mechanisms. This acidity is maintained by formation of free fatty acids from phospholipids; sodium proton exchangers in the SC and by the conversion of histidine of the NMF to urocanic acid by histidase enzyme in the SC. In addition, lactic acid, a major component of the NMF, plays a major role in maintaining the acid pH of the stratum corneum. Maintenance of an acidic pH in the stratum corneum is important for the integrity/cohesion of the SC as well as the maintenance of the normal skin microflora. The growth of normal skin microflora is supported by acidic pH while a more neutral pH supports pathogenic microbes invasion of the skin.

This acidic pH is optimal for processing of precursor lipids to mature barrier forming lipids and for initiating the desquamatory process. The desquamatory proteases present in the outer stratum corneum such as the thiol proteases and cathepsins are more active in the acidic pH, whereas the SCCE and SCTE present in the lower stratum corneum are more active at the neutral pH. Under conditions when the pH gradient is disrupted, desquamation is decreased resulting in dry scaly skin and disrupted barrier function.

In the normal epidermis, there is a characteristic intra-epidermal calcium gradient, with peak concentrations of calcium in the granular layer and decreasing all the way up to the stratum corneum [10]. The calcium gradient regulates barrier properties by controlling the maturation of the corneocytes, regulating the enzymes that process lipids and by modulating the desquamatory process. Calcium stimulates a variety of processes including the formation and secretion of lamellar bodies, differentiation of keratinocytes, formation of cornified envelope precursor proteins, and cross-linking of these proteins by the calcium inducible enzyme transglutaminase. Specifically, high levels of calcium stimulate the expression of proteins required for keratinocyte differentiation, including key structural proteins of the cornified envelope, such as loricrin, involucrin, and the enzyme, transglutaminase 1, which catalyzes the cross linking of these proteins into a rigid structure.

Coordinated regulation of multiple barrier functions

Co-localization of many of the barrier functions allows regulation of the functions of the epidermal barrier to be co-ordinated. For example, epidermal permeability barrier, antimicrobial barrier, mechanical protective barrier and UV barrier are all co-localized in the stratum corneum. A disruption of one function can lead to multiple barrier disruptions, and therefore, multiple barrier functions are coordinately regulated. Disruption of permeability barrier leads to activation of cytokine cascade (increased levels of primary cytokines, interleukin-1 and tumor necrosis factor-alpha) which in turn activates the synthesis of antimicrobial peptides of the stratum corneum. Additionally, the cytokines and growth factors released during barrier disruption lead to cornocyte maturation thereby strengthening the mechanical and protective barrier of the skin. Hydration of the skin itself controls barrier function by regulating the activities of the desquamatory proteases (high humidity decreases barrier function and stimulates desquamation). In addition, humidity levels control filaggrin hydrolysis that release the free amino acids that form the NMF (histidine, glutamine arginine and their by-products) and trans-urocanic acid (deamination of histidine) that serves as UV barrier.

Methods for studying barrier structure and function

Physical methods

Stratum corneum integrity/desquamation can be measured using tape stripping methods. Under dry skin conditions, when barrier is compromised, corneocytes do not separate singly but as “clumps”. This can be quantified by using special tapes and visualizing the corneocytes removed by light microscopy. Another harsher tape-stripping method involves stripping of SC using cyanoacrylate glue. These physical methods provide a clue to the binding forces that hold the corneocyte together. The efficacy of treatment with skin moisturizers or emollients that improve skin hydration and reduce scaling can be quantitated using these methods.

Instrumental methods

The flux of water vapor through the skin (transepidermal water loss or TEWL) can be determined using an evaporimeter [25]. This instrument contains two water sensors mounted vertically in a chamber one above the other. When placed on the skin in a stable ambient environment the difference in water vapor values between the two sensors is a measure of the flow of water coming from the skin (TEWL). There are several commercially available evaporimeters [e.g., Tewameter® Courage & Khazaka (Köln, Germany)], which are widely used in clinical practice as well as in investigative skin biology. Recovery of epidermal barrier (TEWL) after barrier disruption using physical methods (e.g.: tape strips) or chemical methods (organic solvent washing) provide valuable information on the epidermal barrier properties [26].

Skin hydration can be measured using Corneometer®. The measurement is based on capacitance of a dielectric medium. Any change in the dielectric constant due to skin
surface hydration variation alters the capacitance of a precision measuring capacitor. The measurement can detect even slightest changes in the hydration level. Another important recent development in skin capacitance methodology is using SkinChip®. Skin capacitance imaging of skin surface can be obtained using SkinChip. This method provides information regarding skin microrelief, level of stratum corneum hydration and sweat gland activity. SkinChip technology can be used to quantify regional variation in skin, skin changes with age, effects of hydrating formulations, surfactant effects on corneocytes, acne and skin pore characteristics [27].

Several other recently developed methods for measuring epidermal thickness such as confocal microscopy, dermatoechography and dermatoscopy can provide valuable information on skin morphology and barrier abnormalities [28]. Other more sophisticated (although not easily portable) instrumentation techniques such as ultrasound, optical coherence tomography and the Magnetic Resonance Imaging (MRI) can provide useful information on internal structures of SC/epidermis and its improvements with treatment. MRI has been successfully used to evaluate skin hydration and water behavior in aging skin [29].

Biological methods

Ultrastructural details of SC and the intercellular spaces of the SC can be visualized using transmission electron microscopy (TEM) or thin vertical sections and freeze-fracture replicas, field emission scanning electron microscopy and immunofluorescence confocal laser scanning microscopy [30]. The ultrastructural details of the lipid bilayers within the SC can be visualized by EM after fixation using ruthenium tetroxide. The existence of corneodesmosomes in the SC, and their importance in desquamation can be measured by Scanning electron microscopy (SEM) of skin surface replicas. The constituent cells of the SC, the corneocytes, can be visualized and quantitated by scraping the skin surface or by use of detergent solution. The suspension so obtained can be analyzed by microscopy, biochemical or immunological techniques. Punch or shaved biopsy techniques can be combined with immunohistochemistry using specific SC/epidermis specific antibodies to quantify the SC quality. Specific antibodies for keratinocyte differentiation specific proteins, desmosomal proteins or specific proteases can provide answers relating to skin barrier properties.

Relevance of skin barrier to cosmetic product development

Topical products that influence barrier functions

The human skin is constantly exposed to hostile environment. These include changes in relative humidity, extremes of temperature, environmental toxins and daily topically applied products. Daily exposure to soaps and other household chemicals can compromise skin barrier properties and cause unhealthy skin conditions. Prolonged exposure to surfactants removes the epidermal barrier lipids and enhances desquamation leading to impaired barrier properties [7,8]. Allergic reactions to topical products can result in allergic or irritant contact dermatitis, resulting in itchy and, scaly skin and skin redness leading to barrier perturbations.

Cosmetics that restore skin barrier properties

Water is the most important plasticizer of SC. Cracking and fissuring of skin develops as SC hydration declines below a critical threshold. Skin moisturization is a property of the outer SC (also known as stratum disjunctum) as corneocytes of the lower SC (stratum compactum) are hydrated by the body fluids. “Moisturizers” are substances that when applied to skin add water and/or retains water in the SC. Moisturizers affect the SC architecture and barrier homeostasis, that is, topically applied ingredients are not as inert to the skin as one might expect. A number of different mechanisms behind the barrier-influencing effects of moisturizers have been suggested, such as simple deposition of lipid material outside the skin. Ingredients in the moisturizers may also change the lamellar organization and the packing of the lipid matrix and thereby change skin permeability [33]. The NMF components present in the outer SC act as humectants, absorb moisture from the atmosphere and are sensitive to humidity of the atmosphere. The amino acids and their metabolites, along with other inorganic and organic osmolytes such as urea, lactic acid, taurine and glycerol act as humectants within the outer SC. Secretions from sebaceous glands on the surface of the skin also act as emollients and contribute to skin hydration. A lack of either or any of these components can contribute to dry, scaly skin. Topical application of all of the above components can act as humectants, and can relieve dry skin condition and improve skin moisturization and barrier properties. Film forming polysaccharide materials such as hyaluronic acid, binds and retains water and helps to keep skin supple and soft.

In addition to humectants, emollients such as petroleum jelly, hydrocarbon oils and waxes, mineral and silicone oils and paraffin wax provide an occlusive barrier to the skin, preventing excessive moisture loss from the skin surface. Topically applied barrier compatible lipids also contribute to skin moisturization and improved skin conditions. Chronologically aged skin exhibits delayed recovery rates after defined barrier insults, with decreased epidermal lipid synthesis. Application of a mixture of cholesterol, ceramides, and essential/nonessential free fatty acids (FFAs) in an equimolar ratio was shown to lead to normal barrier recovery, and a 3:1:1:1 ratio of these four ingredients demonstrated accelerated barrier recovery [31].

Topically applied antioxidants and anti-inflammatory agents also protect skin from UV-induced skin damage by providing protection from oxidative damage to skin proteins and lipids [20,21].

Topically applied substances may penetrate deeper into the skin and interfere with the production of barrier lipids and
the maturation of corneocytes. Creams may influence the desquamatary proteases and change the thickness of the SC. The increased understanding of the interactions between topically applied substances and epidermal biochemistry will enhance the possibilities to tailor skin care products for various SC abnormalities [33].

Skin irritation from cosmetics

Thousands of ingredients are used by the cosmetic industry. These include pure compounds, mixtures, plant extracts, oils and waxes, surfactants, detergents, preservatives and polymers. Although all the ingredients used by the cosmetic industry are tested for safety, some consumers may still experience reactions to some of them. Most common reactions are irritant contact reactions while allergic contact reactions are less common. Irritant reactions tend to be more rapid and cause mild discomfort and redness and scaling of skin. Allergic reactions can be delayed, more persistent and sometimes severe. Ingredients previously considered safe can be irritating in a different formulation because of increased skin penetration into skin. More than 50% of the general population perceives their skin as sensitive. It is believed that the perception of sensitive skin is at least in part, related to skin barrier function. People with impaired barrier function may experience higher irritation to a particular ingredient due to its increased penetration into deeper layers of the skin.

Summary and future trends

Major advances have been made in the last several decades in understanding the complexity and functions of the stratum corneum. Extensive research by several groups has elucidated the metabolically active role of the SC and have characterized the major components and their importance in providing protection for the organism from the external environment. New insights into the molecular control mechanisms of desquamation, lipid processing, barrier function and antimicrobial protection have been elucidated in the last decade.

Knowledge of other less well known epithelial organelles such as intercellular junctions, tight junctions, and gap junctions and their role in barrier function in the skin is being elucidated. Intermolecular links that connect intercellular lipids with the corneocytes of the SC and their crucial role for maintaining barrier function is an area being actively researched.

New knowledge in the corneocyte envelope structure and the physical state of the intercellular lipid crystallinity and their interrelationship would lead to development of new lipid actives for improving SC moisturization and for treatment of skin barrier disorders. Further research in the cellular signaling events that control the communication between SC and the viable epidermis will shed more light into barrier homeostasis mechanisms.

Novel delivery systems play an increasingly important role in the development of effective skin care products. Delivery technologies such as lipid systems, nanoparticles, microcapsules, polymers and films are being pursued not only as vehicles for delivering cosmetic actives through skin, but also for improving barrier properties of the skin.

Undoubtedly, skin care and cosmetic companies will exploit this new knowledge in developing novel and more efficacious products for strengthening the epidermal barrier and to improve and enhance the functional and aesthetic properties of the human skin.

References

CHAPTER 2
Photoaging

Kira Minkis,1 Jillian Havey Swary,2 and Murad Alam2
1Weill Cornell Medical College, New York, NY, USA
2Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

Introduction
Skin, the largest human organ, is chronically exposed to UV radiation from the sun. The skin is at the frontline of defense of the human body against the harmful effects of UV exposure. Chronic absorption of UV radiation leads to potential injuries to the skin which includes photoaging, sunburn, immunosuppression, and carcinogenesis. Photoaging, the most common form of skin damage caused by UV exposure, produces damage to connective tissue, melanocytes, and the microvasculature [1]. Recent advances in understanding photoaging in human skin have identified the physical manifestations, histologic characteristics, and molecular mechanisms of UV exposure.

Definition
Photoaging is the leading form of skin damage caused by sun exposure, occurring more frequently than skin cancer. Photoaging describes clinical, histologic, and functional changes that are characteristic of older, chronically sun-exposed skin. Photoaging culminates from a combination of predominantly chronic UV radiation superimposed on intrinsic aging of the skin. Chronic UV exposure results in premature skin aging, termed cutaneous photoaging, which is marked by fine and coarse wrinkling of the skin, dyspigmentation, sallow color, textural changes, loss of elasticity, and premalignant actinic keratoses. Most of these clinical signs are caused by dermal alterations. Pigmentary disorders such as seborrheic keratoses, lentigines, and diffuse hyperpigmentation are characteristic of epidermal changes [2].

These physical characteristics are confirmed histologically by epidermal thinning and disorganization of the dermal connective tissue. Loss of connective tissue, interstitial collagen fibrils, and accumulation of disorganized connective tissue elastin leads to solar elastosis, a condition characteristic of photoaged skin [3]. Similar alterations in the cellular component and the extracellular matrix of the connective tissue of photoaged skin may affect superficial capillaries, causing surface telangiectasias [4].

The significance of photoaging lies in both the cosmetic and medical repercussions, i.e. in the demand for agents that can prevent or reverse the cutaneous signs associated with photoaging and its strong association with cutaneous malignancies.

Physiology
Photoaged versus chronically aged skin
Skin, like all other organs, ages over time. Aging can be defined as intrinsic and extrinsic. Intrinsic aging is a hallmark of human chronologic aging and occurs in both sun-exposed and non-sun-exposed skin. Extrinsic aging, on the contrary, is affected by exposure to environmental factors such as UV radiation. While sun-protected chronically aged skin and photoaged chronically aged skin share common characteristics, many of the physical characteristics of skin that decline with age show an accelerated decline with photoaging [5]. Compared with photodamaged skin, sun-protected skin is characterized by dryness, fine wrinkles, skin atrophy, homogeneous pigmentation, and seborrheic keratoses [6]. Extrinsically aged skin, on the contrary, is characterized by roughness, dryness, fine as well as coarse wrinkles, atrophy, uneven pigmentation, and superficial vascular abnormalities (e.g. telangiectasias) [6]. It is important to note that these attributes are not absolute and can vary according to Fitzpatrick skin type classification and history of sun exposure.
While the pathophysiology of photoaged and photo-protected skin differ, the histologic features of these two entities are distinct. In photo-protected skin, a thin epidermis is present with an intact stratum corneum, the dermoeidermal junction and the dermis are flattened, and dermal fibroblasts produce less collagen. In photoaged skin, the thickness of the epidermis can either increase or decrease, corresponding to areas of keratinocyte atypia. The dermoeidermal junction is atrophied in appearance and the basal membrane thickness is increased, reflecting basal keratinocyte damage.

Changes in the dermis of photoaged skin can vary based on the amount of acquired UV damage. Solar elastosis is the most prominent histologic feature of photoaged skin. The quantity of elastin in the dermis decreases in chronically aged skin, but in UV-exposed skin, elastin increases in proportion to the amount of UV exposure [7,8]. Accumulated elastic fibers occupy areas in the dermal compartment previously inhabited by collagen fibers [9]. This altered elastin deposition is manifest clinically as wrinkles and yellow discoloration of the skin.

Another feature of photoaged skin is collagen fibril disorganization. Mature collagen fibers, which constitute the bulk of the skin’s connective tissue, are degenerated and replaced by collagen with a basophilic appearance, termed basophilic degeneration. Additional photoaged skin characteristics include an increase in the deposition of glycosaminoglycans and dermal extracellular matrix proteins [10,11]. In fact, the overall cell population in photodamaged skin increases, leading to hyperplastic fibroblast proliferation and infiltration of inflammatory substrates that cause chronic inflammation (heliodermatitis) [12]. Changes in the microvasculature also occur, as is clinically manifested in surface telangiectasias and other vascular abnormalities.

Photobiology

In order to fully understand the molecular mechanisms responsible for photoaging in human skin, an awareness of the UV spectrum is crucial. The UV spectrum is divided into three main components: UVC (270–290 nm), UVB (290–320 nm), and UVA (320–400 nm). While UVC radiation is filtered by ozone and atmospheric moisture, and consequently never reaches the Earth, UV A and UVB rays do reach the terrestrial surface. Although the ratio of UVA to UVB rays is 20:1 [13] and UVB is greatest during the summer months, both forms of radiation have acute and chronic effects on human skin.

Photoaging is the superposition of UVA and UVB radiation on intrinsic aging. In order to exert biologic effects on human skin, both categories of UV rays must be absorbed by chromophores in the skin. Depending on the wavelength absorbed, UV light interacts with different skin cells at different depths (Figure 2.1). More specifically, energy from UVB rays is mostly absorbed by the epidermis and affects epidermal cells such as the keratinocytes, whereas energy from UVA penetrates deeper into the skin, with ~50% of UVA penetrating into the skin in a fair-skinned individual (versus <10% of UVB photons). UVA therefore affects both epidermal keratinocytes and the deeper dermal fibroblasts. The absorbed energy is converted into varying chemical reactions that cause histologic and clinical changes in the skin. UVA absorption by chromophores mostly acts indirectly by transferring energy to oxygen to generate reactive oxygen species (ROS), which subsequently causes several effects such as transcription factor activation, lipid peroxidation, and DNA-strand breaks. On the contrary, UVB has a more direct effect on the absorbing chromophores and causes cross-linking of adjacent DNA pyrimidines and other DNA-related...